Commit 555244e7 authored by Illia Silin's avatar Illia Silin Committed by Sam Wu
Browse files

Merge from internal (#1857)



* enable batched_gemm_softmax_gemm_perm_wmma for gfx12

* disable instances with blocksize=256 in attention examples

* debuggging

* debug

* fixed lds_enabled

* debugging

* Fix and add limit to skiplds feature

* Enable skipLds feature and fix compilation bugs

* add ck_tile definitions for gfx12

* fix clang format and test/wmma_op

* updage instances cmake for gfx12

* disable the test_wmma_op on gfx12

* fix the builds for gfx950

* add gfx12 and gfx950 to default target list

* clean-up cmake file

* Initial introduction of OFP8 data types.

* Renamed FP8 and BF8 tests into FP8_FNUZ and BF8_FNUZ.

* Implementation of ConvertFP32Nearest in test_fp8_ocp.

* Remove dependence on possibly undeclared alias.

* Implement FP8OCP test for stochastic rounding mode.

* Implement FP8OCP tests for half_t type conversions.

* enable bf16 atomic add on gfx950

* Implement ConvertFP32Nearest test.

* Implement ConvertFP32Stochastic test.

* Implement ConvertFP16Nearest and ConvertFP16Stochastic tests.

* Refactoring. Move FP8 definitions into a separate header file.

* Enable easy switching between architectures.

* Fix compilation error for gfx942 architecture.

* Add fp4 type with constants

* only builf gfx950 branch for gfx950 target by default

* Enable OCP build of example_gemm_xdl_fp8.

* Fix formatting.

* fix the build logic for gfx950

* Improve GEMM example verbosity.

* Add constexpr where applicable.

* fix the logic of enabling XDL and WMMA instances

* Improve GEMM example verbosity.

* Enable build of example_gemm_xdl_fp8_bf8 test.

* Fix tests for gfx1101 architecture.

* Build DPP examples only on gfx103 and gfx11 architectures.

* Optionaly run either CPU or GPU verifications with GEMM examples.

* Extend GeneratorTensor_Sequential to produce values of prescribed data types.

* Add missing constructor.

* Add scale type and mxfp conversions

* Update conversions

* Add conversion tests

* Fix typo

* Improve infrastructure for OFP8 data type support.

* BUGFIX. Should not use FP8 as Compute/Accum data type.

* Add custom target for grouped_convnd_bwd_weight tests.

* Can build `tests` target on gfx950.

* Bugfixes on gfx1101 architecture.

* Fix dependencies.

* Add stochastic rounding tests

* Provide single point of truth for FP8 INF and NAN checks

* Prevent instantiation of operators that are not supported by FP8 data types

* Add FP8 type selection into client_axample CMakeLists.txt

* Prevent sccache server from shutting down during build

* Fix test success reporting logic

* Change default verification method to CPU.

GPU verification takes too much time to complete on the emulator.

* Add scale <-> float conversions

* Add scaled conversions with tests

* Add device conversions

* Make sure all tests and examples are built for gfx950

* Facilitate testing of FP8 data types on the emulator

* Introduce two new tensor generators

* Enable instances built for gfx94 to be built on gfx950

* Verify 35_splitk_gemm on floating point numbers.

splitk gemm appears to be losing precision VS reference implementation when FP numbers are involved.

* Format

* Verify 04_gemm_add_add_fastgelu on floating point numbers

* Verify 20_grouped_conv_bwd_weight on floating point numbers

* Verify 38_grouped_conv_bwd_data_multiple_d on floating point numbers

* Verify more tests on floating point data

* Fix data types and improve testing verbocity.

* Add fp4 vectors

* Add debug tests

* Upgrade to NPI 573 build docker.

* Skip on gemm_universal tests.

The tests take too long to complete on the emulator.
Need to see if it is possible to reduce the scope of the testing to just FP8 data types.

* Add new mfma instructions and examples

* Add preprocessor directives for gfx950 specific code

* Fix gfx1101 build

* Document test availability

* Re-enable fp8 gemms for gfx94/95

* Cherry-pick GEMM Universal tests for FP8 data types

* Cleanup

* Add vector types and tests

* Add check_err function

* Add tensor generators

* CK_USE_GFX94 has already been set on this branch

* Fix

* Address formatting issues and leftovers

* Make fail/pass logic consistent within 01_gemm folder

Removed multiple negations in fail/pass logic to propagate `true` as the success indicator.

* Fix GPU verification reporting logic.

* Update year in copyright notice.

* Cleanup

* Use `enum class` instead of `enum`

* Remove set_property for FP8 tests

* Add vector conversions

* Fix

* Fix linker errror

* Clean up

* Fix gfx950 conversions

* Clean up

* Fix more gfx950 conversions

* Fix even more gfx950 conversions

* Narrowing the scope of PR to OCP FP8 enablement only

* Add tests for OCP FP8 vector_type storage

* Fix client examples build

* Fix typo

* Update e8m0 casting

* Rename E8M0 type

* Update unpack method

* Cleanup merge artifacts

* Enable gemm kernel on all gfx9 architectures (#227)

* clean-up

* Implement `non_native_vector_base` with `ext_vector_type` array. (#232)

* Enable support of 1, 2, 4, and 8-byte custom types in CK.

* Fix pool tests for OCP FP8 data type

* Fix build

* Add ckProfiler gemm instances for new mfma instructions and fix ckProfiler build on gfx950

* fix clang format

* Add new mfma instructions and examples

* Add preprocessor directives for gfx950 specific code

* Add ckProfiler gemm instances for new mfma instructions and fix ckProfiler build on gfx950

* fix clang format

* Fix clang format for the newly merged files

* Use the existing example instances for fp16 bf16 and int8

* Remove comment on new mfma instructions in MfmaInstr

* Update include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_gemm_xdl_cshuffle_v1.hpp
Co-authored-by: default avatarAndriy Roshchenko <107577548+andriy-ca@users.noreply.github.com>

* merge from public repo

* Fix ck build

* Fix ck build

* Use double for max_abs_in_val

* Move scaled_type_convert functions to a separate header (#251)

* re-enable building mha lib and gemm_universal_f8 instances for gfx950

* Update library/src/tensor_operation_instance/gpu/CMakeLists.txt
Co-authored-by: default avatarAndriy Roshchenko <107577548+andriy-ca@users.noreply.github.com>

* fix typo for CK_USE_OCP_FP8

* fix typo for CK_USE_OCP_FP8

* Add FP6 and BF6 types (#261)

* Add a rounding flag

* Add FP6 and BF6

* Add tests
Co-authored-by: default avatarAndriy Roshchenko <107577548+andriy-ca@users.noreply.github.com>

* Clean up

---------
Co-authored-by: default avatarAndriy Roshchenko <107577548+andriy-ca@users.noreply.github.com>

* fix one more typo

* Refactor E8M0 scale implementation (#262)

* Refactor E8M0 scale implementation

* Add MXFP6 and MXBF6 conversion methods (#270)

* Add conversions

* Add tests

* Add docstrings

* Add scaled conversions

* Add fp6/bf6 tests

* Remove misleading fp4 test case

* Add docstrings

* Clean up

* Address comments

* Set stricter tolerances for RNE tests

* Add missing tests

* Add native conversions to float

* Revert "Add native conversions to float"

This reverts commit 09467111f73b753c8cc3d597533b187940353dab.

* Update copyright years

* replace the fp6 with bf6 convert calls in test_bf6

* fix test_bf6

* enable smfmac test

* [MX FP8] Add Scaled Type Convert Functions for OCP FP8/BF8 data types (#271)

* Move scaled_type_convert functions to a separate header

* Introduce MX data tests

* Build MX tests only on relevant architectures

* Refactor E8M0 scale implementation

* Fix `config.h` typo

* Cleanup deprecated symbols

* Refactor `amd_ck_fp8.hpp`

* `scaled_type_convert` for `f8_ocp_t`

* Implement test for MX FP8 scaled type convert

* Implement test for MX BF8 scaled type convert

* Scaled type convert for vectors of 2 FP8 elements

* Scaled type convert for vectors of 16 FP8 elements

* Implementation of scaled conversion from F32 to F8

* Add tests for scaled conversions from FP32 to FP8

* Add documentation to the test functions

* Implementation of scaled conversion from F32x2 to F8x2

* Implementation of scaled conversion from F32x16 to F8x16

* Implementation of scaled conversion from F32x32 to F8x32

* Implementation of scaled conversion from F8x32 to F32x32

* Verified on the emulator

* MX FP GEMM - Example Template (#277)

Temporarily uses `DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3` kernel and 128x128 scaling matrices.
Must be modified to use MX-native GEMM kernell with 16 or 32 component vectors per scale.

Verified on the emulator.

* Add vector support

* Add tests

* Add missing type aliases

* Fix test naming

* only build mx example for gfx950

* disable CK_USE_AMD_MFMA_GFX950 by default

* fic build for multiple archs

* fix typo

* fix typo

* Update unpack signature

* Fix merge

* Add size checks in pack function

* Add a flag

* Add conversions

* Fix build logic

* Update pack/unpack methods

* Remove unneeded AsType accessors

* Add docstrings

* Add a flag to config file

* Test the functionality of V_MFMA_F32_16X16X128_F8F6F4 and  V_MFMA_F32_32X32X64_F8F6F4 instructions. (#293)

* Introduced MFMA tests

* Verified f8f6f4 MFMA Instructions

* Move flag logic to scaled_type_convert header

* Use pointers instead of array indices

* Fix a typo

* Update tests and pack functions

* Fix gemm gemm on gfx950

* Fix clang format

* restore the default gput target lists

* fix the jenkinsfile

* add missing ifdef

---------
Co-authored-by: default avatarJing Zhang <jizhan@amd.com>
Co-authored-by: default avataraska-0096 <haocwang@amd.com>
Co-authored-by: default avatarJun Liu <Liu.Jun@amd.com>
Co-authored-by: default avatarAndriy Roshchenko <andriy.roshchenko@amd.com>
Co-authored-by: default avatarRostyslav Geyyer <rosty.geyyer@amd.com>
Co-authored-by: default avatarRostyslav Geyyer <46627076+geyyer@users.noreply.github.com>
Co-authored-by: default avatarroot <root@banff-cyxtera-s83-2.ctr.dcgpu>
Co-authored-by: default avatarAndriy Roshchenko <107577548+andriy-ca@users.noreply.github.com>
Co-authored-by: default avatarjefyang1 <146495389+jefyang1@users.noreply.github.com>
Co-authored-by: default avatarjefyang1 <Jeffreyj.Yang@amd.com>
parent 85d6fcd3
# GEMM Examples for Microscaling Formats
## example_gemm_mx_fp8
```bash
# arg1: verification (0=no, 1=CPU)
# arg2: initialization (0=no init, 1=integer value, 2=decimal value)
# arg3: time kernel (0=no, 1=yes)
# arg4: verbosity (0=no info, 1=verbose info)
# arg5 to 10: M (16x), N(16x), K(16x), StrideA, StrideB, StrideC
./bin/example_gemm_mx_fp8 1 1 0 1
```
```bash
# Implies: ./bin/example_gemm_mx_fp8 1 2 0 0
./bin/example_gemm_mx_fp8
```
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_ab_scale.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
using ScaleDataType = ck::e8m0_bexp_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct ExecutionConfig final
{
int do_verification = 1; // (0=no, 1=CPU)
int init_method = 2; // (0=no init, 1=integer value, 2=decimal value)
bool time_kernel = false; // (0=no, 1=yes)
int verbosity = 0; // (0=no info, 1=verbose info)
};
struct ProblemSize final
{
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = -1;
ck::index_t StrideB = -1;
ck::index_t StrideC = -1;
};
bool parse_cmd_args(int argc, char* argv[], ProblemSize& problem_size, ExecutionConfig& config)
{
if(argc == 1)
{
// use default case
}
else if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.verbosity = std::stoi(argv[4]);
}
else if(argc == 11)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.verbosity = std::stoi(argv[4]);
problem_size.M = std::stoi(argv[5]);
problem_size.N = std::stoi(argv[6]);
problem_size.K = std::stoi(argv[7]);
problem_size.StrideA = std::stoi(argv[8]);
problem_size.StrideB = std::stoi(argv[9]);
problem_size.StrideC = std::stoi(argv[10]);
}
else
{
std::cerr << "arg1: verification (0=no, 1=CPU)" << std::endl
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<< std::endl
<< "arg3: time kernel (0=no, 1=yes)" << std::endl
<< "arg4: verbosity (0=no info, 1=verbose info)" << std::endl
<< "arg5 to 10: M (16x), N(16x), K(16x), StrideA, StrideB, StrideC" << std::endl;
return false;
}
return true;
}
template <typename ADataType,
typename BDataType,
typename XDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename CElementWiseOp,
typename AccDataType,
typename CShuffleDataType,
ck::index_t MXVectorSize>
bool run_mx_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
using ELayout = CLayout;
using DsLayout = ck::Tuple<>;
using DsDataType = ck::Tuple<>;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = CElementWiseOp;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto BlkGemmPSched = ck::BlockGemmPipelineScheduler::Intrawave;
static constexpr auto BlkGemmPVer = ck::BlockGemmPipelineVersion::v3;
#if 1
// XXX: These parameters should not exist in MX-native GEMM kernel
static constexpr ck::index_t Scale_Block_M = 128;
static constexpr ck::index_t Scale_Block_N = 128;
#endif
static constexpr ck::index_t Scale_Block_K = MXVectorSize;
// XXX: DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3 is not designed to utilize MX-specific MFMA
// instructions.
//
// XXX: DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3 is not designed to utilize device-optimized
// scaled type convert functions.
//
// XXX: In DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3, KPerBlock is expected to be equal to
// ScaleBlockK (aka MXVectorSize).
// Additionally, the following is also expected:
// static_assert(ScaleBlockM % MPerBlock == 0);
// static_assert(ScaleBlockN % NPerBlock == 0);
// In MX-native GEMM kernel these requirements should be relaxed.
//
// XXX: It appears, by default we are using mfma_f32_16x16x4xf32
// MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeB>::selected_mfma.k_per_blk =
// MfmaSelector<float, 16, 16, float>::selected_mfma.k_per_blk = mfma_f32_16x16x4xf32
// XXX: GridwiseGemmMultiD_ABScale_xdl_cshuffle_v3 assumes scale type is float
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_ABScale_Xdl_CShuffle_V3
// ######| ALayout| BLayout| DsLayout| CLayout| ADataType| AScale| BDataType| BScale| DsDataType| CDataType| GemmAcc| CShuffleDataType|AElementwise|BElementwise| CElementwise| GemmSpec|Block| ScaleBlockM| ScaleBlockN| ScaleBlockK| M| N| K| AK1| BK1| M| N|MXdl|NXdl|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer|ABlockTransfer| ABlock|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer|BBlockTransfer| BBlock| CShuffle| CShuffle|CShuffleBlockTransfer|CDEShuffleBlockTransfer| BlkGemm| BlkGemm|ComputeTypeA|ComputeTypeB|LDSTypeA|LDSTypeB|
// ######| | | | | | DataType| | DataType| | | DataType| | Operation| Operation| Operation| | Size| | | | Per| Per| Per| | | Per| Per| Per| Per| ThreadCluster| ThreadCluster|SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|LdsExtraM| ThreadCluster| ThreadCluster|SrcAccessOrder| SrcVector| SrcScalar| DstScalar|LdsExtraN| MXdl| NXdl| ClusterLengths| Scalar| PipeSched| PipelineVer| | | | |
// ######| | | | | | | | | | | | | | | | | | | | |Block|Block| Block| | | XDL| XDL|Wave|Wave| Lengths| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths| ArrangeOrder| | Dim| PerVector| PerVector_BK1| | PerWave| PerWave| MBlock_MPerBlock| PerVectors| | | | | | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AK0_M_AK1| | | | | | | BK0_N_BK1| | | | | |PerShuffle|PerShuffle| NBlock_NPerBlock| | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, XDataType, BDataType, XDataType, DsDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, Scale_Block_M, Scale_Block_N, Scale_Block_K, 128, 128, 128, 16, 16, 16, 16, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0, 1, 2, S<1, 32, 1, 8>, S<8, 8, 1>, BlkGemmPSched, BlkGemmPVer, float, float, float, float>;
// clang-format on
auto M = problem_size.M;
auto N = problem_size.N;
auto K = problem_size.K;
auto StrideA = problem_size.StrideA;
auto StrideB = problem_size.StrideB;
auto StrideC = problem_size.StrideC;
auto f_host_tensor_descriptor =
[](ck::index_t row, ck::index_t col, ck::index_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1});
}
else
{
return HostTensorDescriptor({row, col}, {1, stride});
}
};
auto f_get_default_stride =
[](ck::index_t row, ck::index_t col, ck::index_t stride, auto layout) {
if(stride == -1)
{
// give a chance if stride is -1, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return static_cast<ck::index_t>(col);
}
else
{
return static_cast<ck::index_t>(row);
}
}
else
return static_cast<ck::index_t>(stride);
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
if(K % Scale_Block_K != 0)
{
throw std::runtime_error("wrong! K must be multiple of Scale_Block_K (16 or 32)");
};
auto Scale_Stride_AM = f_get_default_stride(M, K / Scale_Block_K, StrideA, ALayout{});
auto Scale_Stride_BN = f_get_default_stride(K / Scale_Block_K, N, StrideB, BLayout{});
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<XDataType> a_m_k_scale(
f_host_tensor_descriptor(M, K / Scale_Block_K, Scale_Stride_AM, ALayout{})); // scales for A
Tensor<XDataType> b_k_n_scale(
f_host_tensor_descriptor(K / Scale_Block_K, N, Scale_Stride_BN, BLayout{})); // scales for B
Tensor<CDataType> c_m_n_host_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{})); // host verification
Tensor<CDataType> c_m_n_device_result(
f_host_tensor_descriptor(M, N, StrideC, CLayout{})); // device result downloaded to host
if(config.verbosity >= 0)
{
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "a_m_k_scale: " << a_m_k_scale.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "b_k_n_scale: " << b_k_n_scale.mDesc << std::endl;
std::cout << "c_m_n_device_result: " << c_m_n_device_result.mDesc << std::endl;
}
switch(config.init_method)
{
case 0:
if(config.verbosity > 0)
{
std::cout << "NOTE: No input data initialization." << std::endl;
}
break;
case 1:
case 2:
ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.0f)}(a_m_k);
ck::utils::FillConstant<XDataType>{ck::type_convert<XDataType>(0.5f)}(a_m_k_scale);
ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.0f)}(b_k_n);
ck::utils::FillConstant<XDataType>{ck::type_convert<XDataType>(2.0f)}(b_k_n_scale);
if(config.verbosity > 0)
{
std::cout << "Init A = {1}" << std::endl;
std::cout << "Init A scale = {0.5}" << std::endl;
std::cout << "Init B = {1}" << std::endl;
std::cout << "Init B scale = {2.0}" << std::endl;
std::cout << "Expect C = {K}" << std::endl;
}
break;
default:
if(config.verbosity > 0)
{
std::cout << "NOTE: No input data initialization." << std::endl;
}
}
if(config.verbosity > 0)
std::cout << "Device memory allocation..." << std::endl;
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem a_scale_device_buf(sizeof(XDataType) * a_m_k_scale.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem b_scale_device_buf(sizeof(XDataType) * b_k_n_scale.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
if(config.verbosity > 0)
std::cout << "Upload data to device..." << std::endl;
a_device_buf.ToDevice(a_m_k.mData.data());
a_scale_device_buf.ToDevice(a_m_k_scale.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
b_scale_device_buf.ToDevice(b_k_n_scale.mData.data());
if(config.verbosity > 0)
std::cout << "Done." << std::endl;
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumDTensor = DsDataType::Size();
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, NumDTensor>{},
c_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, NumDTensor>{},
StrideC,
a_scale_device_buf.GetDeviceBuffer(),
b_scale_device_buf.GetDeviceBuffer(),
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong!\n"
"Provided combination of compilation and runtime parameters is "
"not consistent with the supported device_gemm arguments.");
}
if(config.verbosity > 0)
std::cout << "Computing GEMM on device..." << std::endl;
float ave_time =
invoker.Run(argument, StreamConfig{nullptr, config.time_kernel, config.verbosity, 20, 50});
bool res_verified = true;
if(config.do_verification > 0)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(config.verbosity > 0)
{
std::cout << "Done." << std::endl;
std::cout << "Computing GEMM on host..." << std::endl;
}
Tensor<CDataType> c({M, N});
Tensor<float> a({M, K});
Tensor<float> b({K, N});
for(int m = 0; m < M; m++)
{
for(int k = 0; k < K; k++)
{
a(m, k) = ck::type_convert<float>(a_m_k(m, k)) *
ck::type_convert<float>(a_m_k_scale(m, k / Scale_Block_K));
}
}
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
b(k, n) = ck::type_convert<float>(b_k_n(k, n)) *
ck::type_convert<float>(b_k_n_scale(k / Scale_Block_K, n));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<float,
float,
CShuffleDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a, b, c, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
if(config.verbosity > 0)
{
std::cout << "Done." << std::endl;
std::cout << "Comparing results..." << std::endl;
}
if(config.init_method == 1)
{
res_verified =
res_verified && std::abs(static_cast<float>(K) - c_m_n_device_result(0, 0)) <= 0.0f;
std::cout << "Expected vs Computed: " << 1.0f * K << " vs " << c_m_n_device_result(0, 0)
<< ((res_verified) ? " (PASSED!)" : " (FAILED!)") << std::endl;
}
res_verified = res_verified &&
ck::utils::check_err(c_m_n_device_result, c, "Error: Incorrect results!");
if(config.verbosity > 0 && res_verified)
std::cout << "Done." << std::endl;
}
else
{
if(config.verbosity > 0)
std::cout << "Done." << std::endl;
}
if(config.time_kernel)
{
std::size_t flop = std::size_t(2) * M * N * K + M * K + K * N; // GEMM + A scale + B scale
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(CDataType) * M * N +
sizeof(XDataType) * (M * K + K * N) / Scale_Block_K;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
}
return res_verified;
}
template <typename ADataType,
typename BDataType,
typename XDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename CElementWiseOp,
typename AccDataType,
typename CShuffleDataType,
ck::index_t MXVectorSize>
bool run_mx_gemm_example(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
return parse_cmd_args(argc, argv, problem_size, config) &&
run_mx_gemm<ADataType,
BDataType,
XDataType,
CDataType,
ALayout,
BLayout,
CLayout,
CElementWiseOp,
AccDataType,
CShuffleDataType,
MXVectorSize>(problem_size, config);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#include "gemm_mx_common.hpp"
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
#if 1
// XXX: MX-native GEMM kernel will work with e8m0_bexp_t scale type
using XDataType = float;
#else
using XDataType = ck::e8m0_bexp_t;
#endif
using AccDataType = float;
using CShuffleDataType = float;
using CDataType = float;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using CElementOp = PassThrough; // elementwise transformation for C matrix
constexpr ck::index_t mx_vector_size = 128; // scaling block size
int main(int argc, char* argv[])
{
return run_mx_gemm_example<ADataType,
BDataType,
XDataType,
CDataType,
ALayout,
BLayout,
CLayout,
CElementOp,
AccDataType,
CShuffleDataType,
mx_vector_size>(argc, argv)
? 0
: -1;
}
......@@ -23,34 +23,34 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
message("adding example ${EXAMPLE_NAME}")
set(result 1)
if(DEFINED DTYPES)
foreach(source IN LISTS FILE_NAME)
set(test 0)
if((source MATCHES "_fp16" OR source MATCHES "_f16") AND NOT "fp16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp32" OR source MATCHES "_f32") AND NOT "fp32" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp64" OR source MATCHES "_f64") AND NOT "fp64" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp8" OR source MATCHES "_f8") AND NOT "fp8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf8" OR source MATCHES "_bf8") AND NOT "bf8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf16" OR source MATCHES "_b16") AND NOT "bf16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_int8" OR source MATCHES "_i8") AND NOT "int8" IN_LIST DTYPES)
set(test 1)
endif()
if(test EQUAL 1)
message("removing example source file ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
foreach(source IN LISTS FILE_NAME)
set(test 0)
if((source MATCHES "_fp16" OR source MATCHES "_f16") AND NOT "fp16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp32" OR source MATCHES "_f32") AND NOT "fp32" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp64" OR source MATCHES "_f64") AND NOT "fp64" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_fp8" OR source MATCHES "_f8") AND NOT "fp8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf8" OR source MATCHES "_bf8") AND NOT "bf8" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_bf16" OR source MATCHES "_b16") AND NOT "bf16" IN_LIST DTYPES)
set(test 1)
endif()
if((source MATCHES "_int8" OR source MATCHES "_i8") AND NOT "int8" IN_LIST DTYPES)
set(test 1)
endif()
if(test EQUAL 1)
message("removing example source file ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
endif()
set(EX_TARGETS ${SUPPORTED_GPU_TARGETS})
......@@ -83,6 +83,13 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any microscaling examples if gfx950 target is not on the list
foreach(source IN LISTS FILE_NAME)
if(NOT EX_TARGETS MATCHES "gfx950" AND source MATCHES "_mx")
message("removing microscaling example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}")
endif()
endforeach()
#Do not build any FP8 examples if CK_ENABLE_FP8 not set
foreach(source IN LISTS FILE_NAME)
if(NOT DEFINED CK_ENABLE_FP8 AND source MATCHES "_fp8")
......@@ -102,7 +109,9 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
if(FILE_NAME MATCHES "_xdl")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
elseif(FILE_NAME MATCHES "_wmma")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030)
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx950)
elseif(FILE_NAME MATCHES "_mx") #only build mx example for gfx950
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
endif()
set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP)
add_executable(${EXAMPLE_NAME} ${FILE_NAME})
......@@ -195,7 +204,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
if(FILE_NAME MATCHES "_xdl")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx1030 gfx1100 gfx1101 gfx1102 gfx1103 gfx1200 gfx1201 gfx10.3-generic gfx11-generic gfx12-generic)
elseif(FILE_NAME MATCHES "_wmma")
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030)
list(REMOVE_ITEM EX_TARGETS gfx900 gfx906 gfx906:xnack- gfx908:xnack+ gfx908:xnack- gfx90a:xnack+ gfx90a:xnack- gfx908 gfx90a gfx940 gfx941 gfx942 gfx1030 gfx950)
endif()
set_source_files_properties(${FILE_NAME} PROPERTIES LANGUAGE HIP)
add_executable(${EXAMPLE_NAME} ${FILE_NAME})
......
......@@ -55,10 +55,10 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
// define general macros for various architectures
#if defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx940__) || defined(__gfx941__) || \
defined(__gfx942__)
defined(__gfx942__) || defined(__gfx950__)
#define __gfx9__
#endif
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__) || defined(__gfx950__)
#define __gfx94__
#endif
#if defined(__gfx1010__) || defined(__gfx1011__) || defined(__gfx1012__)
......@@ -163,6 +163,12 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
// set rounding to nearest even as default for f8 conversions
#define CK_USE_SR_F8_CONVERSION 0
// set rounding to nearest even as default for f6 conversions
#define CK_USE_SR_F6_CONVERSION 0
// set rounding to nearest even as default for f4 conversions
#define CK_USE_SR_F4_CONVERSION 0
// shuffle pk_i4 values during conversion to optimize number of binary
// operations
#define CK_USE_PK4_LAYOUT_SHUFFLE 1
......
......@@ -131,6 +131,10 @@
#cmakedefine CK_USE_FP8_ON_UNSUPPORTED_ARCH @CK_USE_FP8_ON_UNSUPPORTED_ARCH@
#endif
#ifndef CK_USE_NATIVE_MX_SUPPORT
#cmakedefine CK_USE_NATIVE_MX_SUPPORT @CK_USE_NATIVE_MX_SUPPORT@
#endif
// clang-format on
#endif // CK_CONFIG_H_IN
......@@ -55,20 +55,21 @@ inline bool is_xdl_supported()
{
return ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a" ||
ck::get_device_name() == "gfx940" || ck::get_device_name() == "gfx941" ||
ck::get_device_name() == "gfx942";
ck::get_device_name() == "gfx942" || ck::get_device_name() == "gfx950";
}
inline bool is_lds_direct_load_supported()
{
// Check if direct loads from global memory to LDS are supported.
return ck::get_device_name() == "gfx90a" || ck::get_device_name() == "gfx940" ||
ck::get_device_name() == "gfx941" || ck::get_device_name() == "gfx942";
ck::get_device_name() == "gfx941" || ck::get_device_name() == "gfx942" ||
ck::get_device_name() == "gfx950";
}
inline bool is_bf16_atomic_supported()
{
return ck::get_device_name() == "gfx940" || ck::get_device_name() == "gfx941" ||
ck::get_device_name() == "gfx942";
ck::get_device_name() == "gfx942" || ck::get_device_name() == "gfx950";
}
inline bool is_gfx101_supported()
......
......@@ -26,6 +26,7 @@ namespace utils {
template <typename ComputeDataType, typename OutDataType, typename AccDataType = ComputeDataType>
double get_relative_threshold(const int number_of_accumulations = 1)
{
using F4 = ck::f4_t;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
......@@ -33,10 +34,10 @@ double get_relative_threshold(const int number_of_accumulations = 1)
using I8 = int8_t;
using I32 = int32_t;
static_assert(is_same_v<ComputeDataType, F8> || is_same_v<ComputeDataType, F16> ||
is_same_v<ComputeDataType, BF16> || is_same_v<ComputeDataType, F32> ||
is_same_v<ComputeDataType, I8> || is_same_v<ComputeDataType, I32> ||
is_same_v<ComputeDataType, int>,
static_assert(is_same_v<ComputeDataType, F4> || is_same_v<ComputeDataType, F8> ||
is_same_v<ComputeDataType, F16> || is_same_v<ComputeDataType, BF16> ||
is_same_v<ComputeDataType, F32> || is_same_v<ComputeDataType, I8> ||
is_same_v<ComputeDataType, I32> || is_same_v<ComputeDataType, int>,
"Warning: Unhandled ComputeDataType for setting up the relative threshold!");
double compute_error = 0;
if constexpr(is_same_v<ComputeDataType, I8> || is_same_v<ComputeDataType, I32> ||
......@@ -49,10 +50,10 @@ double get_relative_threshold(const int number_of_accumulations = 1)
compute_error = std::pow(2, -NumericUtils<ComputeDataType>::mant) * 0.5;
}
static_assert(is_same_v<OutDataType, F8> || is_same_v<OutDataType, F16> ||
is_same_v<OutDataType, BF16> || is_same_v<OutDataType, F32> ||
is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
is_same_v<OutDataType, int>,
static_assert(is_same_v<OutDataType, F4> || is_same_v<OutDataType, F8> ||
is_same_v<OutDataType, F16> || is_same_v<OutDataType, BF16> ||
is_same_v<OutDataType, F32> || is_same_v<OutDataType, I8> ||
is_same_v<OutDataType, I32> || is_same_v<OutDataType, int>,
"Warning: Unhandled OutDataType for setting up the relative threshold!");
double output_error = 0;
if constexpr(is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
......@@ -66,10 +67,10 @@ double get_relative_threshold(const int number_of_accumulations = 1)
}
double midway_error = std::max(compute_error, output_error);
static_assert(is_same_v<AccDataType, F8> || is_same_v<AccDataType, F16> ||
is_same_v<AccDataType, BF16> || is_same_v<AccDataType, F32> ||
is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
is_same_v<AccDataType, int>,
static_assert(is_same_v<AccDataType, F4> || is_same_v<AccDataType, F8> ||
is_same_v<AccDataType, F16> || is_same_v<AccDataType, BF16> ||
is_same_v<AccDataType, F32> || is_same_v<AccDataType, I8> ||
is_same_v<AccDataType, I32> || is_same_v<AccDataType, int>,
"Warning: Unhandled AccDataType for setting up the relative threshold!");
double acc_error = 0;
if constexpr(is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
......@@ -87,6 +88,7 @@ double get_relative_threshold(const int number_of_accumulations = 1)
template <typename ComputeDataType, typename OutDataType, typename AccDataType = ComputeDataType>
double get_absolute_threshold(const double max_possible_num, const int number_of_accumulations = 1)
{
using F4 = ck::f4_t;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
......@@ -94,10 +96,10 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
using I8 = int8_t;
using I32 = int32_t;
static_assert(is_same_v<ComputeDataType, F8> || is_same_v<ComputeDataType, F16> ||
is_same_v<ComputeDataType, BF16> || is_same_v<ComputeDataType, F32> ||
is_same_v<ComputeDataType, I8> || is_same_v<ComputeDataType, I32> ||
is_same_v<ComputeDataType, int>,
static_assert(is_same_v<ComputeDataType, F4> || is_same_v<ComputeDataType, F8> ||
is_same_v<ComputeDataType, F16> || is_same_v<ComputeDataType, BF16> ||
is_same_v<ComputeDataType, F32> || is_same_v<ComputeDataType, I8> ||
is_same_v<ComputeDataType, I32> || is_same_v<ComputeDataType, int>,
"Warning: Unhandled ComputeDataType for setting up the absolute threshold!");
auto expo = std::log2(std::abs(max_possible_num));
double compute_error = 0;
......@@ -111,10 +113,10 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
compute_error = std::pow(2, expo - NumericUtils<ComputeDataType>::mant) * 0.5;
}
static_assert(is_same_v<OutDataType, F8> || is_same_v<OutDataType, F16> ||
is_same_v<OutDataType, BF16> || is_same_v<OutDataType, F32> ||
is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
is_same_v<OutDataType, int>,
static_assert(is_same_v<OutDataType, F4> || is_same_v<OutDataType, F8> ||
is_same_v<OutDataType, F16> || is_same_v<OutDataType, BF16> ||
is_same_v<OutDataType, F32> || is_same_v<OutDataType, I8> ||
is_same_v<OutDataType, I32> || is_same_v<OutDataType, int>,
"Warning: Unhandled OutDataType for setting up the absolute threshold!");
double output_error = 0;
if constexpr(is_same_v<OutDataType, I8> || is_same_v<OutDataType, I32> ||
......@@ -128,10 +130,10 @@ double get_absolute_threshold(const double max_possible_num, const int number_of
}
double midway_error = std::max(compute_error, output_error);
static_assert(is_same_v<AccDataType, F8> || is_same_v<AccDataType, F16> ||
is_same_v<AccDataType, BF16> || is_same_v<AccDataType, F32> ||
is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
is_same_v<AccDataType, int>,
static_assert(is_same_v<AccDataType, F4> || is_same_v<AccDataType, F8> ||
is_same_v<AccDataType, F16> || is_same_v<AccDataType, BF16> ||
is_same_v<AccDataType, F32> || is_same_v<AccDataType, I8> ||
is_same_v<AccDataType, I32> || is_same_v<AccDataType, int>,
"Warning: Unhandled AccDataType for setting up the absolute threshold!");
double acc_error = 0;
if constexpr(is_same_v<AccDataType, I8> || is_same_v<AccDataType, I32> ||
......@@ -450,5 +452,54 @@ check_err(const Range& out,
return res;
}
template <typename Range, typename RefRange>
std::enable_if_t<(std::is_same_v<ranges::range_value_t<Range>, ranges::range_value_t<RefRange>> &&
std::is_same_v<ranges::range_value_t<Range>, f4_t>),
bool>
check_err(const Range& out,
const RefRange& ref,
const std::string& msg = "Error: Incorrect results!",
double rtol = 0.5,
double atol = 0.5)
{
if(out.size() != ref.size())
{
std::cerr << msg << " out.size() != ref.size(), :" << out.size() << " != " << ref.size()
<< std::endl;
return false;
}
bool res{true};
int err_count = 0;
double err = 0;
double max_err = std::numeric_limits<float>::min();
for(std::size_t i = 0; i < ref.size(); ++i)
{
const double o = type_convert<float>(*std::next(std::begin(out), i));
const double r = type_convert<float>(*std::next(std::begin(ref), i));
err = std::abs(o - r);
if(err > atol + rtol * std::abs(r) || !std::isfinite(o) || !std::isfinite(r))
{
max_err = err > max_err ? err : max_err;
err_count++;
if(err_count < 5)
{
std::cerr << msg << std::setw(12) << std::setprecision(7) << " out[" << i
<< "] != ref[" << i << "]: " << o << " != " << r << std::endl;
}
res = false;
}
}
if(!res)
{
std::cerr << std::setw(12) << std::setprecision(7) << "max err: " << max_err
<< " number of errors: " << err_count << std::endl;
}
return res;
}
} // namespace utils
} // namespace ck
......@@ -69,6 +69,18 @@ struct GeneratorTensor_1<ck::f8_t>
};
#endif
template <>
struct GeneratorTensor_1<ck::f4_t>
{
float value = 1.0;
template <typename... Is>
ck::f4_t operator()(Is...)
{
return ck::type_convert<ck::f4_t>(value);
}
};
template <>
struct GeneratorTensor_1<int8_t>
{
......@@ -183,6 +195,20 @@ struct GeneratorTensor_2<ck::bf8_t>
};
#endif
template <>
struct GeneratorTensor_2<ck::f4_t>
{
int min_value = 0;
int max_value = 1;
template <typename... Is>
ck::f4_t operator()(Is...)
{
float tmp = (std::rand() % (max_value - min_value)) + min_value;
return ck::type_convert<ck::f4_t>(tmp);
}
};
template <typename T>
struct GeneratorTensor_3
{
......@@ -253,6 +279,23 @@ struct GeneratorTensor_3<ck::bf8_t>
};
#endif
template <>
struct GeneratorTensor_3<ck::f4_t>
{
float min_value = 0;
float max_value = 1;
template <typename... Is>
ck::f4_t operator()(Is...)
{
float tmp = float(std::rand()) / float(RAND_MAX);
float fp32_tmp = min_value + tmp * (max_value - min_value);
return ck::type_convert<ck::f4_t>(fp32_tmp);
}
};
template <typename T>
struct GeneratorTensor_4
{
......
......@@ -94,8 +94,7 @@ __device__ void device_grouped_conv_fwd_multiple_abd_xdl_cshuffle(
const Block2ETileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......
......@@ -56,8 +56,7 @@ __global__ void
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
......
......@@ -74,8 +74,7 @@ __global__ void
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
......@@ -60,8 +60,7 @@ __global__ void
const index_t batch_count,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -108,7 +107,7 @@ __global__ void
ignore = block_2_ctile_map;
ignore = batch_count;
ignore = compute_base_ptr_of_batch;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
#endif // end of if (defined(__gfx9__))
}
// Computes C = A * B0 * B1
......
......@@ -83,8 +83,7 @@ __global__ void
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
......@@ -68,8 +68,7 @@ __global__ void
const index_t batch_count,
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......
......@@ -59,8 +59,7 @@ __global__ void
const ComputeBasePrtOfBatch compute_base_ptr_of_batch_,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
......@@ -67,8 +67,7 @@ __global__ void
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch,
const C0MatrixMask c0_matrix_mask)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -127,7 +126,7 @@ __global__ void
ignore = batch_count;
ignore = compute_base_ptr_of_batch;
ignore = c0_matrix_mask;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
#endif // end of if (defined(__gfx9__))
}
// Computes C = A * B0 * B1
......
......@@ -62,8 +62,7 @@ __global__ void
const ComputeBasePtrOfStridedBatch compute_base_ptr_of_batch,
const C0MatrixMask c0_matrix_mask)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -112,7 +111,7 @@ __global__ void
ignore = batch_count;
ignore = compute_base_ptr_of_batch;
ignore = c0_matrix_mask;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
#endif // end of if (defined(__gfx9__))
}
// Computes C = A * B0 * B1
......
......@@ -52,8 +52,7 @@ __global__ void
#endif
kernel_batched_gemm_xdlops_v2r3(const typename DeviceOp::Argument karg)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / karg.Batch);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......
......@@ -55,8 +55,7 @@ __global__ void
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_as_grid,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment