Commit 533204d6 authored by Aleksander Dudek's avatar Aleksander Dudek
Browse files

Batched gemm - initial example setup

parent 6cb12c61
add_executable(tile_example_batched_gemm_basic EXCLUDE_FROM_ALL batched_gemm_basic.cpp)
\ No newline at end of file
# GEMM Matrix Multiplication
This folder contains example for GEMM using ck_tile tile-programming implementation. Currently, it only supports the basic feature of the CK Tile GEMM, but creates the placeholders for the future support on different GEMM pipeline and different GEMM modules. In the near future, we will gradually migrate all the GEMM features from old CK to CK Tile.
## build
```
# in the root of ck_tile
mkdir build && cd build
# you can replace <arch> with the appropriate architecture (for example gfx90a or gfx942) or leave it blank
sh ../script/cmake-ck-dev.sh ../ <arch>
make tile_example_gemm_basic -j
```
This will result in an executable `build/bin/tile_example_gemm_basic`
## example
```
args:
-b batch size (default:1)
-m m dimension (default:1024)
-n n dimension (default:2048)
-k k dimension (default:64)
-stride_a Tensor A stride (default:0)
-stride_b Tensor B stride (default:0)
-stride_c Tensor C stride (default:0)
-v 0. No validation, 1. Validation on CPU, 2. Validation on GPU (default:2)
-e Absolute error tolerance (default:1e-5)
-prec data type. fp16/bf16/fp8/bf8 (default:fp16)
-warmup number of iterations before benchmark the kernel (default:10)
-repeat number of iterations to benchmark the kernel (default:100)
-timer gpu:gpu timer, cpu:cpu timer (default:gpu)
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <hip/hip_runtime.h>
#include <cstring>
#include <iostream>
#include <ostream>
#include <string>
#include <tuple>
#include "ck_tile/ops/epilogue.hpp"
#include "ck_tile/ops/gemm.hpp"
#include "ck_tile/host.hpp"
#include "batched_gemm_basic.hpp"
template <typename ALayout, typename BLayout, typename CLayout>
float gemm_calc(const batched_gemm_basic_args& args, const ck_tile::stream_config& s)
{
// The kPadA, kPadB, kPadC & kBlockPerCu should also come from the Codegen part.
constexpr bool kPadA = true;
constexpr bool kPadB = true;
constexpr bool kPadC = true;
constexpr bool kTilePermute = false;
// The rank and permutation will also be generate out by the CodeGen part.
constexpr ck_tile::index_t kOutputRank = 2;
constexpr int kBlockPerCu = 1;
// This part comes from the Codegen
constexpr ck_tile::index_t M_Tile = 128;
constexpr ck_tile::index_t N_Tile = 128;
constexpr ck_tile::index_t K_Tile = 32;
constexpr ck_tile::index_t M_Warp = 2;
constexpr ck_tile::index_t N_Warp = 2;
constexpr ck_tile::index_t K_Warp = 1;
constexpr ck_tile::index_t M_Warp_Tile = 32;
constexpr ck_tile::index_t N_Warp_Tile = 32;
constexpr ck_tile::index_t K_Warp_Tile = 8;
// Whether doing the CShuffle (transpose before the global memory), depending on the output
// layout.
constexpr bool CShuffleEpilogue =
std::is_same_v<CLayout, ck_tile::tensor_layout::gemm::ColumnMajor>;
using CodegenGemmShape =
ck_tile::TileGemmShape<ck_tile::sequence<M_Tile, N_Tile, K_Tile>,
ck_tile::sequence<M_Warp, N_Warp, K_Warp>,
ck_tile::sequence<M_Warp_Tile, N_Warp_Tile, K_Warp_Tile>>;
using TilePartitioner = ck_tile::GemmTilePartitioner<CodegenGemmShape>;
using GemmEpilogue = std::conditional_t<
CShuffleEpilogue,
ck_tile::CShuffleEpilogue<ck_tile::CShuffleEpilogueProblem<AccDataType,
CDataType,
kPadA,
kPadB,
kTilePermute,
kOutputRank,
1,
0,
TilePartitioner::kM,
TilePartitioner::kN>>,
ck_tile::Default2DEpilogue<
ck_tile::Default2DEpilogueProblem<AccDataType, CDataType, kPadA, kPadB>>>;
using CodegenGemmTraits =
ck_tile::TileGemmTraits<kPadA, kPadB, kPadC, ALayout, BLayout, CLayout>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenPipelineProblem = ck_tile::
GemmPipelineProblem<ADataType, BDataType, AccDataType, CodegenGemmShape, CodegenGemmTraits>;
using CodegenGemmPipeline = ck_tile::GemmPipelineAGmemBGmemCRegV1<CodegenPipelineProblem>;
// ToDo: Will add the codegen part to test different pipeline policies in GEMM.
// Now we only use the BlockGemmASmemBSmemCRegV1DefaultPolicy.
using Kernel = ck_tile::BatchedGemmKernel<TilePartitioner, CodegenGemmPipeline, GemmEpilogue>;
auto kargs = Kernel::MakeKargs(args.p_a,
args.p_b,
args.p_c,
args.M,
args.N,
args.K,
args.stride_A,
args.stride_B,
args.stride_C,
args.batch_stride_A,
args.batch_stride_B,
args.batch_stride_C,
args.batch_count);
const dim3 grids = Kernel::GridSize(args.M, args.N, args.kbatch);
constexpr dim3 blocks = Kernel::BlockSize();
if(s.log_level_ > 0)
{
std::cout << "Lunching kernel with args:"
<< " grid: {" << grids.x << ", " << grids.y << ", " << grids.z << "}"
<< ", blocks: {" << blocks.x << ", " << blocks.y << ", " << blocks.z << "}"
<< std::endl;
}
float ave_time = ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
return ave_time;
}
#include "run_batched_gemm_example.inc"
int main(int argc, char* argv[]) { return !run_batched_gemm_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
template <typename DataType>
struct GemmBasicTypeConfig;
template <>
struct GemmBasicTypeConfig<ck_tile::half_t>
{
using ADataType = ck_tile::half_t;
using BDataType = ck_tile::half_t;
using AccDataType = float;
using CDataType = ck_tile::half_t;
// ToDo: Add more bias config to support different categories of GEMM.
};
template <typename T>
struct DataTypeTraits;
template <>
struct DataTypeTraits<float>
{
static constexpr const char* name = "fp32";
};
template <>
struct DataTypeTraits<double>
{
static constexpr const char* name = "fp64";
};
template <>
struct DataTypeTraits<ck_tile::half_t>
{
static constexpr const char* name = "fp16";
};
using Types = GemmBasicTypeConfig<ck_tile::half_t>;
// Specific type aliases for easy access
using ADataType = Types::ADataType;
using BDataType = Types::BDataType;
using AccDataType = Types::AccDataType;
using CDataType = Types::CDataType;
struct batched_gemm_basic_args
{
const void* p_a;
const void* p_b;
void* p_c;
ck_tile::index_t kbatch;
ck_tile::index_t M;
ck_tile::index_t N;
ck_tile::index_t K;
ck_tile::index_t stride_A;
ck_tile::index_t stride_B;
ck_tile::index_t stride_C;
ck_tile::index_t batch_stride_A;
ck_tile::index_t batch_stride_B;
ck_tile::index_t batch_stride_C;
ck_tile::index_t batch_count;
};
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("b", "1", "batch size")
.insert("m", "3840", "m dimension")
.insert("n", "4096", "n dimension")
.insert("k", "4096", "k dimension")
.insert("stride_a", "0", "Tensor A stride")
.insert("stride_b", "0", "Tensor B stride")
.insert("stride_c", "0", "Tensor C stride")
.insert("batch_stride_a", "0", "Batch A stride")
.insert("batch_stride_b", "0", "Batch B stride")
.insert("batch_stride_c", "0", "Batch C stride")
.insert("batch_count", "1", "Batch count")
.insert("v", "2", "0. No validation, 1. Validation on CPU, 2. Validation on GPU")
.insert("prec", "fp16", "data type. fp16/bf16/fp8/bf8")
.insert("warmup", "50", "number of iterations before benchmark the kernel")
.insert("repeat", "100", "number of iterations to benchmark the kernel")
.insert("timer", "gpu", "gpu:gpu timer, cpu:cpu timer");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
// host API
float gemm_calc(batched_gemm_basic_args args, const ck_tile::stream_config& s);
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename ALayout, typename BLayout, typename CLayout>
float invoke_gemm(ck_tile::DeviceMem& a_m_k_dev_buf,
ck_tile::DeviceMem& b_k_n_dev_buf,
ck_tile::DeviceMem& c_m_n_dev_buf,
ck_tile::index_t M,
ck_tile::index_t N,
ck_tile::index_t K,
ck_tile::index_t stride_A,
ck_tile::index_t stride_B,
ck_tile::index_t stride_C,
ck_tile::index_t kbatch,
int n_warmup,
int n_repeat)
{
batched_gemm_basic_args args;
args.p_a = a_m_k_dev_buf.GetDeviceBuffer();
args.p_b = b_k_n_dev_buf.GetDeviceBuffer();
args.p_c = c_m_n_dev_buf.GetDeviceBuffer();
args.kbatch = kbatch;
args.M = M;
args.N = N;
args.K = K;
args.stride_A = stride_A;
args.stride_B = stride_B;
args.stride_C = stride_C;
float ave_time = gemm_calc<ALayout, BLayout, CLayout>(
args, ck_tile::stream_config{nullptr, true, 1, n_warmup, n_repeat});
std::string op_name{"Gemm{MemBoundPipeline}"};
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_byte =
sizeof(ADataType) * M * K + sizeof(BDataType) * N * K + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Run " << op_name << "kernel with M =" << M << " N =" << N << " K =" << K
<< " StrideA =" << stride_A << " StrideB =" << stride_B << " StrideC =" << stride_C
<< " : " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< std::endl;
return ave_time;
}
int run_batched_gemm_example(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
ck_tile::index_t M = arg_parser.get_int("m");
ck_tile::index_t N = arg_parser.get_int("n");
ck_tile::index_t K = arg_parser.get_int("k");
ck_tile::index_t stride_A = arg_parser.get_int("stride_a");
ck_tile::index_t stride_B = arg_parser.get_int("stride_b");
ck_tile::index_t stride_C = arg_parser.get_int("stride_c");
ck_tile::index_t batch_size = arg_parser.get_int("b");
int n_warmup = arg_parser.get_int("warmup");
int n_repeat = arg_parser.get_int("repeat");
using ALayout = ck_tile::tensor_layout::gemm::RowMajor;
using BLayout = ck_tile::tensor_layout::gemm::ColumnMajor;
using CLayout = ck_tile::tensor_layout::gemm::RowMajor;
using namespace ck_tile::literals;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return ck_tile::HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return ck_tile::HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride = [](std::size_t row,
std::size_t col,
std::size_t stride,
auto layout) {
if(stride == 0)
{
// give a chance if stride is zero, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck_tile::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
};
stride_A = f_get_default_stride(M, K, stride_A, ALayout{});
stride_B = f_get_default_stride(K, N, stride_B, BLayout{});
stride_C = f_get_default_stride(M, N, stride_C, CLayout{});
ck_tile::HostTensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, stride_A, ALayout{}));
ck_tile::HostTensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, stride_B, BLayout{}));
ck_tile::HostTensor<CDataType> c_m_n_dev_result(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
// TODO: add different init types
ck_tile::FillUniformDistribution<ADataType>{-5.f, 5.f}(a_m_k);
ck_tile::FillUniformDistribution<BDataType>{-5.f, 5.f}(b_k_n);
ck_tile::DeviceMem a_m_k_dev_buf(a_m_k.get_element_space_size_in_bytes());
ck_tile::DeviceMem b_k_n_dev_buf(b_k_n.get_element_space_size_in_bytes());
ck_tile::DeviceMem c_m_n_dev_buf(c_m_n_dev_result.get_element_space_size_in_bytes());
a_m_k_dev_buf.ToDevice(a_m_k.data());
b_k_n_dev_buf.ToDevice(b_k_n.data());
c_m_n_dev_buf.SetZero();
c_m_n_dev_result.SetZero();
invoke_gemm<ALayout, BLayout, CLayout>(a_m_k_dev_buf,
b_k_n_dev_buf,
c_m_n_dev_buf,
M,
N,
K,
stride_A,
stride_B,
stride_C,
batch_size,
n_warmup,
n_repeat);
c_m_n_dev_buf.FromDevice(c_m_n_dev_result.data());
bool pass = true;
if(arg_parser.get_int("v") == 1)
{
ck_tile::HostTensor<CDataType> c_m_n_host_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
c_m_n_host_ref.SetZero();
ck_tile::reference_gemm<ADataType, BDataType, AccDataType, CDataType>(
a_m_k, b_k_n, c_m_n_host_ref);
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_host_ref);
std::cout << "The CPU veification result is:" << (pass ? "correct" : "fail") << std::endl;
}
else if(arg_parser.get_int("v") == 2)
{
ck_tile::HostTensor<CDataType> c_m_n_gpu_ref(
f_host_tensor_descriptor(M, N, stride_C, CLayout{}));
ck_tile::DeviceMem c_m_n_gpu_buf_ref(c_m_n_gpu_ref.get_element_space_size_in_bytes());
c_m_n_gpu_ref.SetZero();
c_m_n_gpu_buf_ref.SetZero();
ck_tile::reference_gemm_gpu<ADataType,
BDataType,
AccDataType,
CDataType,
ALayout,
BLayout,
CLayout>(
a_m_k_dev_buf, b_k_n_dev_buf, c_m_n_gpu_buf_ref, M, N, K, stride_A, stride_B, stride_C);
c_m_n_gpu_buf_ref.FromDevice(c_m_n_gpu_ref.data());
pass = ck_tile::check_err(c_m_n_dev_result, c_m_n_gpu_ref);
std::cout << "The GPU veification result is: " << (pass ? "correct" : "fail") << std::endl;
}
return pass;
}
......@@ -6,3 +6,4 @@ add_subdirectory(01_fmha)
add_subdirectory(02_layernorm2d)
add_subdirectory(03_gemm)
add_subdirectory(04_img2col)
add_subdirectory(05_batched_gemm)
\ No newline at end of file
......@@ -22,6 +22,7 @@
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1_default_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_problem.hpp"
#include "ck_tile/ops/gemm/kernel/gemm_kernel.hpp"
#include "ck_tile/ops/gemm/kernel/batched_gemm_kernel.hpp"
#include "ck_tile/ops/gemm/kernel/gemm_tile_partitioner.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_mem.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment