Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
5dbbf5d6
Unverified
Commit
5dbbf5d6
authored
May 08, 2024
by
Illia Silin
Committed by
GitHub
May 08, 2024
Browse files
Merge pull request #63 from ROCm/lwpck-1559
Merge changes for gfx12.
parents
78f637e4
2d3d7190
Changes
23
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
237 additions
and
137 deletions
+237
-137
example/01_gemm/gemm_wmma_fp16.cpp
example/01_gemm/gemm_wmma_fp16.cpp
+44
-41
example/01_gemm/run_gemm_example.inc
example/01_gemm/run_gemm_example.inc
+1
-1
example/20_grouped_conv_bwd_weight/CMakeLists.txt
example/20_grouped_conv_bwd_weight/CMakeLists.txt
+1
-1
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
..._bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
+2
-2
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
+1
-1
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_wmma_example.inc
...ple_d/run_grouped_conv_fwd_bias_relu_add_wmma_example.inc
+3
-2
example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
..._scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
+3
-3
example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
...m_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
+3
-3
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
+1
-1
include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
...ude/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
+74
-32
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
...l/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
+17
-8
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp
...evice_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp
+1
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
.../gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
+2
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
.../ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
+14
-7
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
...ion/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
+3
-2
include/ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp
...device/impl/device_multi_query_attention_forward_wmma.hpp
+1
-2
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_wmma_cshuffle.hpp
...grid/gridwise_batched_gemm_softmax_gemm_wmma_cshuffle.hpp
+14
-6
include/ck/tensor_operation/gpu/grid/gridwise_fpAintB_gemm_wmma.hpp
.../tensor_operation/gpu/grid/gridwise_fpAintB_gemm_wmma.hpp
+14
-6
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
...ation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
+18
-8
include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp
include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp
+20
-8
No files found.
example/01_gemm/gemm_wmma_fp16.cpp
View file @
5dbbf5d6
...
...
@@ -19,48 +19,51 @@ using AElementOp = PassThrough;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmWmma_CShuffle
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
32
,
16
,
32
,
64
,
8
,
16
,
16
,
1
,
2
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
2
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
16
,
1
,
2
>
,
8
>
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmWmma_CShuffle
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
// Prefetch stage
128
,
// BlockSize
64
,
// MPerBlock
128
,
// NPerBlock
64
,
// KPerBlock
2
,
// K1
16
,
// MPerWmma
16
,
// NPerWmma
2
,
// M-Repeat // M-PerWmma / M-Repeat = M-Wave
4
,
// N-Repeat // N-PerWmma / N-Repeat = N-Wave
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
true
,
1
,
// C shuffle (M Repeat) Per store
1
,
// C shuffle (N Repeat) Per store
S
<
1
,
32
,
1
,
4
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
...
...
example/01_gemm/run_gemm_example.inc
View file @
5dbbf5d6
...
...
@@ -159,7 +159,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
);
break
;
case
4
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
1
.
f
,
1
.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5
.
f
,
5
.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
1.
f
,
1.
f
}(
b_k_n
);
break
;
case
5
:
...
...
example/20_grouped_conv_bwd_weight/CMakeLists.txt
View file @
5dbbf5d6
list
(
APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
list
(
APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102 gfx1200
)
list
(
APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102 gfx1200
gfx1201
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list_xdl AND target EQUAL 0
)
...
...
example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
View file @
5dbbf5d6
...
...
@@ -83,14 +83,14 @@ using DeviceOpInstanceKKNN =
2
,
4
,
4
,
tru
e
,
fals
e
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
tru
e
,
fals
e
,
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
...
...
example/30_grouped_conv_fwd_multiple_d/CMakeLists.txt
View file @
5dbbf5d6
list
(
APPEND gpu_list1 gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
list
(
APPEND gpu_list2 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200
)
list
(
APPEND gpu_list2 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200
gfx1201
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
...
...
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_wmma_example.inc
View file @
5dbbf5d6
...
...
@@ -279,8 +279,9 @@ bool run_grouped_conv_fwd_bias_relu_add_example(int argc, char* argv[])
switch
(
conv_param
.
num_dim_spatial_
)
{
// case 1: return run_grouped_conv_fwd_bias_relu_add<1>(config, conv_param);
case
2
:
return
run_grouped_conv_fwd_bias_relu_add
<
2
>
(
config
,
conv_param
);
// case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
case
2
:
return
run_grouped_conv_fwd_bias_relu_add
<
2
>
(
config
,
conv_param
);
// case 3: return run_grouped_conv_fwd_bias_relu_add<3>(config, conv_param);
}
return
false
;
...
...
example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
View file @
5dbbf5d6
...
...
@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
//
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
...
...
@@ -277,10 +277,10 @@ using DeviceMHAFactory =
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
MaskingSpec
>
#endif
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
...
...
example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
View file @
5dbbf5d6
...
...
@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecial
#define CK_MHA_USE_WAVE_1
#define CK_MHA_USE_WAVE_2
#define CK_MHA_USE_WAVE_4
#define CK_MHA_USE_WAVE_8
//
#define CK_MHA_USE_WAVE_8
using
DeviceMHAFactory
=
std
::
tuple
<
#ifdef CK_MHA_USE_WAVE_1
...
...
@@ -277,10 +277,10 @@ using DeviceMHAFactory =
S
<
2
,
8
,
8
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
1
,
false
,
// CShuffleBlockTransfer MN
1
,
1
,
S
<
1
,
64
,
1
,
2
>
,
8
,
MaskingSpec
>
,
MaskingSpec
>
#endif
#ifdef CK_MHA_USE_WAVE_8
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
,
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc0DataType
,
Acc1BiasDataType
,
Acc1DataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
...
...
example/38_grouped_conv_bwd_data_multiple_d/CMakeLists.txt
View file @
5dbbf5d6
list
(
APPEND gpu_list_xdl gfx908 gfx90a gfx940 gfx941 gfx942 gfx950
)
list
(
APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102 gfx1
200
)
list
(
APPEND gpu_list_wmma gfx1100 gfx1101 gfx1102 gfx1
103 gfx1200 gfx1201
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list_xdl AND target EQUAL 0
)
...
...
include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
View file @
5dbbf5d6
...
...
@@ -70,9 +70,6 @@ struct BlockwiseGemmWMMA
static
constexpr
index_t
A_KRow
=
2
;
static
constexpr
index_t
B_KRow
=
2
;
static
constexpr
index_t
A_KRow_
=
AEnableLds
?
1
:
2
;
static
constexpr
index_t
B_KRow_
=
BEnableLds
?
1
:
2
;
static
constexpr
index_t
A_K1
=
ABlockDesc
{}.
GetLength
(
I5
);
static
constexpr
index_t
B_K1
=
BBlockDesc
{}.
GetLength
(
I5
);
...
...
@@ -316,7 +313,7 @@ struct BlockwiseGemmWMMA
// read A
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
k
*
KPack
/
A_K1
/
A_KRow
_
>
{},
m0
,
I0
,
I0
,
I0
,
I0
),
make_tuple
(
Number
<
k
*
KPack
/
A_K1
/
A_KRow
>
{},
m0
,
I0
,
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
m0
,
I0
,
I0
,
I0
,
I0
),
...
...
@@ -326,8 +323,7 @@ struct BlockwiseGemmWMMA
// read B
b_thread_copy_
.
Run
(
b_block_desc_k0_n0_n1_n2_k1
,
make_tuple
(
Number
<
k
*
KPack
/
B_K1
/
B_KRow_
>
{},
n0
,
I0
,
I0
,
I0
,
I0
),
make_tuple
(
Number
<
k
*
KPack
/
B_K1
/
B_KRow
>
{},
n0
,
I0
,
I0
,
I0
,
I0
),
b_block_buf
,
b_thread_desc_
,
make_tuple
(
I0
,
n0
,
I0
,
I0
,
I0
,
I0
),
...
...
@@ -373,7 +369,7 @@ struct BlockwiseGemmWMMA
// read B
b_thread_copy_
.
Run
(
b_block_desc_k0_n0_n1_n2_k1
,
make_tuple
(
Number
<
k
*
KPack
/
B_K1
/
B_KRow
_
>
{},
n0
,
I0
,
I0
,
I0
,
I0
),
make_tuple
(
Number
<
k
*
KPack
/
B_K1
/
B_KRow
>
{},
n0
,
I0
,
I0
,
I0
,
I0
),
b_block_buf
,
b_thread_desc_
,
make_tuple
(
I0
,
n0
,
I0
,
I0
,
I0
,
I0
),
...
...
@@ -381,7 +377,7 @@ struct BlockwiseGemmWMMA
// read A
a_thread_copy_
.
Run
(
a_block_desc_k0_m0_m1_m2_k1
,
make_tuple
(
Number
<
k
*
KPack
/
A_K1
/
A_KRow
_
>
{},
m0
,
I0
,
I0
,
I0
,
I0
),
make_tuple
(
Number
<
k
*
KPack
/
A_K1
/
A_KRow
>
{},
m0
,
I0
,
I0
,
I0
,
I0
),
a_block_buf
,
a_thread_desc_
,
make_tuple
(
I0
,
m0
,
I0
,
I0
,
I0
,
I0
),
...
...
@@ -443,30 +439,76 @@ struct BlockwiseGemmWMMA
static
constexpr
auto
c_thread_desc_
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
NRepeat
>
{},
wmma_gemm
.
GetRegSizePerWmma
()));
using
AThreadCopyType
=
ThreadwiseTensorSliceTransfer_v4
<
FloatA
,
FloatA
,
decltype
(
a_block_desc_k0_m0_m1_m2_k1
),
decltype
(
a_thread_desc_
),
Sequence
<
KPack
/
A_K1
/
A_KRow
,
1
,
1
,
1
,
1
,
A_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
A_K1
,
A_K1
>
;
using
BThreadCopyType
=
ThreadwiseTensorSliceTransfer_v4
<
FloatB
,
FloatB
,
decltype
(
b_block_desc_k0_n0_n1_n2_k1
),
decltype
(
b_thread_desc_
),
Sequence
<
KPack
/
B_K1
/
B_KRow
,
1
,
1
,
1
,
1
,
B_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
B_K1
,
B_K1
>
;
AThreadCopyType
a_thread_copy_
;
BThreadCopyType
b_thread_copy_
;
template
<
bool
EnableLds
>
struct
AThreadCopySelector
;
template
<
>
struct
AThreadCopySelector
<
true
>
{
using
type
=
ThreadwiseTensorSliceTransfer_v4
<
FloatA
,
FloatA
,
decltype
(
a_block_desc_k0_m0_m1_m2_k1
),
decltype
(
a_thread_desc_
),
Sequence
<
KPack
/
A_K1
/
A_KRow
,
1
,
1
,
1
,
1
,
A_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
A_K1
,
A_K1
>
;
};
template
<
>
struct
AThreadCopySelector
<
false
>
{
using
type
=
ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow
<
FloatA
,
FloatA
,
decltype
(
a_block_desc_k0_m0_m1_m2_k1
),
decltype
(
a_thread_desc_
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
KPack
/
A_K1
/
A_KRow
,
1
,
1
,
1
,
1
,
A_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
A_K1
,
false
>
;
};
template
<
bool
EnableLds
>
struct
BThreadCopySelector
;
template
<
>
struct
BThreadCopySelector
<
true
>
{
using
type
=
ThreadwiseTensorSliceTransfer_v4
<
FloatB
,
FloatB
,
decltype
(
b_block_desc_k0_n0_n1_n2_k1
),
decltype
(
b_thread_desc_
),
Sequence
<
KPack
/
B_K1
/
B_KRow
,
1
,
1
,
1
,
1
,
B_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
B_K1
,
B_K1
>
;
};
template
<
>
struct
BThreadCopySelector
<
false
>
{
using
type
=
ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow
<
FloatB
,
FloatB
,
decltype
(
b_block_desc_k0_n0_n1_n2_k1
),
decltype
(
b_thread_desc_
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
KPack
/
B_K1
/
B_KRow
,
1
,
1
,
1
,
1
,
B_K1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
B_K1
,
false
>
;
};
typename
AThreadCopySelector
<
AEnableLds
>::
type
a_thread_copy_
;
typename
BThreadCopySelector
<
BEnableLds
>::
type
b_thread_copy_
;
};
#else
template
<
index_t
BlockSize
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
View file @
5dbbf5d6
...
...
@@ -133,12 +133,17 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
static
constexpr
auto
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerWmma
);
static
constexpr
auto
WmmaK
=
K1
==
16
?
32
:
16
;
static
constexpr
auto
AEnableLds_auto
=
NWaves
==
1
?
false
:
true
;
static
constexpr
auto
BEnableLds_auto
=
MWaves
==
1
?
false
:
true
;
static
constexpr
auto
MaxVectorLoadA
=
K1
*
sizeof
(
ADataType
)
==
16
?
true
:
false
;
static
constexpr
auto
MaxVectorLoadB
=
K1
*
sizeof
(
BDataType
)
==
16
?
true
:
false
;
static
constexpr
auto
AEnableLds_auto
=
(
NWaves
==
1
&&
(
MaxVectorLoadA
||
MRepeat
==
1
))
?
false
:
true
;
static
constexpr
auto
BEnableLds_auto
=
(
MWaves
==
1
&&
(
MaxVectorLoadB
||
NRepeat
==
1
))
?
false
:
true
;
// If true, LDS is used unconditionally
static
constexpr
auto
AEnableLds_manu
=
tru
e
;
static
constexpr
auto
BEnableLds_manu
=
tru
e
;
static
constexpr
auto
AEnableLds_manu
=
fals
e
;
static
constexpr
auto
BEnableLds_manu
=
fals
e
;
static
constexpr
auto
AEnableLds
=
AEnableLds_auto
||
AEnableLds_manu
||
(
NumPrefetch
>
1
);
static
constexpr
auto
BEnableLds
=
BEnableLds_auto
||
BEnableLds_manu
||
(
NumPrefetch
>
1
);
...
...
@@ -869,11 +874,15 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
}
else
{
if
(
!
(
arg
.
a_kz_stride_
==
1
&&
arg
.
a_grid_desc_
.
GetLength
(
I2
)
%
ABlockTransferSrcScalarPerVector
==
0
))
if
(
!
(
arg
.
a_kz_stride_
==
1
))
{
printf
(
"DeviceOp: Vector Access A-k check failure
\n
"
);
return
false
;
index_t
LastK
=
AEnableLds
?
arg
.
a_grid_desc_
.
GetLength
(
I2
)
:
arg
.
a_grid_desc_
.
GetLength
(
I6
);
if
(
LastK
%
ABlockTransferSrcScalarPerVector
==
0
)
{
printf
(
"DeviceOp: Vector Access A-k check failure
\n
"
);
return
false
;
}
}
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp
View file @
5dbbf5d6
...
...
@@ -322,7 +322,7 @@ __global__ void
index_t
head_size
,
float
alpha
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__)
|| defined(__gfx12__)
)
// clang-format off
// ***************************************************
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
View file @
5dbbf5d6
...
...
@@ -101,8 +101,8 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,
(
MWaves
==
1
&&
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
?
false
:
true
;
// If true, LDS is used unconditionally
static
constexpr
auto
AEnableLds_manu
=
tru
e
;
static
constexpr
auto
BEnableLds_manu
=
tru
e
;
static
constexpr
auto
AEnableLds_manu
=
fals
e
;
static
constexpr
auto
BEnableLds_manu
=
fals
e
;
static
constexpr
auto
AEnableLds
=
AEnableLds_auto
||
AEnableLds_manu
||
(
NumPrefetch
>
1
);
static
constexpr
auto
BEnableLds
=
BEnableLds_auto
||
BEnableLds_manu
||
(
NumPrefetch
>
1
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
View file @
5dbbf5d6
...
...
@@ -84,14 +84,21 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
// K1 = Max Vector Access Pixels
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerWmma
);
static
constexpr
auto
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerWmma
);
static
constexpr
auto
WmmaK
=
K1
==
16
?
32
:
16
;
static
constexpr
auto
AEnableLds_auto
=
(
NWaves
==
1
&&
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
?
false
:
true
;
static
constexpr
auto
MWaves
=
MPerBlock
/
(
MRepeat
*
MPerWmma
);
static
constexpr
auto
NWaves
=
NPerBlock
/
(
NRepeat
*
NPerWmma
);
static
constexpr
auto
WmmaK
=
K1
==
16
?
32
:
16
;
static
constexpr
auto
MaxVectorLoadA
=
K1
*
sizeof
(
ADataType
)
==
16
?
true
:
false
;
static
constexpr
auto
MaxVectorLoadB
=
K1
*
sizeof
(
BDataType
)
==
16
?
true
:
false
;
static
constexpr
auto
AEnableLds_auto
=
(
NWaves
==
1
&&
(
MaxVectorLoadA
||
MRepeat
==
1
)
&&
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
?
false
:
true
;
static
constexpr
auto
BEnableLds_auto
=
(
MWaves
==
1
&&
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
?
false
:
true
;
(
MWaves
==
1
&&
(
MaxVectorLoadB
||
NRepeat
==
1
)
&&
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
?
false
:
true
;
// If true, LDS is used unconditionally
static
constexpr
auto
AEnableLds_manu
=
false
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
View file @
5dbbf5d6
...
...
@@ -48,8 +48,9 @@ __global__ void
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx103__) || \
defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx94__) || defined(__gfx11__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx103__) || \
defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx94__) || defined(__gfx11__) || \
defined(__gfx12__))
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
...
...
include/ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp
View file @
5dbbf5d6
...
...
@@ -60,8 +60,7 @@ __global__ void
bool
input_permute
,
bool
output_permute
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx11__) || \
defined(__gfx12__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
// clang-format off
// ***************************************************
...
...
include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_wmma_cshuffle.hpp
View file @
5dbbf5d6
...
...
@@ -371,12 +371,16 @@ struct GridwiseBatchedGemmSoftmaxGemm_Wmma
if
constexpr
(
B0EnableLds
)
{
// BK0_L_BK1 -> BK0_LRepeat_Lwaves_LPerWmma_BK1
constexpr
auto
B_K0
=
B0BlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
B0BlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
B_K0
=
B0BlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
B0BlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
B_KRow
=
I2
;
#else
constexpr
auto
B_KRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
B0BlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
>
{},
B_KRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
/
B_KRow
>
{},
B_KRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
LRepeat
>
{},
Number
<
LWaves
>
{},
Number
<
LPerWmma
>
{})),
make_pass_through_transform
(
Number
<
B_K1
>
{})),
...
...
@@ -428,12 +432,16 @@ struct GridwiseBatchedGemmSoftmaxGemm_Wmma
if
constexpr
(
B1EnableLds
)
{
// BL0_N_BL1 -> BL0_NRepeat_Nwaves_NPerWmma_BL1
constexpr
auto
B_L0
=
B1BlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_L1
=
B1BlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
B_L0
=
B1BlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_L1
=
B1BlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
B_LRow
=
I2
;
#else
constexpr
auto
B_LRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
B1BlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_L0
>
{},
B_LRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_L0
/
B_LRow
>
{},
B_LRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
NRepeat
>
{},
Number
<
NWaves
>
{},
Number
<
NPerWmma
>
{})),
make_pass_through_transform
(
Number
<
B_L1
>
{})),
...
...
include/ck/tensor_operation/gpu/grid/gridwise_fpAintB_gemm_wmma.hpp
View file @
5dbbf5d6
...
...
@@ -302,12 +302,16 @@ struct GridwiseFpAintBGemm_Wmma
if
constexpr
(
AEnableLds
)
{
// AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
constexpr
auto
A_K0
=
ABlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
A_K1
=
ABlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
A_K0
=
ABlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
A_K1
=
ABlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
A_KRow
=
I2
;
#else
constexpr
auto
A_KRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
ABlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
A_K0
>
{},
A_KRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
A_K0
/
A_KRow
>
{},
A_KRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
MPerWmma
>
{})),
make_pass_through_transform
(
Number
<
A_K1
>
{})),
...
...
@@ -360,12 +364,16 @@ struct GridwiseFpAintBGemm_Wmma
if
constexpr
(
BEnableLds
)
{
// BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
constexpr
auto
B_K0
=
BBlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
BBlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
B_K0
=
BBlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
BBlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
B_KRow
=
I2
;
#else
constexpr
auto
B_KRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
BBlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
>
{},
B_KRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
/
B_KRow
>
{},
B_KRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
NRepeat
>
{},
Number
<
NWaves
>
{},
Number
<
NPerWmma
>
{})),
make_pass_through_transform
(
Number
<
B_K1
>
{})),
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
View file @
5dbbf5d6
...
...
@@ -375,8 +375,9 @@ struct GridwiseGemmMultipleD_Wmma
}
else
{
constexpr
auto
A_KRow
=
I2
;
constexpr
auto
KWmmaPerblock
=
KPerBlock
/
WmmaK
;
constexpr
auto
K0PerWmma
=
WmmaK
/
2
/
K1
;
constexpr
auto
K0PerWmma
=
WmmaK
/
A_KRow
/
K1
;
// KWmma->MRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
KWmmaPerblock
>
{},
...
...
@@ -422,8 +423,9 @@ struct GridwiseGemmMultipleD_Wmma
}
else
{
constexpr
auto
B_KRow
=
I2
;
constexpr
auto
KWmmaPerblock
=
KPerBlock
/
WmmaK
;
constexpr
auto
K0PerWmma
=
WmmaK
/
2
/
K1
;
constexpr
auto
K0PerWmma
=
WmmaK
/
B_KRow
/
K1
;
// KWmma->NRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
KWmmaPerblock
>
{},
...
...
@@ -495,12 +497,16 @@ struct GridwiseGemmMultipleD_Wmma
if
constexpr
(
AEnableLds
)
{
// AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
constexpr
auto
A_K0
=
ABlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
A_K1
=
ABlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
A_K0
=
ABlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
A_K1
=
ABlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
A_KRow
=
I2
;
#else
constexpr
auto
A_KRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
ABlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
A_K0
>
{},
A_KRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
A_K0
/
A_KRow
>
{},
A_KRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
MPerWmma
>
{})),
make_pass_through_transform
(
Number
<
A_K1
>
{})),
...
...
@@ -534,12 +540,16 @@ struct GridwiseGemmMultipleD_Wmma
if
constexpr
(
BEnableLds
)
{
// BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
constexpr
auto
B_K0
=
BBlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
BBlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
B_K0
=
BBlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
BBlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
B_KRow
=
I2
;
#else
constexpr
auto
B_KRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
BBlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
>
{},
B_KRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
/
B_KRow
>
{},
B_KRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
NRepeat
>
{},
Number
<
NWaves
>
{},
Number
<
NPerWmma
>
{})),
make_pass_through_transform
(
Number
<
B_K1
>
{})),
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp
View file @
5dbbf5d6
...
...
@@ -170,8 +170,9 @@ struct GridwiseGemm_Wmma
}
else
{
constexpr
auto
A_KRow
=
I2
;
constexpr
auto
KWmmaPerblock
=
KPerBlock
/
WmmaK
;
constexpr
auto
K0PerWmma
=
WmmaK
/
2
/
K1
;
constexpr
auto
K0PerWmma
=
WmmaK
/
A_KRow
/
K1
;
// KWmma->MRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
KWmmaPerblock
>
{},
...
...
@@ -217,8 +218,10 @@ struct GridwiseGemm_Wmma
}
else
{
constexpr
auto
B_KRow
=
I2
;
constexpr
auto
KWmmaPerblock
=
KPerBlock
/
WmmaK
;
constexpr
auto
K0PerWmma
=
WmmaK
/
2
/
K1
;
constexpr
auto
K0PerWmma
=
WmmaK
/
B_KRow
/
K1
;
// KWmma->NRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
KWmmaPerblock
>
{},
...
...
@@ -290,12 +293,17 @@ struct GridwiseGemm_Wmma
if
constexpr
(
AEnableLds
)
{
// AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
constexpr
auto
A_K0
=
ABlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
A_K1
=
ABlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
A_K0
=
ABlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
A_K1
=
ABlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
A_KRow
=
I2
;
#else
constexpr
auto
A_KRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
ABlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
A_K0
>
{},
A_KRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
A_K0
/
A_KRow
>
{},
A_KRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
MRepeat
>
{},
Number
<
MWaves
>
{},
Number
<
MPerWmma
>
{})),
make_pass_through_transform
(
Number
<
A_K1
>
{})),
...
...
@@ -348,12 +356,16 @@ struct GridwiseGemm_Wmma
if
constexpr
(
BEnableLds
)
{
// BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
constexpr
auto
B_K0
=
BBlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
BBlockDesc_
{}.
GetLength
(
I2
);
constexpr
auto
B_K0
=
BBlockDesc_
{}.
GetLength
(
I0
);
constexpr
auto
B_K1
=
BBlockDesc_
{}.
GetLength
(
I2
);
#ifdef __gfx12__
constexpr
auto
B_KRow
=
I2
;
#else
constexpr
auto
B_KRow
=
I1
;
#endif
return
transform_tensor_descriptor
(
BBlockDesc_
{},
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
>
{},
B_KRow
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Number
<
B_K0
/
B_KRow
>
{},
B_KRow
)),
make_unmerge_transform
(
make_tuple
(
Number
<
NRepeat
>
{},
Number
<
NWaves
>
{},
Number
<
NPerWmma
>
{})),
make_pass_through_transform
(
Number
<
B_K1
>
{})),
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment