Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
59f3e009
Commit
59f3e009
authored
Feb 12, 2025
by
coderfeli
Browse files
remove d2 for gemm1
parent
418baed3
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
43 deletions
+16
-43
example/65_gemm_multiply_multiply/moe_gemm1.cpp
example/65_gemm_multiply_multiply/moe_gemm1.cpp
+16
-43
No files found.
example/65_gemm_multiply_multiply/moe_gemm1.cpp
View file @
59f3e009
...
@@ -40,73 +40,56 @@ using AccDataType = F32;
...
@@ -40,73 +40,56 @@ using AccDataType = F32;
using
CShuffleDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
D0DataType
=
F32
;
using
D1DataType
=
F32
;
using
D1DataType
=
F32
;
using
D2DataType
=
EDataType
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
// using DsDataTypeGate = ck::Tuple<D0DataType, D1DataType>;
using
DsDataTypeUp
=
ck
::
Tuple
<
D0DataType
,
D1DataType
,
D2DataType
>
;
using
A0Layout
=
Row
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
B0Layout
=
Col
;
using
ELayout
=
Row
;
using
ELayout
=
Row
;
using
D0Layout
=
Row
;
using
D0Layout
=
Row
;
using
D1Layout
=
Col
;
using
D1Layout
=
Col
;
using
D2Layout
=
ELayout
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
,
D1Layout
>
;
// using DsLayoutGate = ck::Tuple<D0Layout, D1Layout>;
using
DsLayoutUp
=
ck
::
Tuple
<
D0Layout
,
D1Layout
,
D2Layout
>
;
// for gate, a_scale, b_scale
// for gate, a_scale, b_scale
struct
MulABScale
struct
MulABScale
{
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
,
typename
D2
>
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
,
const
D2
&
d2
)
const
;
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
,
D2DataType
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
>
(
EDataType
&
e
,
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d0
,
const
float
&
d1
,
const
float
&
d1
)
const
const
D2DataType
&
d2
)
const
{
{
(
void
)
d2
;
// for gate, no d2 needed
e
=
ck
::
type_convert
<
EDataType
>
(
c
*
d1
*
d0
);
(
void
)
d0
;
(
void
)
d1
;
const
float
x0_f
=
c
*
d1
*
d0
;
// const float x0_f = c;
e
=
ck
::
type_convert
<
EDataType
>
(
x0_f
);
}
}
};
};
// for gate, a_scale, b_scale, fuse silu,
// for gate, a_scale, b_scale, fuse silu,
struct
MulABScaleSilu
MulGate
struct
MulABScaleSilu
{
{
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
,
typename
D2
>
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
,
const
D2
&
d2
)
const
;
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
template
<
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
,
float
,
D2DataType
>
__host__
__device__
constexpr
void
operator
()
<
EDataType
,
float
,
float
>
(
EDataType
&
e
,
(
EDataType
&
e
,
const
float
&
c
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d0
,
const
float
&
d1
,
const
float
&
d1
)
const
const
D2DataType
&
d2
)
const
{
{
// act
// act
(
void
)
d0
;
(
void
)
d1
;
(
void
)
d2
;
float
x0
=
0
;
float
x0
=
0
;
ck
::
tensor_operation
::
element_wise
::
Silu
{}(
x0
,
c
*
d1
*
d0
);
ck
::
tensor_operation
::
element_wise
::
Silu
{}(
x0
,
c
*
d1
*
d0
);
// fuse mul
e
=
ck
::
type_convert
<
EDataType
>
(
x0
);
e
=
ck
::
type_convert
<
EDataType
>
(
x0
);
}
}
};
};
// using DsLayout = DsLayoutGate;
// using DsLayout = DsLayoutGate;
// using DsDataType = DsDataTypeGate;
// using DsDataType = DsDataTypeGate;
using
DsLayout
=
DsLayoutUp
;
using
DsDataType
=
DsDataTypeUp
;
using
CDEElementOp
=
MulABScale
;
using
CDEElementOp
=
MulABScale
;
...
@@ -158,7 +141,6 @@ static constexpr ck::index_t BK1 = 16 / sizeof(B0DataType);
...
@@ -158,7 +141,6 @@ static constexpr ck::index_t BK1 = 16 / sizeof(B0DataType);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
static
constexpr
ck
::
index_t
EVec
=
16
/
sizeof
(
EDataType
);
static
constexpr
ck
::
index_t
D0Vec
=
1
;
static
constexpr
ck
::
index_t
D0Vec
=
1
;
static
constexpr
ck
::
index_t
D1Vec
=
1
;
static
constexpr
ck
::
index_t
D1Vec
=
1
;
static
constexpr
ck
::
index_t
D2Vec
=
1
;
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
// using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceMoeGemm
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceMoeGemm
// clang-format off
// clang-format off
...
@@ -188,7 +170,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceMoeGemm
...
@@ -188,7 +170,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceMoeGemm
// CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
EVec
,
D0Vec
,
D1Vec
,
D2Vec
>
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
S
<
EVec
,
D0Vec
,
D1Vec
>
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
true
,
A0DataType
>
;
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
,
true
,
A0DataType
>
;
// kernel 2: 128->32x128x128
// kernel 2: 128->32x128x128
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, EDataType>;
// < Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 128, 32, 128, 128, 16, 16, 32, 32, 1, 2, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 1, S<1, 16, 1, 8>, S<8, 8, 1>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, EDataType>;
...
@@ -241,7 +223,7 @@ int main(int argc, char* argv[])
...
@@ -241,7 +223,7 @@ int main(int argc, char* argv[])
// ck::index_t StrideD = 0;
// ck::index_t StrideD = 0;
ck
::
index_t
StrideE
=
N
;
ck
::
index_t
StrideE
=
N
;
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
ck
::
index_t
NumDTensor
=
DsDataType
::
Size
();
constexpr
auto
StrideDs
=
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
,
0
,
0
};
constexpr
auto
StrideDs
=
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
,
0
};
ck
::
index_t
KBatch
=
1
;
ck
::
index_t
KBatch
=
1
;
...
@@ -269,14 +251,12 @@ int main(int argc, char* argv[])
...
@@ -269,14 +251,12 @@ int main(int argc, char* argv[])
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
B0DataType
>
b0_preshuffled
(
HostTensorDescriptor
({
experts
,
N
,
K
},
{
N
*
K
,
K
,
1
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
tokens
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D0DataType
>
d0_t_n
(
HostTensorDescriptor
({
tokens
,
N
},
{
StrideDs
[
0
],
0
}));
Tensor
<
D1DataType
>
d1_e_n
(
HostTensorDescriptor
({
experts
,
N
},
{
1
,
StrideDs
[
1
]}));
Tensor
<
D1DataType
>
d1_e_n
(
HostTensorDescriptor
({
experts
,
N
},
{
1
,
StrideDs
[
1
]}));
Tensor
<
D2DataType
>
d2_m_n
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_m_n_host_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_m_n_host_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_m_n_device_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
Tensor
<
EDataType
>
e_m_n_device_result
(
HostTensorDescriptor
({
SORTED_SIZE
,
N
},
{
N
,
1
}));
std
::
cout
<<
"a0_t_k: "
<<
a0_t_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a0_t_k: "
<<
a0_t_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_e_n_k: "
<<
b0_e_n_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_e_n: "
<<
d1_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_e_n: "
<<
d1_e_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d2_m_n: "
<<
d2_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_t_n: "
<<
d0_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_t_n: "
<<
d0_t_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
...
@@ -288,32 +268,27 @@ int main(int argc, char* argv[])
...
@@ -288,32 +268,27 @@ int main(int argc, char* argv[])
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
0
,
2
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
1
,
3
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
1
,
3
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
1
,
3
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D1DataType
>
{
1
,
3
});
d2_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D2DataType
>
{
1
,
3
});
break
;
break
;
case
2
:
case
2
:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
A0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
B0DataType
>
{});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D1DataType
>
{});
d2_m_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D2DataType
>
{});
break
;
break
;
default:
default:
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
a0_t_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
b0_e_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d0_t_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
0.0
,
1.0
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
d1_e_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D1DataType
>
{
0.0
,
1.0
});
d2_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D2DataType
>
{
0.0
,
1.0
});
}
}
d0_t_n
.
savetxt
(
"d0_t_n.txt"
,
"int"
);
d0_t_n
.
savetxt
(
"d0_t_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
d1_e_n
.
savetxt
(
"d1_e_n.txt"
,
"int"
);
d2_m_n
.
savetxt
(
"d2_m_n.txt"
,
"int"
);
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
sorted_token_ids_dev
(
sizeof
(
ck
::
index_t
)
*
sorted_token_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
expert_ids_dev
(
sizeof
(
ck
::
index_t
)
*
expert_ids
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_t_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_t_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_e_n_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
d0_t_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_e_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d2_device_buf
(
sizeof
(
D2DataType
)
*
d2_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_t_k
.
savetxt
(
"a.txt"
);
a0_t_k
.
savetxt
(
"a.txt"
);
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
sorted_token_ids_dev
.
ToDevice
(
sorted_token_ids
.
mData
.
data
());
...
@@ -321,7 +296,6 @@ int main(int argc, char* argv[])
...
@@ -321,7 +296,6 @@ int main(int argc, char* argv[])
a0_device_buf
.
ToDevice
(
a0_t_k
.
mData
.
data
());
a0_device_buf
.
ToDevice
(
a0_t_k
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_t_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_e_n
.
mData
.
data
());
d1_device_buf
.
ToDevice
(
d1_e_n
.
mData
.
data
());
d2_device_buf
.
ToDevice
(
d2_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
a_element_op
=
AElementOp
{};
...
@@ -344,8 +318,7 @@ int main(int argc, char* argv[])
...
@@ -344,8 +318,7 @@ int main(int argc, char* argv[])
a0_device_buf
.
GetDeviceBuffer
(),
a0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
d2_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
e_device_buf
.
GetDeviceBuffer
(),
tokens
,
tokens
,
SORTED_SIZE
,
SORTED_SIZE
,
...
@@ -410,7 +383,7 @@ int main(int argc, char* argv[])
...
@@ -410,7 +383,7 @@ int main(int argc, char* argv[])
const
int
e
=
expert_ids
(
m
/
sorted_tile_size
);
const
int
e
=
expert_ids
(
m
/
sorted_tile_size
);
for
(
int
n
=
0
;
n
<
N
;
++
n
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_t_n
(
t
,
n
),
d1_e_n
(
e
,
n
),
d2_m_n
(
m
,
n
));
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d0_t_n
(
t
,
n
),
d1_e_n
(
e
,
n
));
}
}
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment