Commit 48fe8532 authored by Jun Liu's avatar Jun Liu
Browse files

Merge branch 'amd-develop' into amd-master

parents d88411d1 39002e9e
......@@ -24,18 +24,20 @@ int main()
bool time_kernel = false;
// Pool shape
ck::index_t N = 1;
ck::index_t C = 1;
ck::index_t Y = 2;
ck::index_t X = 2;
ck::index_t Hi = 32;
ck::index_t Wi = 32;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t in_left_pad_h = 0;
ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
ck::index_t N = 1;
ck::index_t C = 1;
ck::index_t Y = 2;
ck::index_t X = 2;
ck::index_t Hi = 32;
ck::index_t Wi = 32;
ck::index_t window_stride_h = 2;
ck::index_t window_stride_w = 2;
ck::index_t window_dilation_h = 1;
ck::index_t window_dilation_w = 1;
ck::index_t in_left_pad_h = 0;
ck::index_t in_left_pad_w = 0;
ck::index_t in_right_pad_h = 0;
ck::index_t in_right_pad_w = 0;
bool pass = maxpool_bwd_test<InDataType,
OutDataType,
......@@ -53,6 +55,8 @@ int main()
Wi,
window_stride_h,
window_stride_w,
window_dilation_h,
window_dilation_w,
in_left_pad_h,
in_left_pad_w,
in_right_pad_h,
......
add_example_executable(example_avgpool3d_bwd_bf16 avgpool3d_bwd_bf16.cpp)
add_example_executable(example_avgpool3d_bwd_fp16 avgpool3d_bwd_fp16.cpp)
add_example_executable(example_avgpool3d_bwd_fp32 avgpool3d_bwd_fp32.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_avgpool3d_bwd_ndhwc_ndhwc.hpp"
#include "avgpool3d_bwd_common.hpp"
using DOutDataType = ck::bhalf_t;
using DInDataType = ck::bhalf_t;
using ComputeDataType = float;
#if 1
using DOutLayout = ck::tensor_layout::convolution::NDHWC;
using DInLayout = ck::tensor_layout::convolution::NDHWC;
#else
using DOutLayout = ck::tensor_layout::convolution::NCDHW;
using DInLayout = ck::tensor_layout::convolution::NCDHW;
#endif
using DevicePoolBwdInstance =
ck::tensor_operation::device::DeviceAvgPool3dBwd_NDHWC_NDHWC<DOutDataType,
DInDataType,
ComputeDataType,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
1, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
1>; // InSrcOutDstVectorSize
int main()
{
std::vector<ck::index_t> window_lengths = {5, 5, 5};
std::vector<ck::index_t> window_strides = {2, 2, 2};
std::vector<ck::index_t> window_dilations = {2, 2, 2};
std::vector<ck::index_t> dinput_left_pads = {0, 0, 0};
std::vector<ck::index_t> dinput_right_pads = {0, 0, 0};
ck::index_t N = 1;
ck::index_t C = 16;
ck::index_t Di = 40;
ck::index_t Hi = 40;
ck::index_t Wi = 40;
pool3d_bwd_test<DevicePoolBwdInstance, DOutDataType, DInDataType, DOutLayout, DInLayout>(
true,
false,
N,
C,
Di,
Hi,
Wi,
window_lengths,
window_strides,
window_dilations,
dinput_left_pads,
dinput_right_pads);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_avgpool_bwd.hpp"
template <typename TensorLayout>
std::vector<ck::index_t> f_tensor_strides_ncdhw(ck::index_t N_,
ck::index_t C_,
ck::index_t D,
ck::index_t H,
ck::index_t W,
TensorLayout layout)
{
using namespace ck::literals;
(void)N_;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
return {C_ * D * H * W, D * H * W, H * W, W, 1_uz};
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
return {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_};
};
template <typename TensorLayout>
HostTensorDescriptor f_host_tensor_descriptor(std::size_t N_,
std::size_t C_,
std::size_t D,
std::size_t H,
std::size_t W,
TensorLayout layout)
{
using namespace ck::literals;
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W}, {C_ * D * H * W, D * H * W, H * W, W, 1_uz});
}
else if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NDHWC>::value)
{
return HostTensorDescriptor({N_, C_, D, H, W},
{D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
}
};
template <typename DevicePoolBwdInstance,
typename DOutDataType,
typename DInDataType,
typename DOutLayout,
typename DInLayout>
bool pool3d_bwd_test(bool do_verification,
bool time_kernel,
ck::index_t N,
ck::index_t C,
ck::index_t Di,
ck::index_t Hi,
ck::index_t Wi,
std::vector<ck::index_t> window_lengths,
std::vector<ck::index_t> window_strides,
std::vector<ck::index_t> window_dilations,
std::vector<ck::index_t> dinput_left_pads,
std::vector<ck::index_t> dinput_right_pads)
{
auto OutSpatialLength = [&](auto InSpatialLength, int index) {
ck::index_t left_pad = dinput_left_pads[index];
ck::index_t right_pad = dinput_right_pads[index];
ck::index_t window_len = window_lengths[index];
ck::index_t stride = window_strides[index];
ck::index_t dilation = window_dilations[index];
ck::index_t eff = (window_len - 1) * dilation + 1;
return (InSpatialLength + left_pad + right_pad - eff) / stride + 1;
};
ck::index_t Do = OutSpatialLength(Di, 0);
ck::index_t Ho = OutSpatialLength(Hi, 1);
ck::index_t Wo = OutSpatialLength(Wi, 2);
Tensor<DOutDataType> dout(f_host_tensor_descriptor(N, C, Do, Ho, Wo, DOutLayout{}));
Tensor<DInDataType> din_dev(f_host_tensor_descriptor(N, C, Di, Hi, Wi, DInLayout{}));
Tensor<DInDataType> din_host(f_host_tensor_descriptor(N, C, Di, Hi, Wi, DInLayout{}));
std::cout << "dout: " << dout.mDesc << std::endl;
std::cout << "din_host: " << din_host.mDesc << std::endl;
dout.GenerateTensorValue(GeneratorTensor_3<DOutDataType>{0.0, 1.0});
DeviceMem dout_device_buf(sizeof(DOutDataType) * dout.mDesc.GetElementSpaceSize());
DeviceMem din_device_buf(sizeof(DInDataType) * din_dev.mDesc.GetElementSpaceSize());
dout_device_buf.ToDevice(dout.mData.data());
din_device_buf.SetZero();
auto pool = DevicePoolBwdInstance{};
auto invoker_ptr = pool.MakeInvokerPointer();
auto argument_ptr =
pool.MakeArgumentPointer(static_cast<DOutDataType*>(dout_device_buf.GetDeviceBuffer()),
static_cast<DInDataType*>(din_device_buf.GetDeviceBuffer()),
{N, C, Do, Ho, Wo},
{N, C, Di, Hi, Wi},
f_tensor_strides_ncdhw(N, C, Do, Ho, Wo, DOutLayout{}),
f_tensor_strides_ncdhw(N, C, Di, Hi, Wi, DInLayout{}),
window_lengths,
window_strides,
window_dilations,
dinput_left_pads,
dinput_right_pads);
if(!pool.IsSupportedArgument(argument_ptr.get()))
{
throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::cout << "Perf: " << ave_time << std::endl;
bool pass = true;
if(do_verification)
{
auto ref_pool =
ck::tensor_operation::host::ReferenceAvgPoolBwd<3, DInDataType, DOutDataType>();
auto ref_invoker = ref_pool.MakeInvoker();
auto ref_argument = ref_pool.MakeArgument(din_host,
dout,
window_lengths,
window_strides,
window_dilations,
dinput_left_pads,
dinput_right_pads);
ref_invoker.Run(ref_argument);
din_device_buf.FromDevice(din_dev.mData.data());
pass = ck::utils::check_err(din_dev, din_host);
}
return pass;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_avgpool3d_bwd_ndhwc_ndhwc.hpp"
#include "avgpool3d_bwd_common.hpp"
using DOutDataType = ck::half_t;
using DInDataType = ck::half_t;
using ComputeDataType = float;
#if 1
using DOutLayout = ck::tensor_layout::convolution::NDHWC;
using DInLayout = ck::tensor_layout::convolution::NDHWC;
#else
using DOutLayout = ck::tensor_layout::convolution::NCDHW;
using DInLayout = ck::tensor_layout::convolution::NCDHW;
#endif
using DevicePoolBwdInstance =
ck::tensor_operation::device::DeviceAvgPool3dBwd_NDHWC_NDHWC<DOutDataType,
DInDataType,
ComputeDataType,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
1, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
1>; // InSrcOutDstVectorSize
int main()
{
std::vector<ck::index_t> window_lengths = {5, 5, 5};
std::vector<ck::index_t> window_strides = {2, 2, 2};
std::vector<ck::index_t> window_dilations = {2, 2, 2};
std::vector<ck::index_t> dinput_left_pads = {0, 0, 0};
std::vector<ck::index_t> dinput_right_pads = {0, 0, 0};
ck::index_t N = 1;
ck::index_t C = 16;
ck::index_t Di = 40;
ck::index_t Hi = 40;
ck::index_t Wi = 40;
pool3d_bwd_test<DevicePoolBwdInstance, DOutDataType, DInDataType, DOutLayout, DInLayout>(
true,
false,
N,
C,
Di,
Hi,
Wi,
window_lengths,
window_strides,
window_dilations,
dinput_left_pads,
dinput_right_pads);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_avgpool3d_bwd_ndhwc_ndhwc.hpp"
#include "avgpool3d_bwd_common.hpp"
using DOutDataType = float;
using DInDataType = float;
using ComputeDataType = float;
#if 1
using DOutLayout = ck::tensor_layout::convolution::NDHWC;
using DInLayout = ck::tensor_layout::convolution::NDHWC;
#else
using DOutLayout = ck::tensor_layout::convolution::NCDHW;
using DInLayout = ck::tensor_layout::convolution::NCDHW;
#endif
using DevicePoolBwdInstance =
ck::tensor_operation::device::DeviceAvgPool3dBwd_NDHWC_NDHWC<DOutDataType,
DInDataType,
ComputeDataType,
64, // BlockSize
64, // ReduceMThreadClusterSize
1, // ReduceKThreadClusterSize
1, // ReduceMThreadSliceSize
1, // ReduceKThreadSliceSize
1>; // InSrcOutDstVectorSize
int main()
{
std::vector<ck::index_t> window_lengths = {5, 5, 5};
std::vector<ck::index_t> window_strides = {2, 2, 2};
std::vector<ck::index_t> window_dilations = {2, 2, 2};
std::vector<ck::index_t> dinput_left_pads = {0, 0, 0};
std::vector<ck::index_t> dinput_right_pads = {0, 0, 0};
ck::index_t N = 1;
ck::index_t C = 16;
ck::index_t Di = 40;
ck::index_t Hi = 40;
ck::index_t Wi = 40;
pool3d_bwd_test<DevicePoolBwdInstance, DOutDataType, DInDataType, DOutLayout, DInLayout>(
true,
false,
N,
C,
Di,
Hi,
Wi,
window_lengths,
window_strides,
window_dilations,
dinput_left_pads,
dinput_right_pads);
}
......@@ -125,6 +125,9 @@
// `s_nop`s to avoid hazard
#define CK_USE_AMD_V_DOT_INLINE_ASM 0
// inner product using V_DOT with DPP8 modifiers
#define CK_USE_AMD_V_DOT_DPP8_INLINE_ASM 1
// block synchronization only s_wait lgkmcnt(0), not vmcnt(0)
#define CK_EXPERIMENTAL_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM 1
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/amd_gemm_dpp.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_contraction_dl_dpp8.hpp"
namespace ck {
/**
* DPP8 version of blockwise GEMM algorithm. It uses DPP8 instruction modifier to limit
* the data loaded from LDS to registers.
*
* The algorithm groups threads into groups of size `dpp8::lane_group_size` and splits the matrix C
* between them in such a way that threads from the same group need the same chunk of either
* matrix A (or B, respectively). Without the usage of DPP8, each thread would need to load the
* whole chunk from LDS to its own register space.
* Usage of DPP8 modifiers allow each thread to load less data, exactly `1 / dpp8::lane_group_size`
* of the chunk, and then share that data with other threads from the same lane group.
*
* Assumptions coming from the usage of DPP8:
* 1. `BM10BN10ThreadClusterBM10Xs[1] == dpp8::lane_group_size` or
* `BM10BN10ThreadClusterBN10Xs[1] == dpp8::lane_group_size` -
* - it makes consecutive `dpp8::lane_group_size` threads use the same chunk of either
* matrix A or B;
* - based on these values we determine which matrix to share.
* 2. `BM1PerThreadBM11 % dpp8::lane_group_size == 0` (if sharing A) or
* `BN1PerThreadBN11 % dpp8::lane_group_size == 0` (if sharing B) -
* - we have to make sure that the data to split is divisible by the number of
* threads in the group.
*
* General algorithm:
* C[BM0, BM1, BN0, BN1] += transpose(A[K, BM0, BM1]) * B[K, BN0, BN1]
* A and B are visible to the whole block, C is distributed among each thread
* Assume:
* 1. A:
* 1. ABlockDesc_BK0_BM_BK1 is known at compile-time
* 2. ABlockBuffer is DynamicBuffer
* 2. B:
* 1. BBlockDesc_BK0_BN_BK1 is known at compile-time
* 2. BBlockBuffer is DynamicBuffer
* 3. C:
* 1. CThreadDesc_BM0_BM11_BN0_BN11 is known at compile-time
* 2. CThreadBuffer is StaticBuffer
* 4. BM10BN10ThreadClusterBM10Xs::Size() = BM10BN10ThreadClusterBN10Xs::Size() == 2
*/
template <index_t BlockSize,
typename FloatA,
typename FloatB,
typename FloatC,
typename ABlockDesc_BK0_BM_BK1,
typename BBlockDesc_BK0_BN_BK1,
index_t BM1PerThreadBM11,
index_t BN1PerThreadBN11,
index_t BK0PerThread,
typename BM10BN10ThreadClusterBM10Xs, // Sequence<BM10BN10ThreadClusterBM100,
// BM10BN10ThreadClusterBM101, ...>
typename BM10BN10ThreadClusterBN10Xs, // Sequence<BM10BN10ThreadClusterBN100,
// BM10BN10ThreadClusterBN101, ...>
index_t AThreadCopyScalarPerVector_BM11,
index_t BThreadCopyScalarPerVector_BN11,
typename enable_if<ABlockDesc_BK0_BM_BK1::IsKnownAtCompileTime() &&
BBlockDesc_BK0_BN_BK1::IsKnownAtCompileTime(),
bool>::type = false>
struct BlockwiseGemmDlDpp8_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_loop_BM0_BN0
{
using AIndex = MultiIndex<4>;
using BIndex = MultiIndex<4>;
using CIndex = MultiIndex<4>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr index_t BK0 = ABlockDesc_BK0_BM_BK1{}.GetLength(I0);
static constexpr index_t BK1 = ABlockDesc_BK0_BM_BK1{}.GetLength(I2);
static constexpr index_t BM = ABlockDesc_BK0_BM_BK1{}.GetLength(I1);
static constexpr index_t BN = BBlockDesc_BK0_BN_BK1{}.GetLength(I1);
static constexpr index_t BM100 = BM10BN10ThreadClusterBM10Xs{}[I0];
static constexpr index_t BN100 = BM10BN10ThreadClusterBN10Xs{}[I0];
static constexpr index_t BM101 = BM10BN10ThreadClusterBM10Xs{}[I1];
static constexpr index_t BN101 = BM10BN10ThreadClusterBN10Xs{}[I1];
static constexpr index_t BM11 = BM1PerThreadBM11;
static constexpr index_t BN11 = BN1PerThreadBN11;
static constexpr index_t BM1 = BM100 * BM101 * BM11;
static constexpr index_t BN1 = BN100 * BN101 * BN11;
static constexpr index_t BM0 = BM / BM1;
static constexpr index_t BN0 = BN / BN1;
// We assume that either `BM101` or `BN101` is equal to `dpp8::lane_group_size`. It makes all
// threads in a lane group need the same chunk of B or A matrices and we can share them using
// DPP.
static_assert(BM101 == dpp8::lane_group_size || BN101 == dpp8::lane_group_size);
static constexpr bool ShareB = BM101 == dpp8::lane_group_size ? true : false;
static constexpr bool ShareA = !ShareB;
// If DPP shares A (B, respectively), lane group gets `BM1PerThreadBM11` (`BN1PerThreadBN11`,
// respectively) elements, so we split them between threads in lane group so each thread loads
// less data from LDS.
static constexpr index_t BM1PerThread =
ShareA ? BM1PerThreadBM11 / dpp8::lane_group_size : BM1PerThreadBM11;
static constexpr index_t BN1PerThread =
ShareB ? BN1PerThreadBN11 / dpp8::lane_group_size : BN1PerThreadBN11;
__host__ __device__ static constexpr auto
MakeABlockDescriptor_BK0_BM0_BM1_BK1(const ABlockDesc_BK0_BM_BK1& a_block_desc_bk0_bm_bk1)
{
const auto a_block_bk0_bm0_bm1_bk1 = transform_tensor_descriptor(
a_block_desc_bk0_bm_bk1,
make_tuple(make_pass_through_transform(Number<BK0>{}),
make_unmerge_transform(make_tuple(Number<BM0>{}, Number<BM1>{})),
make_pass_through_transform(Number<BK1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
return a_block_bk0_bm0_bm1_bk1;
}
__host__ __device__ static constexpr auto
MakeBBlockDescriptor_BK0_BN0_BN1_BK1(const BBlockDesc_BK0_BN_BK1& b_block_desc_bk0_bn_bk1)
{
const auto b_block_desc_bk0_bn0_bn1_bk1 = transform_tensor_descriptor(
b_block_desc_bk0_bn_bk1,
make_tuple(make_pass_through_transform(Number<BK0>{}),
make_unmerge_transform(make_tuple(Number<BN0>{}, Number<BN1>{})),
make_pass_through_transform(Number<BK1>{})),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3>{}));
return b_block_desc_bk0_bn0_bn1_bk1;
}
__host__ __device__ static constexpr auto
MakeCBlockAdaptor_BM0_BM100_BM101_BM11_BN0_BN100_BN101_BN11_To_BM_BN()
{
// upper: [BM0, BM100, BM101, BM11, BN0, BN100, BN101, BN11]
// lower: [BM, BN]
constexpr auto c_block_adaptor_m0_m100_m101_m11_n0_n100_n101_n11_to_m_n =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(
Number<BM0>{}, Number<BM100>{}, Number<BM101>{}, Number<BM11>{})),
make_unmerge_transform(make_tuple(
Number<BN0>{}, Number<BN100>{}, Number<BN101>{}, Number<BN11>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2, 3>{}, Sequence<4, 5, 6, 7>{}));
return c_block_adaptor_m0_m100_m101_m11_n0_n100_n101_n11_to_m_n;
}
__host__ __device__ static constexpr auto
MakeCBlockAdaptor_BM0_BM100_BM101_BM11_BN0_BN100_BN101_BN11_To_BM0_BM1_BN0_BN1()
{
// upper: [BM0, BM100, BM101, BM11, BN0, BN100, BN101, BN11]
// lower: [BM0, BM1, BN0, BN1]
constexpr auto c_block_adaptor_m0_m100_m101_m11_n0_n100_n101_n11_to_m0_m1_n0_n1 =
make_single_stage_tensor_adaptor(
make_tuple(make_pass_through_transform(Number<BM0>{}),
make_unmerge_transform(
make_tuple(Number<BM100>{}, Number<BM101>{}, Number<BM11>{})),
make_pass_through_transform(Number<BN0>{}),
make_unmerge_transform(
make_tuple(Number<BN100>{}, Number<BN101>{}, Number<BN11>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2, 3>{}, Sequence<4>{}, Sequence<5, 6, 7>{}));
return c_block_adaptor_m0_m100_m101_m11_n0_n100_n101_n11_to_m0_m1_n0_n1;
}
__host__ __device__ static constexpr auto GetCThreadTensorLengths_BM0_BM1_BN0_BN1()
{
return Sequence<BM0, BM11, BN0, BN11>{};
}
static constexpr auto a_block_desc_bk0_bm0_bm1_bk1_ =
MakeABlockDescriptor_BK0_BM0_BM1_BK1(ABlockDesc_BK0_BM_BK1{});
static constexpr auto b_block_desc_bk0_bn0_bn1_bk1_ =
MakeBBlockDescriptor_BK0_BN0_BN1_BK1(BBlockDesc_BK0_BN_BK1{});
public:
__device__ BlockwiseGemmDlDpp8_A_BK0_BM_BK1_B_BK0_BN_BK1_C_BM0_BM1_BN0_BN1_loop_BM0_BN0()
: c_thread_origin_data_idx_{CalculateCThreadOriginOnBlock_BM0_BM1_BN0_BN1(
get_thread_local_1d_id())},
a_thread_copy_{CalculateAThreadOriginOnBlock_BK0_BM0_BM1_BK1()},
b_thread_copy_{CalculateBThreadOriginOnBlock_BK0_BN0_BN1_BK1()}
{
static_assert(ABlockDesc_BK0_BM_BK1::IsKnownAtCompileTime() &&
BBlockDesc_BK0_BN_BK1::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
static_assert(BM % BM1 == 0 && BN % BN1 == 0, "wrong!");
static_assert(ABlockDesc_BK0_BM_BK1{}.GetLength(I0) ==
BBlockDesc_BK0_BN_BK1{}.GetLength(I0),
"wrong! K dimension not consistent");
static_assert(BM10BN10ThreadClusterBM10Xs::Size() == 2 &&
BM10BN10ThreadClusterBN10Xs::Size() == 2,
"wrong!");
}
__device__ static CIndex CalculateCThreadOriginOnBlock_BM0_BM1_BN0_BN1(index_t thread_id)
{
// lower: [BM0, BM1, BN0, BN1]
// upper: [BM0, BM100, BM101, BM11, BN0, BN100, BN101, BN11]
constexpr auto adaptor0 =
MakeCBlockAdaptor_BM0_BM100_BM101_BM11_BN0_BN100_BN101_BN11_To_BM0_BM1_BN0_BN1();
// lower: [BM0, BM100, BM101, BM11, BN0, BN100, BN101, BN11]
// upper: [Tid, BM0, BM11, BN0, BN11]
constexpr auto adaptor1 = make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(BM100, BN100, BM101, BN101)),
make_pass_through_transform(BM0),
make_pass_through_transform(BM11),
make_pass_through_transform(BN0),
make_pass_through_transform(BN11)),
make_tuple(
Sequence<1, 5, 2, 6>{}, Sequence<0>{}, Sequence<3>{}, Sequence<4>{}, Sequence<7>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}, Sequence<4>{}));
constexpr auto adaptor = chain_tensor_adaptors(adaptor0, adaptor1);
return adaptor.CalculateBottomIndex(make_multi_index(thread_id, 0, 0, 0, 0));
}
__device__ AIndex CalculateAThreadOriginOnBlock_BK0_BM0_BM1_BK1()
{
const auto offsetBM0 = c_thread_origin_data_idx_[I0];
// If sharing matrix A, we need a separate BM1 offset for each thread in lane group.
const auto offsetBM1 = ShareA ? c_thread_origin_data_idx_[I1] +
dpp8::get_thread_idx_in_lane_group() * BM1PerThread
: c_thread_origin_data_idx_[I1];
return make_tuple(0, offsetBM0, offsetBM1, 0);
}
__device__ BIndex CalculateBThreadOriginOnBlock_BK0_BN0_BN1_BK1()
{
const auto offsetBN0 = c_thread_origin_data_idx_[I2];
// If sharing matrix B, we need a separate BN1 offset for each thread in lane group.
const auto offsetBN1 = ShareB ? c_thread_origin_data_idx_[I3] +
dpp8::get_thread_idx_in_lane_group() * BN1PerThread
: c_thread_origin_data_idx_[I3];
return make_tuple(0, offsetBN0, offsetBN1, 0);
}
template <typename CThreadDesc_BM0_BM11_BN0_BN11,
typename ABlockBuffer,
typename BBlockBuffer,
typename CThreadBuffer>
__device__ void Run(const CThreadDesc_BM0_BM11_BN0_BN11&,
const ABlockBuffer& a_block_buf,
const BBlockBuffer& b_block_buf,
CThreadBuffer& c_thread_buf) const
{
static_assert(CThreadDesc_BM0_BM11_BN0_BN11::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatA>(
a_thread_desc_bk0_bm0_bm1_bk1_.GetElementSpaceSize());
auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatB>(
b_thread_desc_bk0_bn0_bn1_bk1_.GetElementSpaceSize());
constexpr auto threadwise_contraction =
ThreadwiseContractionDlDpp8_A_TK0_TM0_TM1_TK1_B_TK0_TN0_TN1_TK1_C_TM0_TM1_TN0_TN1<
FloatA,
FloatB,
FloatC,
decltype(a_thread_desc_bk0_bm0_bm1_bk1_),
decltype(b_thread_desc_bk0_bn0_bn1_bk1_),
CThreadDesc_BM0_BM11_BN0_BN11,
Sequence<BK0PerThread, BK1>,
Sequence<1, BM1PerThreadBM11>,
Sequence<1, BN1PerThreadBN11>,
ShareA>{};
static_for<0, BN0, 1>{}([&](auto bn0) {
static_for<0, BM0, 1>{}([&](auto bm0) {
a_thread_copy_.Run(a_block_desc_bk0_bm0_bm1_bk1_,
make_tuple(I0, bm0, I0, I0),
a_block_buf,
a_thread_desc_bk0_bm0_bm1_bk1_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
b_thread_copy_.Run(b_block_desc_bk0_bn0_bn1_bk1_,
make_tuple(I0, bn0, I0, I0),
b_block_buf,
b_thread_desc_bk0_bn0_bn1_bk1_,
make_tuple(I0, I0, I0, I0),
b_thread_buf);
threadwise_contraction.Run(a_thread_buf,
make_tuple(I0, I0, I0, I0),
b_thread_buf,
make_tuple(I0, I0, I0, I0),
c_thread_buf,
make_tuple(bm0, I0, bn0, I0));
static_for<BK0PerThread, BK0, BK0PerThread>{}([&](auto bk0) {
a_thread_copy_.Run(a_block_desc_bk0_bm0_bm1_bk1_,
make_tuple(bk0, bm0, I0, I0),
a_block_buf,
a_thread_desc_bk0_bm0_bm1_bk1_,
make_tuple(I0, I0, I0, I0),
a_thread_buf);
b_thread_copy_.Run(b_block_desc_bk0_bn0_bn1_bk1_,
make_tuple(bk0, bn0, I0, I0),
b_block_buf,
b_thread_desc_bk0_bn0_bn1_bk1_,
make_tuple(I0, I0, I0, I0),
b_thread_buf);
threadwise_contraction.Run(a_thread_buf,
make_tuple(I0, I0, I0, I0),
b_thread_buf,
make_tuple(I0, I0, I0, I0),
c_thread_buf,
make_tuple(bm0, I0, bn0, I0));
});
});
});
}
private:
// A[BK0, BM0, BM1, BK1]
static constexpr auto a_thread_desc_bk0_bm0_bm1_bk1_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<BK0PerThread>{}, Number<BM0>{}, Number<BM1PerThread>{}, Number<BK1>{}));
// B[BK0, BN0, BN1, BK1]
static constexpr auto b_thread_desc_bk0_bn0_bn1_bk1_ = make_naive_tensor_descriptor_packed(
make_tuple(Number<BK0PerThread>{}, Number<BN0>{}, Number<BN1PerThread>{}, Number<BK1>{}));
using AThreadCopy = ThreadwiseTensorSliceTransfer_v4r1<
FloatA,
FloatA,
decltype(a_block_desc_bk0_bm0_bm1_bk1_),
decltype(a_thread_desc_bk0_bm0_bm1_bk1_),
Sequence<BK0PerThread, 1, BM1PerThread, BK1>, // SliceLengths
Sequence<0, 1, 2, 3>, // DimAccessOrder
Sequence<1, 1, BM1PerThread, BK1>, // SrcVectorTensorLengths
Sequence<0, 1, 2, 3>>; // SrcVectorTensorContiguousDimOrder
using BThreadCopy = ThreadwiseTensorSliceTransfer_v4r1<
FloatB,
FloatB,
decltype(b_block_desc_bk0_bn0_bn1_bk1_),
decltype(b_thread_desc_bk0_bn0_bn1_bk1_),
Sequence<BK0PerThread, 1, BN1PerThread, BK1>, // SliceLengths
Sequence<0, 1, 2, 3>, // DimAccessOrder
Sequence<1, 1, BN1PerThread, BK1>, // SrcVectorTensorLengths
Sequence<0, 1, 2, 3>>; // SrcVectorTensorContiguousDimOrder
CIndex c_thread_origin_data_idx_;
AThreadCopy a_thread_copy_;
BThreadCopy b_thread_copy_;
};
} // namespace ck
......@@ -11,7 +11,7 @@
namespace ck {
// C[BM0, BM1, BN0, BN1] += transpose(A[K, BM0, BM1]) * B[K, BN0, BN1]
// A and B are visable to the whole block, C is distributed among each thread
// A and B are visible to the whole block, C is distributed among each thread
// Assume:
// 1. A:
// 1. ABlockDesc_BK0_BM_BK1 is known at compile-time
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <index_t NDimSpatial,
typename DOutDataType,
typename DInDataType,
typename DOutLayout,
typename DInLayout>
struct DeviceAvgPoolBwd : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_dout,
void* p_din,
std::vector<ck::index_t> dout_n_k_wos_lengths,
std::vector<ck::index_t> dout_n_k_wos_strides,
std::vector<ck::index_t> din_n_k_wos_length,
std::vector<ck::index_t> din_n_k_wos_strides,
std::vector<ck::index_t> window_k_c_xs_lengths,
std::vector<ck::index_t> window_strides,
std::vector<ck::index_t> window_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -17,6 +17,8 @@ template <index_t InOutRank,
typename InDataType,
typename OutDataType,
typename IndexDataType,
typename InLayout,
typename OutLayout,
ReduceTensorOp ReduceOpId,
bool OutputIndex>
struct DevicePoolFwd : public BaseOperator
......@@ -25,13 +27,14 @@ struct DevicePoolFwd : public BaseOperator
MakeArgumentPointer(const void* p_in_dev,
void* p_out_dev,
void* p_out_indices_dev,
std::vector<ck::index_t> input_lengths,
std::vector<ck::index_t> window_lengths,
std::vector<ck::index_t> output_lengths,
std::vector<ck::index_t> input_stride,
std::vector<ck::index_t> output_stride,
std::vector<ck::index_t> indices_stride,
std::vector<ck::index_t> window_strides,
std::vector<ck::index_t> input_n_c_wis_lengths,
std::vector<ck::index_t> window_xs_lengths,
std::vector<ck::index_t> output_n_c_wos_lengths,
std::vector<ck::index_t> input_n_c_wis_stride,
std::vector<ck::index_t> output_n_c_wis_stride,
std::vector<ck::index_t> indices_n_c_wis_stride,
std::vector<ck::index_t> window_xs_strides,
std::vector<ck::index_t> window_xs_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
std::vector<ck::index_t> pooling_dims) = 0;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "pool_fwd_instance_common.hpp"
#pragma once
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr auto ReduceOpId = ck::ReduceTensorOp::AVG;
void add_device_pool2d_fwd_nhwc_f16_instances(
std::vector<std::unique_ptr<DevicePoolFwd<4, 2, F16, F16, I32, ReduceOpId, false>>>& instances)
enum struct GemmDlAlgorithm
{
add_device_operation_instances(
instances, device_pool2d_fwd_nhwc_instances<F16, F16, I32, F32, ReduceOpId, false>{});
}
Default, // Uses DOT vector instructions
Dpp8, // Uses DOT vector instructions with DPP8 SEL modifier to reduce data loads from LDS
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -123,7 +123,8 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
ALayout,
BLayout,
CLayout,
ADataType, // TODO: distinguish A/B datatype
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
CDataType,
......@@ -284,8 +285,11 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v1<GridwiseGemm, ADataType, CDataType, true>;
const auto kernel = kernel_gemm_xdl_cshuffle_v1<GridwiseGemm,
ADataType,
BDataType,
CDataType,
true>;
ave_time += launch_and_time_kernel(stream_config,
kernel,
......@@ -357,8 +361,11 @@ struct DeviceCGemm_4Gemm_Xdl_CShuffle
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v1<GridwiseGemm, ADataType, CDataType, false>;
const auto kernel = kernel_gemm_xdl_cshuffle_v1<GridwiseGemm,
ADataType,
BDataType,
CDataType,
false>;
ave_time += launch_and_time_kernel(stream_config,
kernel,
......
......@@ -532,11 +532,12 @@ struct DeviceConv2dBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
hipGetErrorString(hipMemset(
hipGetErrorString(hipMemsetAsync(
arg.p_c_grid_,
0,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(CDataType)));
sizeof(CDataType),
stream_config.stream_id_));
ave_time =
launch_and_time_kernel(stream_config,
......
......@@ -11,6 +11,7 @@
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_dl_algorithm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/host_utility/device_prop.hpp"
......@@ -59,6 +60,7 @@ template <
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
GemmDlAlgorithm GemmDlAlg = GemmDlAlgorithm::Default,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
......@@ -236,7 +238,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
CThreadTransferDstScalarPerVector,
GemmDlAlg>;
using AGridDesc_K0_M0_M1_K1 =
decltype(GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_K0_M_K1{}));
......@@ -372,7 +375,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t<CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DefaultBlock2CTileMap>,
true,
true>;
true,
GemmDlAlg>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
......@@ -398,7 +402,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t<CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DefaultBlock2CTileMap>,
true,
false>;
false,
GemmDlAlg>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
......@@ -424,7 +429,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t<CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DefaultBlock2CTileMap>,
false,
true>;
true,
GemmDlAlg>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
......@@ -450,7 +456,8 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
remove_reference_t<CGridDesc_M0_M10_M11_N0_N10_N11>,
remove_reference_t<DefaultBlock2CTileMap>,
false,
false>;
false,
GemmDlAlg>;
ave_time = launch_and_time_kernel(stream_config,
kernel,
......@@ -485,6 +492,16 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
static bool IsSupportedArgument(const Argument& arg)
{
if constexpr(GemmDlAlg == GemmDlAlgorithm::Dpp8)
{
if(ck::get_device_name() == "gfx1030")
{
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.c_grid_desc_m_n_);
}
return false;
}
if(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102")
......@@ -492,10 +509,7 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
return GridwiseGemm::CheckValidity(
arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.c_grid_desc_m_n_);
}
else
{
return false;
}
return false;
}
// polymorphic
......@@ -572,7 +586,7 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
}
// polymorphic
std::string GetTypeString() const override
virtual std::string GetTypeString() const override
{
auto str = std::stringstream();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/device/gemm_dl_algorithm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <
typename ADataType,
typename BDataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<CElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct DeviceGemmDlDpp8 : public DeviceGemmDl<ADataType,
BDataType,
CDataType,
AccDataType,
ALayout,
BLayout,
CLayout,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
GemmDlAlgorithm::Dpp8>
{
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmDlDpp8"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< K1 << ", "
<< M1PerThread << ", "
<< N1PerThread << ", "
<< KPerThread
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -65,7 +65,8 @@ template <typename ALayout,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1>
PipelineVersion PipelineVer = PipelineVersion::v1,
typename ComputeType = CDataType>
struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
BLayout,
CLayout,
......@@ -87,7 +88,8 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
ALayout,
BLayout,
CLayout,
ADataType, // TODO: distinguish A/B datatype
ADataType,
BDataType,
GemmAccDataType,
CShuffleDataType,
CDataType,
......@@ -128,7 +130,8 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
LoopSched,
PipelineVer>;
PipelineVer,
ComputeType>;
using Argument = typename GridwiseGemm::Argument;
......
......@@ -158,8 +158,10 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const auto Run = [&](const auto& kernel) {
if(kbatch > 1)
hipGetErrorString(
hipMemset(karg.p_c_grid, 0, karg.M * karg.N * sizeof(CDataType)));
hipGetErrorString(hipMemsetAsync(karg.p_c_grid,
0,
karg.M * karg.N * sizeof(CDataType),
stream_config.stream_id_));
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, karg, b2c_map);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment