Commit 4885c38a authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'transpose_opt' of https://github.com/ROCm/composable_kernel into rowwise_opt

parents cbf14ee1 7c8e92fa
......@@ -536,13 +536,20 @@ float log(float x) { return __logf(x); };
CK_TILE_HOST
float log(float x) { return std::logf(x); };
CK_TILE_DEVICE uint32_t sad(uint32_t x, uint32_t y, uint32_t acc)
CK_TILE_DEVICE uint16_t sad_u16(uint16_t x, uint16_t y, uint16_t acc)
{
// TODO: this is hacky, we use u16
return __builtin_amdgcn_sad_u16(x, y, acc);
}
CK_TILE_HOST uint32_t sad(uint32_t x, uint32_t y, uint32_t acc)
CK_TILE_DEVICE uint32_t sad_u32(uint32_t x, uint32_t y, uint32_t acc)
{
/// TODO: replace inline asm when intrinsic is available
uint32_t res;
asm volatile("v_sad_u32 %0, %1, %2, %3" : "=v"(res) : "v"(x), "v"(y), "v"(acc));
return res;
}
CK_TILE_HOST uint32_t sad_u32(uint32_t x, uint32_t y, uint32_t acc)
{
return (x > y ? (x - y) : (y - x)) + acc;
}
......
......@@ -214,6 +214,12 @@ struct tile_window_with_static_distribution
CK_TILE_DEVICE constexpr auto get_window_origin() const { return window_origin_; }
CK_TILE_DEVICE constexpr void
set_bottom_tensor_view_data_ptr(typename BottomTensorView::DataType* data)
{
bottom_tensor_view_.buf_.p_data_ = data;
}
// move thread's window adaptor coordinate and bottom tensor coordinate
// [p0, p1, ..., y0, y1, ...] ==> [x0, x1, ...] ==> [x0', x1', ...] ==> [offset]
CK_TILE_DEVICE void move_window_adaptor_and_bottom_tensor_thread_coordinate(
......@@ -393,7 +399,8 @@ struct tile_window_with_static_distribution
bottom_tensor_thread_coord,
bool_constant<oob_conditional_check>{},
pre_nop_);
#if CK_TILE_WORKAROUND_ROCM_6_1_SCRATCH_MEMORY_ISSUE
#if CK_TILE_WORKAROUND_ROCM_6_1_SCRATCH_MEMORY_ISSUE || \
CK_TILE_WORKAROUND_ROCM_6_2_SCRATCH_MEMORY_ISSUE
asm volatile(
""); // this is starting from rocm-6.2, but same sympton, reuse this flag
#endif
......@@ -843,6 +850,17 @@ struct tile_window_with_static_lengths
CK_TILE_DEVICE constexpr auto get_window_origin() const { return window_origin_; }
CK_TILE_DEVICE void set_window_origin(const BottomTensorIndex& new_window_origin)
{
window_origin_ = new_window_origin;
}
CK_TILE_DEVICE constexpr void
set_bottom_tensor_view_data_ptr(typename BottomTensorView::DataType* data)
{
bottom_tensor_view_.buf_.p_data_ = data;
}
// move window-origin
CK_TILE_DEVICE void move(const BottomTensorIndex& step) { window_origin_ += step; }
......@@ -871,6 +889,39 @@ make_tile_window(const TensorView_& tensor_view,
tensor_view, window_lengths, origin};
}
// duplicate tile window and replace its origin
template <typename TensorView, typename WindowLengths>
CK_TILE_DEVICE constexpr auto
make_tile_window(const tile_window_with_static_lengths<TensorView, WindowLengths>& tile_window,
const multi_index<TensorView::get_num_of_dimension()>& origin)
{
return tile_window_with_static_lengths<TensorView, WindowLengths>{
tile_window.get_bottom_tensor_view(), tile_window.get_window_lengths(), origin};
}
template <typename TensorView, typename WindowLengths, typename StaticTileDistribution>
CK_TILE_DEVICE constexpr auto
make_tile_window(const tile_window_with_static_lengths<TensorView, WindowLengths>& tile_window,
const multi_index<TensorView::get_num_of_dimension()>& origin,
const StaticTileDistribution& tile_distribution)
{
return make_tile_window(tile_window.get_bottom_tensor_view(),
tile_window.get_window_lengths(),
origin,
tile_distribution);
}
template <typename TensorView, typename WindowLengths, typename StaticTileDistribution>
CK_TILE_DEVICE constexpr auto
make_tile_window(const tile_window_with_static_lengths<TensorView, WindowLengths>& tile_window,
const StaticTileDistribution& tile_distribution)
{
return make_tile_window(tile_window.get_bottom_tensor_view(),
tile_window.get_window_lengths(),
tile_window.get_window_origin(),
tile_distribution);
}
template <typename TensorView_, typename WindowLengths_>
CK_TILE_DEVICE void move_tile_window(
tile_window_with_static_lengths<TensorView_, WindowLengths_>& window,
......
......@@ -22,6 +22,23 @@ using remove_cvref_t = remove_cv_t<std::remove_reference_t<T>>;
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename From, typename To>
struct copy_const
{
static_assert(!std::is_const_v<From>);
using type = To;
};
template <typename From, typename To>
struct copy_const<const From, To>
{
using type = std::add_const_t<typename copy_const<From, To>::type>;
};
template <typename From, typename To>
using copy_const_t = typename copy_const<From, To>::type;
namespace detail {
template <class Default, class AlwaysVoid, template <class...> class Op, class... Args>
struct detector
......
......@@ -15,6 +15,7 @@
#include "ck_tile/host/reference/reference_batched_elementwise.hpp"
#include "ck_tile/host/reference/reference_batched_gemm.hpp"
#include "ck_tile/host/reference/reference_batched_masking.hpp"
#include "ck_tile/host/reference/reference_batched_rotary_position_embedding.hpp"
#include "ck_tile/host/reference/reference_batched_softmax.hpp"
#include "ck_tile/host/reference/reference_gemm.hpp"
#include "ck_tile/host/reference/reference_im2col.hpp"
......
......@@ -155,7 +155,12 @@ struct HostTensorDescriptor
return space;
}
std::size_t get_length(std::size_t dim) const { return mLens[dim]; }
const std::vector<std::size_t>& get_lengths() const { return mLens; }
std::size_t get_stride(std::size_t dim) const { return mStrides[dim]; }
const std::vector<std::size_t>& get_strides() const { return mStrides; }
template <typename... Is>
......@@ -325,8 +330,12 @@ struct HostTensor
{
}
std::size_t get_length(std::size_t dim) const { return mDesc.get_length(dim); }
decltype(auto) get_lengths() const { return mDesc.get_lengths(); }
std::size_t get_stride(std::size_t dim) const { return mDesc.get_stride(dim); }
decltype(auto) get_strides() const { return mDesc.get_strides(); }
std::size_t get_num_of_dimension() const { return mDesc.get_num_of_dimension(); }
......
......@@ -73,17 +73,17 @@ CK_TILE_HOST float launch_kernel(const stream_config& s, Callables... callables)
{
// clang-format off
if(!s.time_kernel_) {
(callables(s),...); hip_check_error(hipGetLastError());
(callables(s),...); HIP_CHECK_ERROR(hipGetLastError());
return 0;
}
if(s.is_gpu_timer_) {
gpu_timer timer {};
// warmup
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.start(s.stream_id_);
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.stop(s.stream_id_);
return timer.duration() / s.nrepeat_;
......@@ -92,10 +92,10 @@ CK_TILE_HOST float launch_kernel(const stream_config& s, Callables... callables)
cpu_timer timer {};
// warmup
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.cold_niters_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.start(s.stream_id_);
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } hip_check_error(hipGetLastError());
for(int i = 0; i < s.nrepeat_; i++) { (callables(s),...); } HIP_CHECK_ERROR(hipGetLastError());
timer.stop(s.stream_id_);
return timer.duration() / s.nrepeat_;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/host_tensor.hpp"
#include <cassert>
#include <thread>
namespace ck_tile {
template <typename DataType, typename ComputeDataType = float>
CK_TILE_HOST void reference_batched_rotary_position_embedding(const HostTensor<DataType>& input_bsd,
const HostTensor<DataType>& cos_sd,
const HostTensor<DataType>& sin_sd,
bool interleaved,
HostTensor<DataType>& output_bsd,
bool use_1_row_sin_cos = false)
{
assert(cos_sd.get_num_of_dimension() == 2 && sin_sd.get_num_of_dimension() == 2);
assert(cos_sd.get_length(0) == sin_sd.get_length(0) &&
cos_sd.get_length(1) == sin_sd.get_length(1));
const index_t rotary_dim = cos_sd.get_length(1) * 2;
assert(static_cast<std::size_t>(rotary_dim) <= input_bsd.get_length(2));
output_bsd.ForEach([&](auto& self, auto i) {
const index_t i_d = i[2];
if(rotary_dim <= i_d)
{
self(i) = input_bsd(i);
return;
}
assert(i_d < rotary_dim);
const index_t i_s = i[1];
const index_t i_s_cos_sin = (use_1_row_sin_cos ? 0 : i_s);
const ComputeDataType cos = type_convert<ComputeDataType>(
interleaved ? cos_sd(i_s_cos_sin, i_d / 2)
: cos_sd(i_s_cos_sin, i_d % cos_sd.get_length(1)));
const ComputeDataType sin = type_convert<ComputeDataType>(
interleaved ? sin_sd(i_s_cos_sin, i_d / 2)
: sin_sd(i_s_cos_sin, i_d % sin_sd.get_length(1)));
const ComputeDataType half_rotated_input = [&] {
const index_t i_b = i[0];
if(interleaved)
{
const bool is_even = (i_d % 2 == 0);
const index_t pos = i_d + (is_even ? 1 : -1);
const ComputeDataType sign = (is_even ? -1 : 1);
return sign * type_convert<ComputeDataType>(input_bsd(i_b, i_s, pos));
}
else
{
const index_t half_rdim = (rotary_dim / 2);
const index_t pos = (i_d + half_rdim) % rotary_dim;
const ComputeDataType sign = (pos < half_rdim ? 1 : -1);
return sign * type_convert<ComputeDataType>(input_bsd(i_b, i_s, pos));
}
}();
ComputeDataType result =
type_convert<ComputeDataType>(input_bsd(i)) * cos + half_rotated_input * sin;
self(i) = type_convert<DataType>(result);
});
}
} // namespace ck_tile
......@@ -7,7 +7,11 @@
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/fmha/block/block_masking.hpp"
#include "ck_tile/ops/fmha/block/block_position_encoding.hpp"
#include "ck_tile/ops/fmha/block/block_rotary_embedding.hpp"
#include "ck_tile/ops/fmha/block/page_block_navigator.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_bwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_appendkv_tile_partitioner.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_kernel.hpp"
#include "ck_tile/ops/fmha/kernel/fmha_fwd_splitkv_combine_tile_partitioner.hpp"
......@@ -21,11 +25,11 @@
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_bwd_pipeline_problem.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_appendkv_pipeline.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_appendkv_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_async.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_problem.hpp"
......
......@@ -43,9 +43,12 @@ enum struct AlibiMode
FROM_BOTTOM_RIGHT = 2,
};
template <typename DataType, bool RowMajor = true>
template <typename DataType, bool RowMajor = true, unsigned LogMaxSadOprndSize = 16>
struct Alibi
{
static_assert(1 <= LogMaxSadOprndSize && LogMaxSadOprndSize <= 32,
"for LogMaxSadOprndSize <= 16, we use SAD uint16_t, otherwise, use SAD uint32_t");
// RowMajor here means if pixel within the same thread are along the row, or col
// this may impact the performance of update(), while the result are the same.
// e.g. fwd prefer use RowMajor=true, bwd some cases prefer use RowMajor=false
......@@ -79,6 +82,19 @@ struct Alibi
mode = mode_;
}
CK_TILE_HOST uint32_t sad(uint32_t x, uint32_t y, uint32_t acc) { return sad_u32(x, y, acc); }
CK_TILE_DEVICE uint32_t sad(uint32_t x, uint32_t y, uint32_t acc)
{
if constexpr(LogMaxSadOprndSize <= 16)
{
return sad_u16(
static_cast<uint16_t>(x), static_cast<uint16_t>(y), static_cast<uint16_t>(acc));
}
return sad_u32(x, y, acc);
}
CK_TILE_HOST_DEVICE void update(DataType& pixel, index_t row_idx, index_t col_idx)
{
if constexpr(RowMajor)
......@@ -128,7 +144,7 @@ struct EmptyPositionEncoding
// can convert from the FA style left/right to our generic coordinate
// if left_size < 0 && right_size = 0, it is normal causal mask
// local is left_size >=0 or right_size >=0
template <typename DataType, bool RowMajor = true>
template <typename DataType, bool RowMajor = true, unsigned LogMaxSadOprndSize = 16>
CK_TILE_HOST_DEVICE auto make_alibi_from_lr_mask(DataType slope,
index_t window_left_size,
index_t window_right_size,
......@@ -142,7 +158,7 @@ CK_TILE_HOST_DEVICE auto make_alibi_from_lr_mask(DataType slope,
AlibiMode alibi_mode =
is_causal ? AlibiMode::VERTICAL
: static_cast<AlibiMode>(mask_enum) /*either top-left or bottom-right*/;
return Alibi<DataType, RowMajor>{slope, y_total, x_total, alibi_mode};
return Alibi<DataType, RowMajor, LogMaxSadOprndSize>{slope, y_total, x_total, alibi_mode};
}
// https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <string>
namespace ck_tile {
// This class is used for codegen pattern matching
enum class RotaryEmbeddingEnum
{
NONE = 0,
INTERLEAVED = 1, // combine dimensions 0 & 1, 2 & 3, etc
HALF_ROTATED = 2, // combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1, etc
};
template <RotaryEmbeddingEnum>
struct RotaryEmbeddingEnumToStr;
template <>
struct RotaryEmbeddingEnumToStr<RotaryEmbeddingEnum::NONE>
{
static constexpr const char* name = "";
};
template <>
struct RotaryEmbeddingEnumToStr<RotaryEmbeddingEnum::INTERLEAVED>
{
static constexpr const char* name = "inter";
};
template <>
struct RotaryEmbeddingEnumToStr<RotaryEmbeddingEnum::HALF_ROTATED>
{
static constexpr const char* name = "half";
};
template <RotaryEmbeddingEnum RotaryEnum, typename ComputeDataType = float>
struct BlockRotaryEmbedding
{
template <typename DistributedTensor,
typename OtherDramBlockWindow,
typename RotaryCosDramBlockWindow,
typename RotarySinDramBlockWindow>
CK_TILE_HOST_DEVICE static void apply(DistributedTensor& tile,
OtherDramBlockWindow other_window,
RotaryCosDramBlockWindow rotary_cos_window,
RotarySinDramBlockWindow rotary_sin_window,
index_t rotary_dim,
index_t thread_end)
{
using DataType = typename remove_cvref_t<DistributedTensor>::DataType;
if constexpr(RotaryEnum == RotaryEmbeddingEnum::INTERLEAVED)
{
auto rotary_cos_tile = load_tile(rotary_cos_window);
auto rotary_sin_tile = load_tile(rotary_sin_window);
if(thread_end <= rotary_dim)
{
constexpr index_t thread_buffer_size = decltype(tile.thread_buf_)::size();
static_for<0, thread_buffer_size, 2>{}([&](auto idx) {
const auto left = type_convert<ComputeDataType>(tile.thread_buf_[idx]);
const auto right = type_convert<ComputeDataType>(tile.thread_buf_[idx + 1]);
const auto cos =
type_convert<ComputeDataType>(rotary_cos_tile.thread_buf_[idx / 2]);
const auto sin =
type_convert<ComputeDataType>(rotary_sin_tile.thread_buf_[idx / 2]);
tile.thread_buf_[idx] = type_convert<DataType>(left * cos - right * sin);
tile.thread_buf_[idx + 1] = type_convert<DataType>(right * cos + left * sin);
});
}
}
else if constexpr(RotaryEnum == RotaryEmbeddingEnum::HALF_ROTATED)
{
if(thread_end <= rotary_dim)
{
const bool is_left = (thread_end <= (rotary_dim / 2));
move_tile_window(other_window, {0, is_left ? rotary_dim / 2 : -(rotary_dim / 2)});
auto other_tile = load_tile(other_window);
move_tile_window(rotary_cos_window, {0, is_left ? 0 : -(rotary_dim / 2)});
auto rotary_cos_tile = load_tile(rotary_cos_window);
move_tile_window(rotary_sin_window, {0, is_left ? 0 : -(rotary_dim / 2)});
auto rotary_sin_tile = load_tile(rotary_sin_window);
constexpr index_t thread_buffer_size = decltype(tile.thread_buf_)::size();
static_for<0, thread_buffer_size, 1>{}([&](auto idx) {
const auto curr = type_convert<ComputeDataType>(tile.thread_buf_[idx]);
const auto other = type_convert<ComputeDataType>(other_tile.thread_buf_[idx]);
const auto cos =
type_convert<ComputeDataType>(rotary_cos_tile.thread_buf_[idx]);
const auto sin =
type_convert<ComputeDataType>(rotary_sin_tile.thread_buf_[idx]);
tile.thread_buf_[idx] =
type_convert<DataType>(curr * cos + other * (is_left ? -sin : sin));
});
}
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/core/tensor/tile_window.hpp"
namespace ck_tile {
// assume that we have only 1 page-block/tensor view
template <typename TensorView>
struct TrivialPageBlockNavigator
{
using DataType = typename TensorView::DataType;
using WindowOrigin = multi_index<2>;
CK_TILE_HOST_DEVICE constexpr TrivialPageBlockNavigator(const TensorView& tensor_view_)
: tensor_view(tensor_view_)
{
}
template <typename WindowLengths>
CK_TILE_HOST_DEVICE constexpr auto make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin) const
{
return make_tuple(/*block_index=*/0,
ck_tile::make_tile_window(tensor_view, window_lengths, window_origin));
}
template <typename WindowLengths, typename TileDistribution>
CK_TILE_HOST_DEVICE constexpr auto
make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin,
const TileDistribution& tile_distribution) const
{
return make_tuple(
/*block_index=*/0,
ck_tile::make_tile_window(
tensor_view, window_lengths, window_origin, tile_distribution));
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE static index_t
move_tile_window(index_t /*block_index*/,
TileWindow& tile_window,
const typename remove_cvref_t<TileWindow>::BottomTensorIndex& step)
{
ck_tile::move_tile_window(tile_window, step);
return /*block_index=*/0;
}
CK_TILE_HOST_DEVICE static constexpr WindowOrigin
to_local_window_origin(const WindowOrigin& global_window_origin)
{
return global_window_origin;
}
CK_TILE_HOST_DEVICE static constexpr WindowOrigin
to_global_window_origin(index_t /*block_index*/, const WindowOrigin& local_window_origin)
{
return local_window_origin;
}
private:
TensorView tensor_view;
};
// default page-block navigator, assume that tensor view size is same as page-block size or smaller
// if tile window on last page-block
template <typename DataType_, index_t VirtualDim, typename TensorView>
struct PageBlockNavigator
{
using DataType = DataType_;
static_assert(std::is_same_v<DataType, typename TensorView::DataType>);
static_assert(VirtualDim == 0 || VirtualDim == 1, "only support 2d tile window");
using WindowOrigin = multi_index<2>;
CK_TILE_HOST_DEVICE constexpr PageBlockNavigator(copy_const_t<DataType, void>* physical_blocks_,
long_index_t block_stride_,
long_index_t fixed_offset_,
const int32_t* physical_block_indices_,
index_t num_blocks_,
index_t page_block_size_,
const TensorView& complete_view_,
const TensorView& last_view_)
: physical_blocks(reinterpret_cast<DataType*>(physical_blocks_)),
block_stride(block_stride_),
fixed_offset(fixed_offset_),
physical_block_indices(physical_block_indices_),
num_blocks(num_blocks_),
page_block_size(page_block_size_),
complete_view(complete_view_),
last_view(last_view_)
{
}
template <typename WindowLengths>
CK_TILE_HOST_DEVICE auto make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin) const
{
const index_t block_index = get_block_index(window_origin);
const WindowOrigin local_window_origin = to_local_window_origin(window_origin);
auto new_tile_window =
ck_tile::make_tile_window(is_last_block(block_index) ? last_view : complete_view,
window_lengths,
local_window_origin);
new_tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(block_index));
return make_tuple(block_index, new_tile_window);
}
template <typename WindowLengths, typename TileDistribution>
CK_TILE_HOST_DEVICE auto make_tile_window(const WindowLengths& window_lengths,
const WindowOrigin& window_origin,
const TileDistribution& tile_distribution) const
{
const index_t block_index = get_block_index(window_origin);
const WindowOrigin local_window_origin = to_local_window_origin(window_origin);
auto new_tile_window =
ck_tile::make_tile_window(is_last_block(block_index) ? last_view : complete_view,
window_lengths,
local_window_origin,
tile_distribution);
new_tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(block_index));
return make_tuple(block_index, new_tile_window);
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE index_t
move_tile_window(index_t block_index,
TileWindow& tile_window,
const typename remove_cvref_t<TileWindow>::BottomTensorIndex& step) const
{
ck_tile::move_tile_window(tile_window, step);
const WindowOrigin global_window_origin =
to_global_window_origin(block_index, tile_window.get_window_origin());
const WindowOrigin local_window_origin = to_local_window_origin(global_window_origin);
const index_t new_block_index = get_block_index(global_window_origin);
/// TODO: only update necessary attributes
tile_window.bottom_tensor_view_.desc_ =
(is_last_block(new_block_index) ? last_view : complete_view).get_tensor_descriptor();
tile_window.set_window_origin(local_window_origin);
tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(new_block_index));
return new_block_index;
}
CK_TILE_HOST_DEVICE bool is_last_block(index_t block_index) const
{
return block_index == num_blocks - 1;
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE bool is_cross_block(index_t block_index,
const TileWindow& tile_window) const
{
const index_t origin = tile_window.get_window_origin().at(number<VirtualDim>{});
const index_t length = tile_window.get_window_lengths().at(number<VirtualDim>{});
return (block_index < num_blocks - 1) && (page_block_size < origin + length);
}
template <typename TileWindow>
CK_TILE_HOST_DEVICE void
move_to_block(index_t block_index, TileWindow& tile_window, index_t new_block_index) const
{
const multi_index<2> step = [&]() {
const index_t origin_diff = (block_index - new_block_index) * page_block_size;
if constexpr(VirtualDim == 0)
{
return make_multi_index(origin_diff, 0);
}
else
{
return make_multi_index(0, origin_diff);
}
}();
/// TODO: only update necessary attributes
tile_window.bottom_tensor_view_.desc_ =
(is_last_block(new_block_index) ? last_view : complete_view).get_tensor_descriptor();
tile_window.set_window_origin(tile_window.get_window_origin() + step);
tile_window.set_bottom_tensor_view_data_ptr(get_block_ptr(new_block_index));
}
CK_TILE_HOST_DEVICE WindowOrigin
to_local_window_origin(const WindowOrigin& global_window_origin) const
{
if constexpr(VirtualDim == 0)
{
const index_t length = global_window_origin.at(number<0>{});
const index_t num_complete_blocks = integer_divide_floor(length, page_block_size);
return make_multi_index(length - page_block_size * num_complete_blocks,
global_window_origin.at(number<1>{}));
}
else
{
const index_t length = global_window_origin.at(number<1>{});
const index_t num_complete_blocks = integer_divide_floor(length, page_block_size);
return make_multi_index(global_window_origin.at(number<0>{}),
length - page_block_size * num_complete_blocks);
}
}
CK_TILE_HOST_DEVICE WindowOrigin
to_global_window_origin(index_t block_index, const WindowOrigin& local_window_origin) const
{
if constexpr(VirtualDim == 0)
{
return make_multi_index(block_index * page_block_size +
local_window_origin.at(number<0>{}),
local_window_origin.at(number<1>{}));
}
else
{
return make_multi_index(local_window_origin.at(number<0>{}),
block_index * page_block_size +
local_window_origin.at(number<1>{}));
}
}
private:
CK_TILE_HOST_DEVICE
DataType* get_block_ptr(index_t block_index) const
{
return physical_blocks + physical_block_indices[block_index] * block_stride + fixed_offset;
}
CK_TILE_HOST_DEVICE int32_t get_block_index(const WindowOrigin& global_window_origin) const
{
return integer_divide_floor(global_window_origin.at(number<VirtualDim>{}), page_block_size);
}
DataType* physical_blocks;
long_index_t block_stride;
long_index_t fixed_offset;
const int32_t* physical_block_indices;
index_t num_blocks;
index_t page_block_size;
TensorView complete_view;
TensorView last_view;
};
template <typename TensorView>
CK_TILE_HOST_DEVICE auto make_page_block_navigator(const TensorView& tensor_view)
{
return TrivialPageBlockNavigator<TensorView>(tensor_view);
}
template <typename DataType, index_t VirtualDim, typename TensorView>
CK_TILE_HOST_DEVICE auto make_page_block_navigator(copy_const_t<DataType, void>* physical_blocks,
long_index_t block_stride,
long_index_t fixed_offset,
const int32_t* physical_block_indices,
index_t num_blocks,
index_t page_block_size,
const TensorView& complete_view,
const TensorView& last_view)
{
return PageBlockNavigator<DataType, VirtualDim, TensorView>(physical_blocks,
block_stride,
fixed_offset,
physical_block_indices,
num_blocks,
page_block_size,
complete_view,
last_view);
}
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common.hpp"
#include <string>
#include <type_traits>
namespace ck_tile {
template <typename TilePartitioner_, typename FmhaPipeline_>
struct FmhaFwdAppendKVKernel
{
using TilePartitioner = ck_tile::remove_cvref_t<TilePartitioner_>;
using FmhaPipeline = ck_tile::remove_cvref_t<FmhaPipeline_>;
static constexpr ck_tile::index_t kBlockSize = FmhaPipeline::kBlockSize;
static constexpr ck_tile::index_t kBlockPerCu = FmhaPipeline::kBlockPerCu;
static_assert(kBlockPerCu > 0);
static constexpr ck_tile::index_t kBlockPerCuInput = FmhaPipeline::Problem::kBlockPerCu;
using QDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::QDataType>;
using KDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::KDataType>;
using VDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::VDataType>;
using VLayout = ck_tile::remove_cvref_t<typename FmhaPipeline::VLayout>;
static constexpr bool kApplyRoPE = FmhaPipeline::RotaryEnum != RotaryEmbeddingEnum::NONE;
static constexpr bool kIsPagedKV = FmhaPipeline::kIsPagedKV;
static constexpr bool kPadSeqLenQ = FmhaPipeline::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = FmhaPipeline::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = FmhaPipeline::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
// clang-format off
template <typename T> struct t2s;
template <> struct t2s<float> { static constexpr const char * name = "fp32"; };
template <> struct t2s<ck_tile::fp16_t> { static constexpr const char * name = "fp16"; };
template <> struct t2s<ck_tile::bf16_t> { static constexpr const char * name = "bf16"; };
template <> struct t2s<ck_tile::fp8_t> { static constexpr const char * name = "fp8"; };
template <> struct t2s<ck_tile::bf8_t> { static constexpr const char * name = "bf8"; };
// clang-format on
__host__ static std::string GetName()
{
// sync with generate.py
// clang-format off
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
std::string n;
if (kPadSeqLenQ) n += "s";
if (kPadSeqLenK) n += "sk";
if (kPadHeadDimQ) n += "d";
if (kPadHeadDimV) n += "dv";
return n.empty() ? n : std::string("p") + n; }();
return
_SS_("fmha_fwd_appendkv_d") + _TS_(FmhaPipeline::kK0) + "_" + _SS_(t2s<QDataType>::name) + "_"
"b" + _TS_(FmhaPipeline::kM0) + "x" + _TS_(FmhaPipeline::kN0) + "x" + _TS_(FmhaPipeline::kK0) + "x" +
_TS_(FmhaPipeline::kN1) + "_" + (kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn)
+ (!kApplyRoPE ? _SS_("") : (_SS_("_") + RotaryEmbeddingEnumToStr<FmhaPipeline::RotaryEnum>::name))
+ (kIsPagedKV ? "_pagedkv" : "" );
#undef _SS_
#undef _TS_
// clang-format on
}
template <ck_tile::index_t I> // to avoid duplicated base class prblem, introduce an template
// arg
struct EmptyKargs
{
};
// kargs use aggregate initializer, so no constructor will provided
// use inheritance to minimize karg size
// user need to use MakeKargs() function to create kargs.
struct BasicKargs
{
void* q_ptr;
void* k_ptr;
const void* knew_ptr;
void* v_ptr;
const void* vnew_ptr;
const int32_t* seqlen_k_ptr;
ck_tile::index_t seqlen_q;
ck_tile::index_t seqlen_k;
ck_tile::index_t seqlen_knew;
ck_tile::index_t hdim_q;
ck_tile::index_t hdim_v;
ck_tile::index_t num_head_q;
// for MQA/GQA, nhead could be different. This parameter is nhead_q / nhead_k
// if this param is larger than 1, indicate MQA/GQA case
ck_tile::index_t nhead_ratio_qk;
ck_tile::index_t stride_q;
ck_tile::index_t stride_k;
ck_tile::index_t stride_knew;
ck_tile::index_t stride_v;
ck_tile::index_t stride_vnew;
ck_tile::index_t nhead_stride_q;
ck_tile::index_t nhead_stride_k;
ck_tile::index_t nhead_stride_knew;
ck_tile::index_t nhead_stride_v;
ck_tile::index_t nhead_stride_vnew;
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_knew;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_vnew;
};
struct RoPEKargs
{
const void* rotary_cos_ptr;
const void* rotary_sin_ptr;
ck_tile::index_t rotary_dim;
bool has_mask;
};
struct PageBlockTableKargs
{
const int32_t* block_table_ptr;
ck_tile::index_t batch_stride_block_table;
ck_tile::index_t page_block_size;
};
struct CacheBatchIdxKargs
{
const int32_t* cache_batch_idx;
};
struct Kargs : BasicKargs,
std::conditional_t<kApplyRoPE, RoPEKargs, EmptyKargs<0>>,
std::conditional_t<kIsPagedKV, PageBlockTableKargs, CacheBatchIdxKargs>
{
};
__host__ static constexpr Kargs MakeKargs(void* q_ptr,
void* k_ptr,
const void* knew_ptr,
void* v_ptr,
const void* vnew_ptr,
ck_tile::index_t seqlen_q,
const void* seqlen_k_ptr,
ck_tile::index_t seqlen_knew,
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
const void* rotary_cos_ptr,
const void* rotary_sin_ptr,
ck_tile::index_t rotary_dim,
bool has_mask,
const void* block_table_ptr,
ck_tile::index_t batch_stride_block_table,
ck_tile::index_t page_block_size,
const void* cache_batch_idx,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_knew,
ck_tile::index_t stride_v,
ck_tile::index_t stride_vnew,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_knew,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_vnew,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_knew,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_vnew)
{
Kargs kargs{
{q_ptr,
k_ptr,
knew_ptr,
v_ptr,
vnew_ptr,
reinterpret_cast<const int32_t*>(seqlen_k_ptr),
seqlen_q,
-1, // seqlen_k will be updated by content of seqlen_k_ptr
seqlen_knew,
hdim_q,
hdim_v,
num_head_q,
nhead_ratio_qk,
stride_q,
stride_k,
stride_knew,
stride_v,
stride_vnew,
nhead_stride_q,
nhead_stride_k,
nhead_stride_knew,
nhead_stride_v,
nhead_stride_vnew,
batch_stride_q,
batch_stride_k,
batch_stride_knew,
batch_stride_v,
batch_stride_vnew}, // args for common karg
{}, // placeholder for rope
{} // placeholder for paged-block table or cache_batch_idx
};
if constexpr(kApplyRoPE)
{
kargs.rotary_cos_ptr = rotary_cos_ptr;
kargs.rotary_sin_ptr = rotary_sin_ptr;
kargs.rotary_dim = rotary_dim;
kargs.has_mask = has_mask;
}
if constexpr(kIsPagedKV)
{
kargs.block_table_ptr = reinterpret_cast<const int32_t*>(block_table_ptr);
kargs.batch_stride_block_table = batch_stride_block_table;
kargs.page_block_size = page_block_size;
}
else
{
kargs.cache_batch_idx = reinterpret_cast<const int32_t*>(cache_batch_idx);
}
return kargs;
}
__host__ static constexpr auto GridSize(ck_tile::index_t batch_size,
ck_tile::index_t nhead,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_knew)
{
return TilePartitioner::GridSize(batch_size, nhead, seqlen_q, seqlen_knew);
}
__host__ static constexpr auto BlockSize() { return dim3(kBlockSize); }
CK_TILE_DEVICE void operator()(Kargs kargs) const
{
// divide problem
const auto [i_tile, i_nhead, i_batch] = TilePartitioner{}();
const index_t i_m0 = __builtin_amdgcn_readfirstlane(i_tile * FmhaPipeline::kM0);
const index_t i_n0 = __builtin_amdgcn_readfirstlane(i_tile * FmhaPipeline::kN0);
const index_t i_cache_batch = [&, i_batch_ = i_batch] {
if constexpr(kIsPagedKV)
{
return i_batch_;
}
else
{
return (kargs.cache_batch_idx != nullptr ? kargs.cache_batch_idx[i_batch_]
: i_batch_);
}
}();
const long_index_t batch_offset_q =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_q;
const long_index_t batch_offset_k =
static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_k;
const long_index_t batch_offset_knew =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_knew;
const long_index_t batch_offset_v =
static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_v;
const long_index_t batch_offset_vnew =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_vnew;
kargs.seqlen_k = kargs.seqlen_k_ptr[i_batch];
// for simplicity, batch stride we just modify the pointer
QDataType* q_ptr = reinterpret_cast<QDataType*>(kargs.q_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_q +
batch_offset_q;
KDataType* k_ptr =
reinterpret_cast<KDataType*>(kargs.k_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_k +
batch_offset_k;
const KDataType* knew_ptr =
reinterpret_cast<const KDataType*>(kargs.knew_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_knew +
batch_offset_knew;
VDataType* v_ptr =
reinterpret_cast<VDataType*>(kargs.v_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_v +
batch_offset_v;
const VDataType* vnew_ptr =
reinterpret_cast<const VDataType*>(kargs.vnew_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_vnew +
batch_offset_vnew;
// Q/K/V DRAM and DRAM window
const auto q_dram = [&]() {
const auto q_dram_naive = make_naive_tensor_view<address_space_enum::global>(
q_ptr,
make_tuple(kargs.seqlen_q, kargs.hdim_q),
make_tuple(kargs.stride_q, 1),
number<FmhaPipeline::kAlignmentQ>{},
number<1>{});
return pad_tensor_view(
q_dram_naive,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
const auto make_k_dram = [&](KDataType* data, index_t height) {
const auto k_dram_naive = make_naive_tensor_view<address_space_enum::global>(
data, // will update this pointer if using paged-kvcache
make_tuple(height, kargs.hdim_q),
make_tuple(kargs.stride_k, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
return pad_tensor_view(
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
};
const auto k_dram = [&]() {
if constexpr(kIsPagedKV)
{
return make_k_dram(nullptr, kargs.page_block_size);
}
else
{
return make_k_dram(k_ptr, kargs.seqlen_k + kargs.seqlen_knew);
}
}();
const auto knew_dram = [&]() {
const auto knew_dram_naive = make_naive_tensor_view<address_space_enum::global>(
knew_ptr,
make_tuple(kargs.seqlen_knew, kargs.hdim_q),
make_tuple(kargs.stride_knew, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
return pad_tensor_view(
knew_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
const auto make_v_dram = [&](VDataType* data, index_t length) {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
data, // will update this pointer if using paged-kvcache
make_tuple(length, kargs.hdim_v),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
const auto v_dram_transposed =
transform_tensor_view(v_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(length)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return pad_tensor_view(
v_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
else
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
data, // will update this pointer if using paged-kvcache
make_tuple(kargs.hdim_v, length),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
return pad_tensor_view(
v_dram_naive,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
};
const auto v_dram = [&]() {
if constexpr(kIsPagedKV)
{
return make_v_dram(nullptr, kargs.page_block_size);
}
else
{
return make_v_dram(v_ptr, kargs.seqlen_k + kargs.seqlen_knew);
}
}();
const auto vnew_dram = [&]() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
const auto vnew_dram_naive = make_naive_tensor_view<address_space_enum::global>(
vnew_ptr,
make_tuple(kargs.seqlen_knew, kargs.hdim_v),
make_tuple(kargs.stride_vnew, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
const auto vnew_dram_transposed = transform_tensor_view(
vnew_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(kargs.seqlen_knew)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return pad_tensor_view(
vnew_dram_transposed,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
else
{
const auto vnew_dram_naive = make_naive_tensor_view<address_space_enum::global>(
vnew_ptr,
make_tuple(kargs.hdim_v, kargs.seqlen_knew),
make_tuple(kargs.stride_vnew, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
return pad_tensor_view(
vnew_dram_naive,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
}();
constexpr auto q_rotary_cos_sin_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0 / 2>{});
const auto q_rotary_cos_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_cos_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const QDataType*>(kargs.rotary_cos_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_q, kargs.rotary_dim / 2),
make_tuple(kargs.has_mask * (kargs.rotary_dim / 2), 1),
number<8>{},
number<1>{});
const auto rotary_cos_dram = [&]() {
return pad_tensor_view(rotary_cos_dram_native,
q_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_cos_dram, q_rotary_cos_sin_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(q_rotary_cos_sin_dram_window_lengths);
}
}();
const auto q_rotary_sin_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_sin_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const QDataType*>(kargs.rotary_sin_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_q, kargs.rotary_dim / 2),
make_tuple(kargs.has_mask * (kargs.rotary_dim / 2), 1),
number<8>{},
number<1>{});
const auto rotary_sin_dram = [&]() {
return pad_tensor_view(rotary_sin_dram_native,
q_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_sin_dram, q_rotary_cos_sin_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(q_rotary_cos_sin_dram_window_lengths);
}
}();
constexpr auto knew_rotary_cos_sin_dram_window_lengths =
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0 / 2>{});
const auto knew_rotary_cos_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_cos_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const KDataType*>(kargs.rotary_cos_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_knew, kargs.rotary_dim / 2),
make_tuple(kargs.rotary_dim / 2, 1),
number<8>{},
number<1>{});
const auto rotary_cos_dram = [&]() {
return pad_tensor_view(rotary_cos_dram_native,
knew_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_cos_dram, knew_rotary_cos_sin_dram_window_lengths, {i_n0, 0});
}
else
{
return make_null_tile_window(knew_rotary_cos_sin_dram_window_lengths);
}
}();
const auto knew_rotary_sin_dram_window = [&]() {
if constexpr(kApplyRoPE)
{
const auto rotary_sin_dram_native =
make_naive_tensor_view<address_space_enum::global>(
reinterpret_cast<const KDataType*>(kargs.rotary_sin_ptr) +
kargs.seqlen_k * (kargs.rotary_dim / 2),
make_tuple(kargs.seqlen_knew, kargs.rotary_dim / 2),
make_tuple(kargs.rotary_dim / 2, 1),
number<8>{},
number<1>{});
const auto rotary_sin_dram = [&]() {
return pad_tensor_view(rotary_sin_dram_native,
knew_rotary_cos_sin_dram_window_lengths,
sequence<kPadSeqLenK, kPadHeadDimQ>{});
}();
return make_tile_window(
rotary_sin_dram, knew_rotary_cos_sin_dram_window_lengths, {i_n0, 0});
}
else
{
return make_null_tile_window(knew_rotary_cos_sin_dram_window_lengths);
}
}();
auto k_page_block_navigator = [&, i_batch_ = i_batch, i_nhead_ = i_nhead]() {
if constexpr(kIsPagedKV)
{
const auto* block_indices =
reinterpret_cast<const int32_t*>(kargs.block_table_ptr) +
i_batch_ * kargs.batch_stride_block_table;
const index_t num_blocks =
integer_divide_ceil(kargs.seqlen_k + kargs.seqlen_knew, kargs.page_block_size);
const long_index_t fixed_offset =
static_cast<long_index_t>(i_nhead_ / kargs.nhead_ratio_qk) *
kargs.nhead_stride_k;
return make_page_block_navigator<KDataType, 0>(
kargs.k_ptr,
kargs.batch_stride_k,
fixed_offset,
block_indices,
num_blocks,
kargs.page_block_size,
k_dram,
make_k_dram(nullptr,
(kargs.seqlen_k + kargs.seqlen_knew) -
(num_blocks - 1) * kargs.page_block_size));
}
else
{
return make_page_block_navigator(k_dram);
}
}();
auto v_page_block_navigator = [&, i_batch_ = i_batch, i_nhead_ = i_nhead]() {
if constexpr(kIsPagedKV)
{
const auto* block_indices =
reinterpret_cast<const int32_t*>(kargs.block_table_ptr) +
i_batch_ * kargs.batch_stride_block_table;
const index_t num_blocks =
integer_divide_ceil(kargs.seqlen_k + kargs.seqlen_knew, kargs.page_block_size);
const long_index_t fixed_offset =
static_cast<long_index_t>(i_nhead_ / kargs.nhead_ratio_qk) *
kargs.nhead_stride_v;
return make_page_block_navigator<VDataType, 1>(
kargs.v_ptr,
kargs.batch_stride_v,
fixed_offset,
block_indices,
num_blocks,
kargs.page_block_size,
v_dram,
make_v_dram(nullptr,
(kargs.seqlen_k + kargs.seqlen_knew) -
(num_blocks - 1) * kargs.page_block_size));
}
else
{
return make_page_block_navigator(v_dram);
}
}();
auto q_dram_window =
make_tile_window(q_dram,
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kK0>{}),
{i_m0, 0});
const bool skip_append_kv = kargs.seqlen_knew <= i_n0;
// window origin = (0, 0) if no work to do for current block
auto [i_page_block_k, k_dram_window] = k_page_block_navigator.make_tile_window(
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
{!skip_append_kv * (kargs.seqlen_k + i_n0), 0});
auto knew_dram_window =
make_tile_window(knew_dram,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
{i_n0, 0});
// window origin = (0, 0) if no work to do for current block
auto [i_page_block_v, v_dram_window] = v_page_block_navigator.make_tile_window(
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
{0, !skip_append_kv * (kargs.seqlen_k + i_n0)});
auto vnew_dram_window =
make_tile_window(vnew_dram,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kN0>{}),
{0, i_n0});
if constexpr(kApplyRoPE)
{
FmhaPipeline{}(q_dram_window,
k_dram_window,
i_page_block_k,
k_page_block_navigator,
knew_dram_window,
v_dram_window,
i_page_block_v,
v_page_block_navigator,
vnew_dram_window,
q_rotary_cos_dram_window,
q_rotary_sin_dram_window,
knew_rotary_cos_dram_window,
knew_rotary_sin_dram_window,
kargs.rotary_dim,
kargs.seqlen_q <= i_m0,
skip_append_kv);
}
else
{
FmhaPipeline{}(q_dram_window,
k_dram_window,
i_page_block_k,
k_page_block_navigator,
knew_dram_window,
v_dram_window,
i_page_block_v,
v_page_block_navigator,
vnew_dram_window,
q_rotary_cos_dram_window,
q_rotary_sin_dram_window,
knew_rotary_cos_dram_window,
knew_rotary_sin_dram_window,
0, // rotary_dim not used
kargs.seqlen_q <= i_m0,
skip_append_kv);
}
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
template <index_t kM0_, index_t kN0_, index_t kK0_, index_t kN1_>
struct FmhaFwdAppendKVTilePartitioner
{
static constexpr ck_tile::index_t kM0 = kM0_;
static constexpr ck_tile::index_t kN0 = kN0_;
static constexpr ck_tile::index_t kK0 = kK0_;
static constexpr ck_tile::index_t kN1 = kN1_;
static_assert(kK0 == kN1);
CK_TILE_HOST static constexpr auto GridSize(ck_tile::index_t batch_size,
ck_tile::index_t nhead,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_knew)
{
// TODO: this may need tuning
return dim3(std::max(ck_tile::integer_divide_ceil(seqlen_q, kM0),
ck_tile::integer_divide_ceil(seqlen_knew, kN0)),
nhead,
batch_size);
}
CK_TILE_DEVICE auto operator()()
{
const index_t i_tile = blockIdx.x;
const index_t i_nhead = blockIdx.y;
const index_t i_batch = blockIdx.z;
return ck_tile::make_tuple(i_tile, i_nhead, i_batch);
}
};
} // namespace ck_tile
......@@ -32,8 +32,6 @@ struct FmhaFwdSplitKVKernel
using KDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::KDataType>;
using VDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::VDataType>;
using BiasDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::BiasDataType>;
using RandValOutputDataType =
ck_tile::remove_cvref_t<typename FmhaPipeline::RandValOutputDataType>;
using LSEDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::LSEDataType>;
using SaccDataType = ck_tile::remove_cvref_t<typename FmhaPipeline::SaccDataType>;
using OaccDataType = remove_cvref_t<typename FmhaPipeline::OaccDataType>;
......@@ -46,8 +44,10 @@ struct FmhaFwdSplitKVKernel
static constexpr bool kPadHeadDimQ = FmhaPipeline::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
static constexpr auto BiasEnum = FmhaPipeline::BiasEnum;
static constexpr bool kHasDropout = FmhaPipeline::kHasDropout;
static constexpr bool kDoFp8StaticQuant = FmhaPipeline::Problem::kDoFp8StaticQuant;
static constexpr bool kIsPagedKV = FmhaPipeline::Problem::kIsPagedKV;
static_assert(!kIsGroupMode || (kIsGroupMode && !kIsPagedKV),
"paged-kvcache only supported by batch mode kernels");
using FmhaMask = ck_tile::remove_cvref_t<typename FmhaPipeline::FmhaMask>;
static constexpr bool kHasMask = FmhaMask::IsMasking;
......@@ -85,8 +85,8 @@ struct FmhaFwdSplitKVKernel
"w" + _TS_(gwt::at(ck_tile::number<0>{})) + "x" + _TS_(gwt::at(ck_tile::number<1>{})) + "x" + _TS_(gwt::at(ck_tile::number<2>{})) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) + _SS_(FmhaPipeline::name) + "_" +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kHasDropout ? "_dropout" : "" ) + (kDoFp8StaticQuant ? "_squant" : "" );
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kDoFp8StaticQuant ? "_squant" : "") + (kIsPagedKV ? "_pagedkv" : "" );
#undef _SS_
#undef _TS_
// clang-format on
......@@ -110,7 +110,6 @@ struct FmhaFwdSplitKVKernel
void* o_acc_ptr;
ck_tile::index_t batch;
ck_tile::index_t max_seqlen_q;
ck_tile::index_t seqlen_q;
ck_tile::index_t seqlen_k;
......@@ -136,6 +135,7 @@ struct FmhaFwdSplitKVKernel
ck_tile::index_t nhead_stride_lse_acc;
ck_tile::index_t nhead_stride_o_acc;
ck_tile::index_t batch_stride_lse_acc;
ck_tile::index_t batch_stride_o_acc;
ck_tile::index_t split_stride_lse_acc;
......@@ -173,32 +173,16 @@ struct FmhaFwdSplitKVKernel
float scale_p;
};
struct CommonDropoutKargs
struct PageBlockTableKargs
{
void init_dropout(const float p_drop,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
{
float p_undrop = 1.0 - p_drop;
p_undrop_in_uint8_t =
uint8_t(std::floor(p_undrop * std::numeric_limits<uint8_t>::max()));
rp_undrop = 1.0 / p_undrop;
drop_seed = std::get<0>(drop_seed_offset);
drop_offset = std::get<1>(drop_seed_offset);
}
float rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
bool is_store_randval = false;
uint64_t drop_seed = 1;
uint64_t drop_offset = 0;
void* rand_val_ptr = nullptr;
ck_tile::index_t stride_randval = 0;
ck_tile::index_t nhead_stride_randval = 0;
const int32_t* block_table_ptr;
ck_tile::index_t batch_stride_block_table;
ck_tile::index_t page_block_size;
};
struct BatchModeDropoutKargs : CommonDropoutKargs
struct CacheBatchIdxKargs
{
ck_tile::index_t batch_stride_randval = 0;
const int32_t* cache_batch_idx;
};
struct BatchModeKargs
......@@ -210,12 +194,13 @@ struct FmhaFwdSplitKVKernel
EmptyKargs<0>>>,
std::conditional_t<kHasMask, MaskKargs, EmptyKargs<1>>,
std::conditional_t<kDoFp8StaticQuant, Fp8StaticQuantKargs, EmptyKargs<2>>,
std::conditional_t<kHasDropout, BatchModeDropoutKargs, EmptyKargs<3>>
std::conditional_t<kIsPagedKV, PageBlockTableKargs, CacheBatchIdxKargs>
{
const int32_t* seqlen_k_ptr;
ck_tile::index_t batch_stride_q;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_v;
ck_tile::index_t batch_stride_lse_acc;
};
struct GroupModeKargs
......@@ -226,12 +211,14 @@ struct FmhaFwdSplitKVKernel
AlibiKargs,
EmptyKargs<0>>>,
std::conditional_t<kHasMask, MaskKargs, EmptyKargs<1>>,
std::conditional_t<kDoFp8StaticQuant, Fp8StaticQuantKargs, EmptyKargs<2>>,
std::conditional_t<kHasDropout, CommonDropoutKargs, EmptyKargs<3>>
std::conditional_t<kDoFp8StaticQuant, Fp8StaticQuantKargs, EmptyKargs<2>>
{
const int32_t* seqstart_q_ptr;
const int32_t* seqstart_k_ptr;
const int32_t* seqlen_k_ptr;
ck_tile::index_t batch_stride_k;
ck_tile::index_t batch_stride_v;
};
using Kargs = std::conditional_t<kIsGroupMode, GroupModeKargs, BatchModeKargs>;
......@@ -242,48 +229,45 @@ struct FmhaFwdSplitKVKernel
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_acc_ptr,
void* o_acc_ptr,
ck_tile::index_t batch,
ck_tile::index_t max_seqlen_q,
ck_tile::index_t seqlen_q,
ck_tile::index_t seqlen_k,
ck_tile::index_t seqlen_k, // only used if 'seqlen_k_ptr' is not specified
const void* seqlen_k_ptr, // only used for (paged-) kvcache
ck_tile::index_t hdim_q,
ck_tile::index_t hdim_v,
ck_tile::index_t num_head_q,
ck_tile::index_t nhead_ratio_qk,
ck_tile::index_t num_splits,
const void* block_table_ptr,
ck_tile::index_t batch_stride_block_table,
ck_tile::index_t page_block_size,
const void* cache_batch_idx,
float scale_s,
float scale_p,
ck_tile::index_t stride_q,
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o_acc,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse_acc,
ck_tile::index_t nhead_stride_o_acc,
ck_tile::index_t batch_stride_q,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_bias,
ck_tile::index_t batch_stride_randval,
ck_tile::index_t batch_stride_lse_acc,
ck_tile::index_t batch_stride_o_acc,
ck_tile::index_t split_stride_lse_acc,
ck_tile::index_t split_stride_o_acc,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
ck_tile::index_t mask_type)
{
Kargs kargs{{q_ptr,
k_ptr,
......@@ -291,7 +275,6 @@ struct FmhaFwdSplitKVKernel
lse_acc_ptr,
o_acc_ptr,
batch,
max_seqlen_q,
seqlen_q,
seqlen_k,
hdim_q,
......@@ -313,17 +296,18 @@ struct FmhaFwdSplitKVKernel
nhead_stride_v,
nhead_stride_lse_acc,
nhead_stride_o_acc,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for mask
{}, // placeholder for fp8_static_quant args
{}, // placeholder for dropout
{}, // placeholder for paged-block table or cache_batch_idx
reinterpret_cast<const int32_t*>(seqlen_k_ptr),
batch_stride_q,
batch_stride_k,
batch_stride_v,
batch_stride_lse_acc};
batch_stride_v};
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
......@@ -347,14 +331,15 @@ struct FmhaFwdSplitKVKernel
{
kargs.scale_p = scale_p;
}
if constexpr(kHasDropout)
if constexpr(kIsPagedKV)
{
kargs.block_table_ptr = reinterpret_cast<const int32_t*>(block_table_ptr);
kargs.batch_stride_block_table = batch_stride_block_table;
kargs.page_block_size = page_block_size;
}
else
{
kargs.init_dropout(p_drop, drop_seed_offset);
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.batch_stride_randval = batch_stride_randval;
kargs.is_store_randval = s_randval;
kargs.cache_batch_idx = reinterpret_cast<const int32_t*>(cache_batch_idx);
}
return kargs;
......@@ -366,11 +351,9 @@ struct FmhaFwdSplitKVKernel
const void* k_ptr,
const void* v_ptr,
const void* bias_ptr,
void* rand_val_ptr,
void* lse_acc_ptr,
void* o_acc_ptr,
ck_tile::index_t batch,
ck_tile::index_t max_seqlen_q,
const void* seqstart_q_ptr,
const void* seqstart_k_ptr,
const void* seqlen_k_ptr,
......@@ -385,24 +368,22 @@ struct FmhaFwdSplitKVKernel
ck_tile::index_t stride_k,
ck_tile::index_t stride_v,
ck_tile::index_t stride_bias,
ck_tile::index_t stride_randval,
ck_tile::index_t stride_o_acc,
ck_tile::index_t nhead_stride_q,
ck_tile::index_t nhead_stride_k,
ck_tile::index_t nhead_stride_v,
ck_tile::index_t nhead_stride_bias,
ck_tile::index_t nhead_stride_randval,
ck_tile::index_t nhead_stride_lse_acc,
ck_tile::index_t nhead_stride_o_acc,
ck_tile::index_t batch_stride_k,
ck_tile::index_t batch_stride_v,
ck_tile::index_t batch_stride_lse_acc,
ck_tile::index_t batch_stride_o_acc,
ck_tile::index_t split_stride_lse_acc,
ck_tile::index_t split_stride_o_acc,
ck_tile::index_t window_size_left,
ck_tile::index_t window_size_right,
ck_tile::index_t mask_type,
float p_drop,
bool s_randval,
const std::tuple<uint64_t, uint64_t>& drop_seed_offset)
ck_tile::index_t mask_type)
{
Kargs kargs{{q_ptr,
k_ptr,
......@@ -410,9 +391,8 @@ struct FmhaFwdSplitKVKernel
lse_acc_ptr,
o_acc_ptr,
batch,
max_seqlen_q,
-1, // seqlen will be updated by another pointer
-1, //
-1, // seqlen_q will be updated by another pointer
-1, // seqlen_k will be updated by another pointer
hdim_q,
hdim_v,
num_head_q,
......@@ -432,16 +412,18 @@ struct FmhaFwdSplitKVKernel
nhead_stride_v,
nhead_stride_lse_acc,
nhead_stride_o_acc,
batch_stride_lse_acc,
batch_stride_o_acc,
split_stride_lse_acc,
split_stride_o_acc}, // args for common karg
{}, // placeholder for bias
{}, // placeholder for mask
{}, // placeholder for fp8_static_quant args
{}, // placeholder for dropout
reinterpret_cast<const int32_t*>(seqstart_q_ptr),
reinterpret_cast<const int32_t*>(seqstart_k_ptr),
reinterpret_cast<const int32_t*>(seqlen_k_ptr)};
reinterpret_cast<const int32_t*>(seqlen_k_ptr),
batch_stride_k,
batch_stride_v};
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
......@@ -464,14 +446,6 @@ struct FmhaFwdSplitKVKernel
{
kargs.scale_p = scale_p;
}
if constexpr(kHasDropout)
{
kargs.init_dropout(p_drop, drop_seed_offset);
kargs.rand_val_ptr = rand_val_ptr;
kargs.stride_randval = stride_randval;
kargs.nhead_stride_randval = nhead_stride_randval;
kargs.is_store_randval = s_randval;
}
return kargs;
}
......@@ -508,7 +482,6 @@ struct FmhaFwdSplitKVKernel
long_index_t batch_offset_k = 0;
long_index_t batch_offset_v = 0;
long_index_t batch_offset_bias = 0;
long_index_t batch_offset_randval = 0;
long_index_t batch_offset_lse_acc = 0;
const long_index_t batch_offset_o_acc =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_o_acc;
......@@ -534,14 +507,9 @@ struct FmhaFwdSplitKVKernel
{
batch_offset_bias = query_start * kargs.stride_bias + key_start;
}
if constexpr(kHasDropout)
{
batch_offset_randval = query_start * kargs.stride_randval;
}
// get real # queries & # keys under group mode
const auto adjusted_seqstart_q_ptr = kargs.seqstart_q_ptr + i_batch;
kargs.seqlen_q = adjusted_seqstart_q_ptr[1] - adjusted_seqstart_q_ptr[0];
kargs.seqlen_q = kargs.seqstart_q_ptr[i_batch + 1] - kargs.seqstart_q_ptr[i_batch];
// # of required blocks is different in each groups, terminate unnecessary blocks
// earlier
......@@ -556,24 +524,36 @@ struct FmhaFwdSplitKVKernel
}
else
{
const auto adjusted_seqstart_k_ptr = kargs.seqstart_k_ptr + i_batch;
kargs.seqlen_k = adjusted_seqstart_k_ptr[1] - adjusted_seqstart_k_ptr[0];
kargs.seqlen_k = kargs.seqstart_k_ptr[i_batch + 1] - kargs.seqstart_k_ptr[i_batch];
}
}
else
{
const index_t i_cache_batch = [&, i_batch_ = i_batch] {
if constexpr(kIsPagedKV)
{
return i_batch_;
}
else
{
return (kargs.cache_batch_idx != nullptr ? kargs.cache_batch_idx[i_batch_]
: i_batch_);
}
}();
batch_offset_q = static_cast<long_index_t>(i_batch) * kargs.batch_stride_q;
batch_offset_k = static_cast<long_index_t>(i_batch) * kargs.batch_stride_k;
batch_offset_v = static_cast<long_index_t>(i_batch) * kargs.batch_stride_v;
batch_offset_k = static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_k;
batch_offset_v = static_cast<long_index_t>(i_cache_batch) * kargs.batch_stride_v;
batch_offset_lse_acc = static_cast<long_index_t>(i_batch) * kargs.batch_stride_lse_acc;
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
batch_offset_bias = static_cast<long_index_t>(i_batch) * kargs.batch_stride_bias;
}
if constexpr(kHasDropout)
if(kargs.seqlen_k_ptr != nullptr)
{
batch_offset_randval =
static_cast<long_index_t>(i_batch) * kargs.batch_stride_randval;
kargs.seqlen_k = kargs.seqlen_k_ptr[i_batch];
}
}
......@@ -589,6 +569,7 @@ struct FmhaFwdSplitKVKernel
reinterpret_cast<const VDataType*>(kargs.v_ptr) +
static_cast<long_index_t>(i_nhead / kargs.nhead_ratio_qk) * kargs.nhead_stride_v +
batch_offset_v;
OaccDataType* o_acc_ptr = reinterpret_cast<OaccDataType*>(kargs.o_acc_ptr) +
static_cast<long_index_t>(i_nhead) * kargs.nhead_stride_o_acc +
batch_offset_o_acc + i_split * kargs.split_stride_o_acc;
......@@ -616,10 +597,11 @@ struct FmhaFwdSplitKVKernel
sequence<kPadSeqLenQ, kPadHeadDimQ>{});
}
}();
const auto k_dram = [&]() {
const auto make_k_dram = [&](const KDataType* data, index_t height) {
const auto k_dram_naive = make_naive_tensor_view<address_space_enum::global>(
k_ptr,
make_tuple(kargs.seqlen_k, kargs.hdim_q),
data, // will update this pointer if using paged-kvcache
make_tuple(height, kargs.hdim_q),
make_tuple(kargs.stride_k, 1),
number<FmhaPipeline::kAlignmentK>{},
number<1>{});
......@@ -628,13 +610,24 @@ struct FmhaFwdSplitKVKernel
k_dram_naive,
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}),
sequence<kPadSeqLenK, kPadHeadDimQ>{});
};
const auto k_dram = [&]() {
if constexpr(kIsPagedKV)
{
return make_k_dram(nullptr, kargs.page_block_size);
}
else
{
return make_k_dram(k_ptr, kargs.seqlen_k);
}
}();
const auto v_dram = [&]() {
const auto make_v_dram = [&](const VDataType* data, index_t length) {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
v_ptr,
make_tuple(kargs.seqlen_k, kargs.hdim_v),
data, // will update this pointer if using paged-kvcache
make_tuple(length, kargs.hdim_v),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
......@@ -642,7 +635,7 @@ struct FmhaFwdSplitKVKernel
const auto v_dram_transposed =
transform_tensor_view(v_dram_naive,
make_tuple(make_pass_through_transform(kargs.hdim_v),
make_pass_through_transform(kargs.seqlen_k)),
make_pass_through_transform(length)),
make_tuple(sequence<1>{}, sequence<0>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
......@@ -654,8 +647,8 @@ struct FmhaFwdSplitKVKernel
else
{
const auto v_dram_naive = make_naive_tensor_view<address_space_enum::global>(
v_ptr,
make_tuple(kargs.hdim_v, kargs.seqlen_k),
data, // will update this pointer if using paged-kvcache
make_tuple(kargs.hdim_v, length),
make_tuple(kargs.stride_v, 1),
number<FmhaPipeline::kAlignmentV>{},
number<1>{});
......@@ -665,6 +658,76 @@ struct FmhaFwdSplitKVKernel
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
sequence<kPadHeadDimV, kPadSeqLenK>{});
}
};
const auto v_dram = [&]() {
if constexpr(kIsPagedKV)
{
return make_v_dram(nullptr, kargs.page_block_size);
}
else
{
return make_v_dram(v_ptr, kargs.seqlen_k);
}
}();
auto k_page_block_navigator = [&, i_batch_ = i_batch, i_nhead_ = i_nhead]() {
if constexpr(kIsPagedKV)
{
const auto* block_indices =
reinterpret_cast<const int32_t*>(kargs.block_table_ptr) +
i_batch_ * kargs.batch_stride_block_table;
const index_t num_blocks =
integer_divide_ceil(kargs.seqlen_k, kargs.page_block_size);
const long_index_t fixed_offset =
static_cast<long_index_t>(i_nhead_ / kargs.nhead_ratio_qk) *
kargs.nhead_stride_k;
return make_page_block_navigator<const KDataType, 0>(
kargs.k_ptr,
kargs.batch_stride_k,
fixed_offset,
block_indices,
num_blocks,
kargs.page_block_size,
k_dram,
make_k_dram(nullptr,
kargs.seqlen_k - (num_blocks - 1) * kargs.page_block_size));
}
else
{
return make_page_block_navigator(k_dram);
}
}();
auto v_page_block_navigator = [&, i_batch_ = i_batch, i_nhead_ = i_nhead]() {
if constexpr(kIsPagedKV)
{
const auto* block_indices =
reinterpret_cast<const int32_t*>(kargs.block_table_ptr) +
i_batch_ * kargs.batch_stride_block_table;
const index_t num_blocks =
integer_divide_ceil(kargs.seqlen_k, kargs.page_block_size);
const long_index_t fixed_offset =
static_cast<long_index_t>(i_nhead_ / kargs.nhead_ratio_qk) *
kargs.nhead_stride_v;
return make_page_block_navigator<const VDataType, 1>(
kargs.v_ptr,
kargs.batch_stride_v,
fixed_offset,
block_indices,
num_blocks,
kargs.page_block_size,
v_dram,
make_v_dram(nullptr,
kargs.seqlen_k - (num_blocks - 1) * kargs.page_block_size));
}
else
{
return make_page_block_navigator(v_dram);
}
}();
auto q_dram_window = make_tile_window(
......@@ -678,13 +741,11 @@ struct FmhaFwdSplitKVKernel
}(),
{i_m0, 0});
auto k_dram_window = make_tile_window(
k_dram, make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{}), {0, 0});
auto k_dram_window_lengths =
make_tuple(number<FmhaPipeline::kN0>{}, number<FmhaPipeline::kK0>{});
auto v_dram_window_lengths =
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{});
auto v_dram_window =
make_tile_window(v_dram,
make_tuple(number<FmhaPipeline::kN1>{}, number<FmhaPipeline::kK1>{}),
{i_n1, 0});
/// FIXME: Before C++20, capturing structured binding variables are not supported. Remove
/// following copy capture of the 'i_nhead' if in C++20
const auto bias_dram_window = [&, i_nhead_ = i_nhead]() {
......@@ -741,62 +802,6 @@ struct FmhaFwdSplitKVKernel
return make_tile_window(lse_acc_dram, lse_acc_dram_window_lengths, {i_m0});
}();
// dropout
float rp_undrop = 1;
uint8_t p_undrop_in_uint8_t = std::numeric_limits<uint8_t>::max();
uint64_t drop_seed = 0;
uint64_t drop_offset = 0;
bool is_store_randval = false;
if constexpr(kHasDropout)
{
rp_undrop = kargs.rp_undrop;
p_undrop_in_uint8_t = kargs.p_undrop_in_uint8_t;
drop_seed = kargs.drop_seed;
drop_offset = kargs.drop_offset;
is_store_randval = kargs.is_store_randval;
}
BlockDropout dropout(i_batch,
i_nhead,
kargs.num_head_q,
drop_seed,
drop_offset,
rp_undrop,
p_undrop_in_uint8_t,
is_store_randval);
auto randval_dram_window = [&, i_nhead_ = i_nhead]() {
constexpr auto randval_dram_window_lengths =
make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN0>{});
if constexpr(kHasDropout)
{
RandValOutputDataType* rand_val_ptr =
reinterpret_cast<RandValOutputDataType*>(kargs.rand_val_ptr) +
static_cast<long_index_t>(i_nhead_) * kargs.nhead_stride_randval +
batch_offset_randval;
const auto randval_dram = [&]() {
const auto randval_dram_naive =
make_naive_tensor_view<address_space_enum::global>(
rand_val_ptr,
make_tuple(kargs.seqlen_q, kargs.seqlen_k),
make_tuple(kargs.stride_randval, 1),
number<1>{},
number<1>{});
return pad_tensor_view(randval_dram_naive,
randval_dram_window_lengths,
sequence<kPadSeqLenQ, kPadSeqLenK>{});
}();
return make_tile_window(randval_dram, randval_dram_window_lengths, {i_m0, 0});
}
else
{
return make_null_tile_window(randval_dram_window_lengths);
}
}();
FmhaMask mask = [&]() {
if constexpr(kHasMask)
return ck_tile::make_generic_attention_mask_from_lr_window<FmhaMask>(
......@@ -823,16 +828,16 @@ struct FmhaFwdSplitKVKernel
#endif
if constexpr(kHasMask)
{
return make_alibi_from_lr_mask<SaccDataType, true>(slope,
kargs.window_size_left,
kargs.window_size_right,
kargs.seqlen_q,
kargs.seqlen_k,
kargs.mask_type);
return make_alibi_from_lr_mask<SaccDataType, true, 32>(slope,
kargs.window_size_left,
kargs.window_size_right,
kargs.seqlen_q,
kargs.seqlen_k,
kargs.mask_type);
}
else
{
return Alibi<SaccDataType, true>{
return Alibi<SaccDataType, true, 32>{
slope, kargs.seqlen_q, kargs.seqlen_k, AlibiMode::FROM_BOTTOM_RIGHT};
}
}
......@@ -847,13 +852,14 @@ struct FmhaFwdSplitKVKernel
{
return FmhaPipeline{}(q_dram_window,
identity{}, // q_element_func
k_dram_window,
k_dram_window_lengths,
k_page_block_navigator,
identity{}, // k_element_func
v_dram_window,
v_dram_window_lengths,
v_page_block_navigator,
identity{}, // v_element_func
bias_dram_window,
identity{}, // bias_element_func
randval_dram_window,
lse_acc_dram_window,
identity{}, // lse_element_func
identity{}, // s_acc_element_func
......@@ -864,24 +870,23 @@ struct FmhaFwdSplitKVKernel
mask,
position_encoding,
kargs.scale_s,
smem_ptr,
dropout);
smem_ptr);
}
else
{
return FmhaPipeline{}(q_dram_window,
k_dram_window,
v_dram_window,
k_dram_window_lengths,
k_page_block_navigator,
v_dram_window_lengths,
v_page_block_navigator,
bias_dram_window,
randval_dram_window,
lse_acc_dram_window,
kargs.num_splits,
i_split_,
mask,
position_encoding,
kargs.scale_s,
smem_ptr,
dropout);
smem_ptr);
}
}();
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/block/block_rotary_embedding.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_appendkv_pipeline_default_policy.hpp"
namespace ck_tile {
template <typename Problem_, typename Policy_ = BlockFmhaFwdAppendKVPipelineDefaultPolicy>
struct BlockFmhaFwdAppendKVPipeline
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = typename Problem::QDataType;
using KDataType = typename Problem::KDataType;
using VDataType = typename Problem::VDataType;
using VLayout = typename Problem::VLayout;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = Problem::kM0;
static constexpr index_t kN0 = Problem::kN0;
static constexpr index_t kK0 = Problem::kK0;
static constexpr index_t kN1 = Problem::kN1;
static constexpr auto RotaryEnum = Problem::RotaryEnum;
static constexpr bool kIsPagedKV = Problem::kIsPagedKV;
static constexpr bool kPadSeqLenQ = Problem::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK =
kPadHeadDimQ ? 1 : Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV = []() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
return kPadHeadDimV ? 1 : Policy::template GetAlignmentV<Problem>();
else
return kPadSeqLenK ? 1 : Policy::template GetAlignmentV<Problem>();
}();
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
if constexpr(kK0 <= 32)
{
return 2;
}
else if constexpr(kK0 <= 64)
{
return 3;
}
else if constexpr(kK0 <= 128)
{
return 2;
}
else if constexpr(kK0 <= 256)
{
return 1;
}
}
}();
template <typename QDramBlockWindow,
typename KDramBlockWindow,
typename KPageBlockNavigator,
typename KnewDramBlockWindow,
typename VDramBlockWindow,
typename VPageBlockNavigator,
typename VnewDramBlockWindow,
typename QElementFunction,
typename KnewElementFunction,
typename VnewElementFunction,
typename QRotaryCosDramBlockWindow,
typename QRotarySinDramBlockWindow,
typename KnewRotaryCosDramBlockWindow,
typename KnewRotarySinDramBlockWindow>
CK_TILE_HOST_DEVICE auto
operator()(QDramBlockWindow& q_dram_block_window, // M0*K0 tile
const QElementFunction& q_element_func,
KDramBlockWindow& k_dram_block_window, // N0*K0 tile
index_t i_page_block_k,
const KPageBlockNavigator& k_page_block_navigator,
const KnewDramBlockWindow& knew_dram_block_window, // N0*K0 tile
const KnewElementFunction& knew_element_func,
VDramBlockWindow& v_dram_block_window, // N1*N0 tile
index_t i_page_block_v,
const VPageBlockNavigator& v_page_block_navigator,
const VnewDramBlockWindow& vnew_dram_block_window, // N1*N0 tile
const VnewElementFunction& vnew_element_func,
const QRotaryCosDramBlockWindow q_rotary_cos_dram_block_window,
const QRotarySinDramBlockWindow q_rotary_sin_dram_block_window,
const KnewRotaryCosDramBlockWindow knew_rotary_cos_dram_block_window,
const KnewRotarySinDramBlockWindow knew_rotary_sin_dram_block_window,
index_t rotary_dim,
bool skip_rotate_q,
bool skip_rotate_append_kv) const
{
if(!skip_rotate_append_kv)
{
// append Knew to K
auto knew_window = make_tile_window(
knew_dram_block_window, Policy::template MakeKnewDramTileDistribution<Problem>());
auto knew_tile = [&]() {
auto knew = load_tile(knew_window);
return tile_elementwise_in(knew_element_func, knew);
}();
// optionally apply rotary embedding to Knew
if constexpr(RotaryEnum != RotaryEmbeddingEnum::NONE)
{
auto rotary_cos_window =
make_tile_window(knew_rotary_cos_dram_block_window,
Policy::template MakeRotaryCosSinTileDistribution<
Problem,
/*IsRotaryCosSinForQ=*/false>());
auto rotary_sin_window =
make_tile_window(knew_rotary_sin_dram_block_window,
Policy::template MakeRotaryCosSinTileDistribution<
Problem,
/*IsRotaryCosSinForQ=*/false>());
// We assume that each thread owns contiguous elements on head dimention. And we
// will use the distribution to enable/disable threads in order to override partial
// knew_tile content
auto [thread_start, thread_end] =
Policy::template GetKnewThreadRangeAlongK<Problem>();
ignore = thread_start;
BlockRotaryEmbedding<RotaryEnum>::apply(knew_tile,
knew_window,
rotary_cos_window,
rotary_sin_window,
rotary_dim,
thread_end);
}
store_tile(k_dram_block_window, knew_tile);
// write tile to another block if nesscary
if constexpr(kIsPagedKV)
{
if(k_page_block_navigator.is_cross_block(i_page_block_k, k_dram_block_window))
{
k_page_block_navigator.move_to_block(
i_page_block_k, k_dram_block_window, i_page_block_k + 1);
store_tile(k_dram_block_window, knew_tile);
}
}
// append Vnew to V
auto vnew_window = make_tile_window(
vnew_dram_block_window, Policy::template MakeVnewDramTileDistribution<Problem>());
auto vnew_tile = [&]() {
auto vnew = load_tile(vnew_window);
return tile_elementwise_in(vnew_element_func, vnew);
}();
store_tile(v_dram_block_window, vnew_tile);
// write tile to another block if nesscary
if constexpr(kIsPagedKV)
{
if(v_page_block_navigator.is_cross_block(i_page_block_v, v_dram_block_window))
{
v_page_block_navigator.move_to_block(
i_page_block_v, v_dram_block_window, i_page_block_v + 1);
store_tile(v_dram_block_window, vnew_tile);
}
}
}
if(!skip_rotate_q)
{
// optionally apply rotary embedding to Q
if constexpr(RotaryEnum != RotaryEmbeddingEnum::NONE)
{
auto q_window = make_tile_window(
q_dram_block_window, Policy::template MakeQDramTileDistribution<Problem>());
auto q_tile = [&]() {
auto q = load_tile(q_window);
return tile_elementwise_in(q_element_func, q);
}();
auto rotary_cos_window =
make_tile_window(q_rotary_cos_dram_block_window,
Policy::template MakeRotaryCosSinTileDistribution<
Problem,
/*IsRotaryCosSinForQ=*/true>());
auto rotary_sin_window =
make_tile_window(q_rotary_sin_dram_block_window,
Policy::template MakeRotaryCosSinTileDistribution<
Problem,
/*IsRotaryCosSinForQ=*/true>());
// We assume that each thread owns contiguous elements on head dimention. And we
// will use the distribution to enable/disable threads in order to override partial
// q_tile content
auto [thread_start, thread_end] = Policy::template GetQThreadRangeAlongK<Problem>();
ignore = thread_start;
BlockRotaryEmbedding<RotaryEnum>::apply(
q_tile, q_window, rotary_cos_window, rotary_sin_window, rotary_dim, thread_end);
store_tile(q_dram_block_window, q_tile);
}
}
}
template <typename QDramBlockWindow,
typename KDramBlockWindow,
typename KPageBlockNavigator,
typename KnewDramBlockWindow,
typename VDramBlockWindow,
typename VPageBlockNavigator,
typename VnewDramBlockWindow,
typename QRotaryCosDramBlockWindow,
typename QRotarySinDramBlockWindow,
typename KnewRotaryCosDramBlockWindow,
typename KnewRotarySinDramBlockWindow>
CK_TILE_HOST_DEVICE auto
operator()(QDramBlockWindow& q_dram_block_window,
KDramBlockWindow& k_dram_block_window,
index_t i_page_block_k,
const KPageBlockNavigator& k_page_block_navigator,
const KnewDramBlockWindow& knew_dram_block_window,
VDramBlockWindow& v_dram_block_window,
index_t i_page_block_v,
const VPageBlockNavigator& v_page_block_navigator,
const VnewDramBlockWindow& vnew_dram_block_window,
const QRotaryCosDramBlockWindow& q_rotary_cos_dram_block_window,
const QRotarySinDramBlockWindow& q_rotary_sin_dram_block_window,
const KnewRotaryCosDramBlockWindow& knew_rotary_cos_dram_block_window,
const KnewRotarySinDramBlockWindow& knew_rotary_sin_dram_block_window,
index_t rotary_dim,
bool skip_rotate_q,
bool skip_rotate_append_kv) const
{
return operator()(q_dram_block_window,
identity{},
k_dram_block_window,
i_page_block_k,
k_page_block_navigator,
knew_dram_block_window,
identity{},
v_dram_block_window,
i_page_block_v,
v_page_block_navigator,
vnew_dram_block_window,
identity{},
q_rotary_cos_dram_block_window,
q_rotary_sin_dram_block_window,
knew_rotary_cos_dram_block_window,
knew_rotary_sin_dram_block_window,
rotary_dim,
skip_rotate_q,
skip_rotate_append_kv);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
struct BlockFmhaFwdAppendKVPipelineDefaultPolicy
{
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{
using QDataType = remove_cvref_t<typename Problem::QDataType>;
return 16 / sizeof(QDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentK()
{
using KDataType = remove_cvref_t<typename Problem::KDataType>;
return 16 / sizeof(KDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentV()
{
using VLayout = remove_cvref_t<typename Problem::VLayout>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::kN0;
constexpr index_t kKPerBlock = Problem::kN1;
constexpr index_t total_pixels = kNPerBlock * kKPerBlock / kBlockSize;
// TODO: not correct!
if constexpr(total_pixels > 4)
return 4;
else
return 2;
}
else
{
return 16 / sizeof(VDataType);
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetQNumElemsPerRead()
{
using DataType = typename Problem::QDataType;
if constexpr(Problem::RotaryEnum == RotaryEmbeddingEnum::HALF_ROTATED)
{
/// NOTICE: we might need to lower down this to support smaller rotary_dim
return 16 / sizeof(DataType);
}
else
{
return 16 / sizeof(DataType);
}
}
template <typename Problem>
CK_TILE_DEVICE static auto GetQThreadRangeAlongK()
{
static_assert(Problem::RotaryEnum != RotaryEmbeddingEnum::NONE);
if constexpr(Problem::RotaryEnum == RotaryEmbeddingEnum::INTERLEAVED)
{
constexpr index_t KPerThread = GetQNumElemsPerRead<Problem>();
static_assert(Problem::kK0 % KPerThread == 0);
constexpr index_t KThreadPerBlock = Problem::kK0 / KPerThread;
index_t start_pos = (get_thread_id() % KThreadPerBlock) * KPerThread;
return make_tuple(start_pos, start_pos + KPerThread);
}
else
{
constexpr index_t KPerThread = GetQNumElemsPerRead<Problem>();
static_assert(Problem::kK0 % KPerThread == 0);
constexpr index_t KThreadPerBlock = Problem::kK0 / KPerThread;
index_t start_pos = (get_thread_id() % KThreadPerBlock) * KPerThread;
return make_tuple(start_pos, start_pos + KPerThread);
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::kM0;
constexpr index_t kKPerBlock = Problem::kK0;
constexpr index_t KPerThread = GetQNumElemsPerRead<Problem>();
constexpr index_t KThreadPerBlock = kKPerBlock / KPerThread;
constexpr index_t MThreadPerWarp = get_warp_size() / KThreadPerBlock;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t MPerThread = kMPerBlock / (NumWarps * MThreadPerWarp);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<MPerThread, NumWarps, MThreadPerWarp>,
sequence<KThreadPerBlock, KPerThread>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetKnewNumElemsPerRead()
{
using DataType = typename Problem::KDataType;
if constexpr(Problem::RotaryEnum == RotaryEmbeddingEnum::HALF_ROTATED)
{
/// NOTICE: we might need to lower down this to support smaller rotary_dim
return 16 / sizeof(DataType);
}
else
{
return 16 / sizeof(DataType);
}
}
template <typename Problem>
CK_TILE_DEVICE static auto GetKnewThreadRangeAlongK()
{
static_assert(Problem::RotaryEnum != RotaryEmbeddingEnum::NONE);
if constexpr(Problem::RotaryEnum == RotaryEmbeddingEnum::INTERLEAVED)
{
constexpr index_t KPerThread = GetKnewNumElemsPerRead<Problem>();
constexpr index_t KThreadPerBlock = Problem::kK0 / KPerThread;
index_t start_pos = (get_thread_id() % KThreadPerBlock) * KPerThread;
return make_tuple(start_pos, start_pos + KPerThread);
}
else
{
constexpr index_t KPerThread = GetKnewNumElemsPerRead<Problem>();
constexpr index_t KThreadPerBlock = Problem::kK0 / KPerThread;
index_t start_pos = (get_thread_id() % KThreadPerBlock) * KPerThread;
return make_tuple(start_pos, start_pos + KPerThread);
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeKnewDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::kN0;
constexpr index_t kKPerBlock = Problem::kK0;
constexpr index_t KPerThread = GetKnewNumElemsPerRead<Problem>();
constexpr index_t KThreadPerBlock = kKPerBlock / KPerThread;
constexpr index_t NThreadPerWarp = get_warp_size() / KThreadPerBlock;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t NPerThread = kNPerBlock / (NumWarps * NThreadPerWarp);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<NPerThread, NumWarps, NThreadPerWarp>,
sequence<KThreadPerBlock, KPerThread>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackV()
{
// TODO: this is for 3d layout
using VDataType = remove_cvref_t<typename Problem::VDataType>;
return 16 / sizeof(VDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeVnewDramTileDistribution()
{
using VLayout = remove_cvref_t<typename Problem::VLayout>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = Problem::kN1;
constexpr index_t kKPerBlock = Problem::kN0;
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
constexpr index_t NPerThread = 16 / sizeof(VDataType);
constexpr index_t NThreadPerBlock = kNPerBlock / NPerThread;
constexpr index_t KThreadPerWarp = get_warp_size() / NThreadPerBlock;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t KPerThread = kKPerBlock / (NumWarps * KThreadPerWarp);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<NThreadPerBlock, NPerThread>,
sequence<KPerThread, NumWarps, KThreadPerWarp>>,
tuple<sequence<2>, sequence<1, 2>>,
tuple<sequence<1>, sequence<0, 2>>,
sequence<1, 2>,
sequence<1, 0>>{});
}
else
{
constexpr index_t KPerThread = 16 / sizeof(VDataType);
constexpr index_t KThreadPerBlock = kKPerBlock / KPerThread;
constexpr index_t NThreadPerWarp = get_warp_size() / KThreadPerBlock;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t NPerThread = kNPerBlock / (NumWarps * NThreadPerWarp);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<NPerThread, NumWarps, NThreadPerWarp>,
sequence<KThreadPerBlock, KPerThread>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
}
template <typename Problem, bool IsRotaryCosSinForQ>
CK_TILE_HOST_DEVICE static constexpr auto GetRotaryCosSinTileSize()
{
constexpr index_t height = (IsRotaryCosSinForQ ? Problem::kM0 : Problem::kN0);
if constexpr(Problem::RotaryEnum == RotaryEmbeddingEnum::HALF_ROTATED)
{
return make_tuple(number<height>{}, number<Problem::kK0>{});
}
else
{
return make_tuple(number<height>{}, number<Problem::kK0 / 2>{});
}
}
template <typename Problem, bool IsRotaryCosSinForQ>
CK_TILE_HOST_DEVICE static constexpr auto MakeRotaryCosSinTileDistribution()
{
using DataType = std::conditional_t<IsRotaryCosSinForQ,
typename Problem::QDataType,
typename Problem::KDataType>;
constexpr auto TileSize = GetRotaryCosSinTileSize<Problem, IsRotaryCosSinForQ>();
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNPerBlock = TileSize[number<0>{}];
constexpr index_t kKPerBlock = TileSize[number<1>{}];
constexpr index_t KPerThread = []() {
if constexpr(Problem::RotaryEnum == RotaryEmbeddingEnum::HALF_ROTATED)
{
/// NOTICE: we might need to lower down this to support smaller rotary_dim
return 16 / sizeof(DataType);
}
else
{
return 8 / sizeof(DataType);
}
}();
constexpr index_t KThreadPerBlock = kKPerBlock / KPerThread;
constexpr index_t NThreadPerWarp = get_warp_size() / KThreadPerBlock;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t NPerThread = kNPerBlock / (NumWarps * NThreadPerWarp);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<NPerThread, NumWarps, NThreadPerWarp>,
sequence<KThreadPerBlock, KPerThread>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
};
} // namespace ck_tile
......@@ -6,7 +6,6 @@
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
......@@ -15,19 +14,18 @@ namespace ck_tile {
template <typename Problem_, typename Policy_ = BlockFmhaFwdSplitKVPipelineQRKSVSDefaultPolicy>
struct BlockFmhaFwdSplitKVPipelineQRKSVS
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
......@@ -49,8 +47,8 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
static constexpr bool kPadHeadDimQ = Problem::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Problem::kPadHeadDimV;
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kStoreLSE = true; // always store LSE (acc)
static constexpr bool kHasDropout = false; // ignore this flag
static constexpr bool kStoreLSE = true; // always store LSE (acc)
static constexpr bool kIsPagedKV = Problem::kIsPagedKV;
static constexpr bool kHasUnevenSplits = Problem::kHasUnevenSplits;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
......@@ -106,10 +104,11 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename KDramBlockWindowLengths,
typename KPageBlockNavigator,
typename VDramBlockWindowLengths,
typename VPageBlockNavigator,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEaccDramBlockWindowTmp,
typename QElementFunction,
typename KElementFunction,
......@@ -123,13 +122,14 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const QElementFunction& q_element_func,
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const KDramBlockWindowLengths& k_dram_block_window_lengths, // N0*K0 tile
const KPageBlockNavigator& k_page_block_navigator,
const KElementFunction& k_element_func,
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const VDramBlockWindowLengths& v_dram_block_window_lengths, // N1*K1 tile
const VPageBlockNavigator& v_page_block_navigator,
const VElementFunction& v_element_func,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
const BiasElementFunction& bias_element_func,
RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
LSEaccDramBlockWindowTmp& lse_acc_dram_window_tmp, // M0*1 tile
const LSEaccElementFunction& lse_acc_element_func,
const SAccElementFunction& s_acc_element_func,
......@@ -140,20 +140,19 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr,
BlockDropout& dropout) const
void* smem_ptr) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>>,
std::is_same_v<KDataType, remove_cvref_t<typename KPageBlockNavigator::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VPageBlockNavigator::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK0 == KDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kN1 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK1 == VDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kN0 == KDramBlockWindowLengths{}[number<0>{}] &&
kK0 == KDramBlockWindowLengths{}[number<1>{}] &&
kN1 == VDramBlockWindowLengths{}[number<0>{}] &&
kK1 == VDramBlockWindowLengths{}[number<1>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
......@@ -213,12 +212,12 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
const auto [seqlen_k_start, seqlen_k_end] = mask.GetTileRangeAlongX(
q_origin.at(number<0>{}), number<kM0>{}, number<kN0>{}, num_splits, i_split);
const auto num_total_loop = integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking || kHasUnevenSplits)
{
if(num_total_loop <= 0)
const index_t original_num_total_loop =
integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
if(original_num_total_loop <= 0)
{
if constexpr(kStoreLSE)
{
......@@ -237,26 +236,34 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
}
}
auto k_dram_block_window =
make_tile_window(k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
{seqlen_k_start, 0});
// make sure the first tile is completely located in page-block
const index_t adjusted_seqlen_k_start = [&, seqlen_k_start_ = seqlen_k_start] {
if constexpr(kIsPagedKV)
{
return kN0 * integer_divide_floor(seqlen_k_start_, kN0);
}
else
{
return seqlen_k_start_;
}
}();
const index_t num_total_loop =
integer_divide_ceil(seqlen_k_end - adjusted_seqlen_k_start, kN0);
auto [i_page_block_k, k_dram_block_window] = k_page_block_navigator.make_tile_window(
k_dram_block_window_lengths, {adjusted_seqlen_k_start, 0});
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_window = make_tile_window(
bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
{bias_origin.at(number<0>{}), adjusted_seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto randval_dram_window = dropout.MakeRandvalDramWindow<decltype(gemm_0)>(
randval_dram_block_window_tmp, seqlen_k_start);
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_k_start}, // TODO: hdim split?
Policy::template MakeVDramTileDistribution<Problem>());
auto [i_page_block_v, v_dram_window] = v_page_block_navigator.make_tile_window(
v_dram_block_window_lengths,
{0, adjusted_seqlen_k_start}, // TODO: hdim split?
Policy::template MakeVDramTileDistribution<Problem>());
auto q_tile = tile_elementwise_in(q_element_func, q);
......@@ -271,14 +278,14 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
{
// STAGE 1, QK gemm
auto k_dram_window = make_tile_window(
k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
k_dram_block_window,
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
auto k_block_tile = load_tile(k_dram_window);
{
// moving k_dram_window is an in-page-block operation, so there is
// no need to invoke k_page_block_navigator.move_tile_window() here.
move_tile_window(k_dram_window, {0, kK0});
clear_tile(s_acc); // initialize C
store_tile(k_lds_window, tile_elementwise_in(k_element_func, k_block_tile));
......@@ -355,7 +362,8 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
}
else if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
const auto k_origin = k_dram_block_window.get_window_origin();
const auto k_origin = k_page_block_navigator.to_global_window_origin(
i_page_block_k, k_dram_block_window.get_window_origin());
constexpr auto s_spans = decltype(s_acc)::get_distributed_spans();
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
sweep_tile_span(s_spans[number<0>{}], [&](auto idx0) {
......@@ -381,22 +389,32 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
}
move_tile_window(bias_dram_window, {0, kN0});
/// TODO: only check in last iteration without increasing code size
/// TODO: only check in first/last iteration without increasing code size
if constexpr(kHasUnevenSplits)
{
const auto k_origin = k_dram_block_window.get_window_origin();
const auto k_origin = k_page_block_navigator.to_global_window_origin(
i_page_block_k, k_dram_block_window.get_window_origin());
set_tile_if(s_acc,
-numeric<SMPLComputeDataType>::infinity(),
[&, seqlen_k_end_ = seqlen_k_end](auto tile_idx) {
[&, seqlen_k_start_ = seqlen_k_start, seqlen_k_end_ = seqlen_k_end](
auto tile_idx) {
const auto col =
k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return seqlen_k_end_ <= col;
if constexpr(kIsPagedKV)
{
return col < seqlen_k_start_ || seqlen_k_end_ <= col;
}
else
{
return seqlen_k_end_ <= col;
}
});
}
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto k_origin = k_dram_block_window.get_window_origin();
const auto k_origin = k_page_block_navigator.to_global_window_origin(
i_page_block_k, k_dram_block_window.get_window_origin());
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
......@@ -501,12 +519,6 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
});
});
if constexpr(kHasDropout)
{
dropout.Run<decltype(gemm_0), SMPLComputeDataType, RandValOutputDataType>(
smem_ptr, seqlen_k_start + i_total_loops * kN0, p_compute, randval_dram_window);
}
block_sync_lds();
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
......@@ -522,7 +534,8 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
store_tile(v_lds_window,
tile_elementwise_in(v_element_func, v_prefetch)); // store the prefetch
}
move_tile_window(v_dram_window, {0, kK1});
i_page_block_v =
v_page_block_navigator.move_tile_window(i_page_block_v, v_dram_window, {0, kK1});
const auto p =
cast_tile<PDataType>(tile_elementwise_in(p_compute_element_func, p_compute));
......@@ -530,8 +543,10 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
// STAGE 3, KV gemm
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
const auto v = load_tile(v_dram_window); // load next v
static_for<0, k1_loops - 1, 1>{}([&,
&i_page_block_v_ = i_page_block_v,
&v_dram_window_ = v_dram_window](auto i_k1) {
const auto v = load_tile(v_dram_window_); // load next v
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(
......@@ -552,11 +567,13 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
store_tile(v_lds_window,
tile_elementwise_in(v_element_func, v)); // store next v
}
move_tile_window(v_dram_window, {0, kK1});
i_page_block_v_ = v_page_block_navigator.move_tile_window(
i_page_block_v_, v_dram_window_, {0, kK1});
});
}
// move K tile windows
move_tile_window(k_dram_block_window, {kN0, 0});
i_page_block_k = k_page_block_navigator.move_tile_window(
i_page_block_k, k_dram_block_window, {kN0, 0});
// tail
{
block_sync_lds();
......@@ -618,36 +635,38 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename KDramBlockWindowLengths,
typename KPageBlockNavigator,
typename VDramBlockWindowLengths,
typename VPageBlockNavigator,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEaccDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowLengths& k_dram_block_window_lengths, // N0*K0 tile
const KPageBlockNavigator& k_page_block_navigator,
const VDramBlockWindowLengths& v_dram_block_window_lengths, // N1*K1 tile
const VPageBlockNavigator& v_page_block_navigator,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
RandValDramBlockWindowTmp& randval_dram_block_window_tmp, // M0*N0 tile
LSEaccDramBlockWindowTmp& lse_acc_dram_block_window_tmp, // M0*1 tile
index_t num_splits,
index_t i_split,
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr,
BlockDropout& dropout) const
void* smem_ptr) const
{
return operator()(q_dram_block_window_tmp,
identity{},
k_dram_block_window_tmp,
k_dram_block_window_lengths,
k_page_block_navigator,
identity{},
v_dram_block_window_tmp,
v_dram_block_window_lengths,
v_page_block_navigator,
identity{},
bias_dram_block_window_tmp,
identity{},
randval_dram_block_window_tmp,
lse_acc_dram_block_window_tmp,
identity{},
identity{},
......@@ -658,8 +677,7 @@ struct BlockFmhaFwdSplitKVPipelineQRKSVS
mask,
position_encoding,
scale_s,
smem_ptr,
dropout);
smem_ptr);
}
};
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/fmha/block/block_attention_bias_enum.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_async_default_policy.hpp"
#include "ck_tile/ops/fmha/block/block_dropout.hpp"
#include "ck_tile/ops/reduce/block/block_reduce.hpp"
namespace ck_tile {
// a variation of qr/ks/vs, where we use async copy to load k (potentially v in the future)
template <typename Problem_, typename Policy_ = BlockFmhaFwdSplitKVPipelineQRKSVSAsyncDefaultPolicy>
struct BlockFmhaFwdSplitKVPipelineQRKSVSAsync
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using QDataType = remove_cvref_t<typename Problem::QDataType>;
using KDataType = remove_cvref_t<typename Problem::KDataType>;
using VDataType = remove_cvref_t<typename Problem::VDataType>;
using SaccDataType = remove_cvref_t<typename Problem::SaccDataType>;
using SMPLComputeDataType = remove_cvref_t<typename Problem::SMPLComputeDataType>;
using BiasDataType = remove_cvref_t<typename Problem::BiasDataType>;
using RandValOutputDataType = remove_cvref_t<typename Problem::RandValOutputDataType>;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
using PDataType = remove_cvref_t<typename Problem::PDataType>;
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using FmhaMask = remove_cvref_t<typename Problem::FmhaMask>;
using BlockFmhaShape = remove_cvref_t<typename Problem::BlockFmhaShape>;
using VLayout = remove_cvref_t<typename BlockFmhaShape::VLayout>;
static constexpr bool kQLoadOnce = true; // if q_tile load whole block length (hdim) at once
static_assert(kQLoadOnce == Policy::QLoadOnce);
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kM0 = BlockFmhaShape::kM0;
static constexpr index_t kN0 = BlockFmhaShape::kN0;
static constexpr index_t kK0 = BlockFmhaShape::kK0;
static constexpr index_t kN1 = BlockFmhaShape::kN1;
static constexpr index_t kK1 = BlockFmhaShape::kK1;
static constexpr index_t kK0BlockLength = BlockFmhaShape::kK0BlockLength;
static constexpr bool kIsGroupMode = Problem::kIsGroupMode;
// TODO: seq_q always support padding, hdim_q/v support multiple of vector(like 8x)
// only need special care about seq_k padding (oob need set -INF of p instead of zero)
static_assert(Problem::kPadSeqLenQ == true && Problem::kPadHeadDimQ == true &&
Problem::kPadHeadDimV == true);
static constexpr bool kPadSeqLenQ = true;
static constexpr bool kPadSeqLenK = Problem::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = true; // support multiple of vector(like 8x)
static constexpr bool kPadHeadDimV = true; // support multiple of vector(like 8x)
static constexpr auto BiasEnum = Problem::BiasEnum;
static constexpr bool kStoreLSE = true; // always store LSE (acc)
static constexpr bool kHasDropout = false; // ignore this flag
static constexpr bool kHasUnevenSplits = Problem::kHasUnevenSplits;
// last dimension vector length used to create tensor view(and decide buffer_load vector length)
// ... together with tensor distribution. tensor dist should able to overwrite this
static constexpr index_t kAlignmentQ = Policy::template GetAlignmentQ<Problem>();
static constexpr index_t kAlignmentK = Policy::template GetAlignmentK<Problem>();
static constexpr index_t kAlignmentV = []() {
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
return Policy::template GetAlignmentV<Problem>();
else
return kPadSeqLenK ? 1 : Policy::template GetAlignmentV<Problem>();
}();
static constexpr index_t kAlignmentO = Policy::template GetAlignmentO<Problem>();
static constexpr index_t kAlignmentBias =
kPadSeqLenK ? 1 : Policy::template GetAlignmentBias<Problem>();
#if CK_TILE_FMHA_FWD_FAST_EXP2
static constexpr auto R_LOG2E = 1.0 / log2e_v<SaccDataType>;
#endif
static constexpr index_t kBlockPerCu = []() {
if constexpr(Problem::kBlockPerCu != -1)
return Problem::kBlockPerCu;
else
{
if constexpr(kK0BlockLength <= 32)
{
if constexpr(kPadSeqLenK && BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS &&
FmhaMask::IsMasking)
return 1;
else
return 2;
}
else if constexpr(kK0BlockLength <= 64)
{
if constexpr(kPadSeqLenK && BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
return 2;
else
return 3;
}
else if constexpr(kK0BlockLength <= 128)
{
if constexpr(kPadSeqLenK && BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
return 1;
else
return 2;
}
else if constexpr(kK0BlockLength <= 256)
{
return 1;
}
}
}();
static constexpr const char* name = "qr_async";
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return Policy::template GetSmemSize<Problem>();
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEaccDramBlockWindowTmp,
typename QElementFunction,
typename KElementFunction,
typename VElementFunction,
typename BiasElementFunction,
typename LSEaccElementFunction,
typename SAccElementFunction,
typename PComputeElementFunction,
typename OAccElementFunction,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const QElementFunction& q_element_func,
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const KElementFunction& /*k_element_func*/,
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const VElementFunction& v_element_func,
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
const BiasElementFunction& bias_element_func,
RandValDramBlockWindowTmp& randval_dram_block_window_tmp,
LSEaccDramBlockWindowTmp& lse_acc_dram_window_tmp, // M0*1 tile
const LSEaccElementFunction& lse_acc_element_func,
const SAccElementFunction& s_acc_element_func,
const PComputeElementFunction& p_compute_element_func,
const OAccElementFunction& o_acc_element_func,
index_t num_splits,
index_t i_split,
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr,
BlockDropout& dropout) const
{
static_assert(
std::is_same_v<QDataType, remove_cvref_t<typename QDramBlockWindowTmp::DataType>> &&
std::is_same_v<KDataType, remove_cvref_t<typename KDramBlockWindowTmp::DataType>> &&
std::is_same_v<VDataType, remove_cvref_t<typename VDramBlockWindowTmp::DataType>>,
"wrong!");
static_assert(kM0 == QDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == KDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK0 == KDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kN1 == VDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kK1 == VDramBlockWindowTmp{}.get_window_lengths()[number<1>{}] &&
kM0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<0>{}] &&
kN0 == BiasDramBlockWindowTmp{}.get_window_lengths()[number<1>{}],
"wrong!");
constexpr auto LdsSeq = Policy::template GetLdsBufferSequence<Problem>();
// K tile in LDS
auto k_lds_ptr = reinterpret_cast<KDataType*>(smem_ptr);
auto k_lds_store = generate_tuple(
[&](auto i_buf) {
return make_tile_window(
make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsStoreBlockDescriptor<Problem>(i_buf)),
Policy::template MakeKLdsStoreBlockDescriptor<Problem>(i_buf).get_lengths(),
{0, 0, 0});
},
number<Policy::NumPrefetchK>{});
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
auto k_lds_load = generate_tuple(
[&](auto i_buf) {
return make_tile_window(
make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsLoadBlockDescriptor<Problem>(i_buf)),
Policy::template MakeKLdsLoadBlockDescriptor<Problem>(i_buf).get_lengths(),
{0, 0});
},
number<Policy::NumPrefetchK>{});
#else
auto k_lds_Load_view = make_tensor_view<address_space_enum::lds>(
k_lds_ptr, Policy::template MakeKLdsLoadBlockDescriptor<Problem>());
auto k_lds_load =
make_tile_window(k_lds_Load_view,
Policy::template MakeKLdsLoadBlockDescriptor<Problem>().get_lengths(),
{0, 0});
#endif
// V tile in LDS
auto v_lds = make_tensor_view<address_space_enum::lds>(
reinterpret_cast<VDataType*>(smem_ptr),
Policy::template MakeVLdsBlockDescriptor<Problem>());
auto v_lds_window = make_tile_window(
v_lds, Policy::template MakeVLdsBlockDescriptor<Problem>().get_lengths(), {0, 0});
// Block GEMM
constexpr auto gemm_0 = Policy::template GetQKBlockGemm<Problem>();
constexpr auto gemm_1 = Policy::template GetKVBlockGemm<Problem>();
auto q_dram_window = make_tile_window(
q_dram_block_window_tmp.get_bottom_tensor_view(),
q_dram_block_window_tmp.get_window_lengths(),
q_dram_block_window_tmp.get_window_origin(),
Policy::template MakeQDramTileDistribution<Problem, decltype(gemm_0)>());
// TODO: we use async Copy for K, which is inline asm
// a side effect is we have to use inline asm for q as well
auto q = decltype(load_tile(q_dram_window)){};
set_tile(q, number<0>{}); // use per-dword clear to avoid scratch
load_tile_raw(q, q_dram_window);
__builtin_amdgcn_sched_barrier(0);
using SaccBlockTileType = decltype(gemm_0.MakeCBlockTile());
auto s_acc = SaccBlockTileType{};
// reduction function for softmax
const auto f_max = [](auto e0, auto e1) { return max(e0, e1); };
const auto f_sum = [](auto e0, auto e1) { return e0 + e1; };
// infer Sacc, S, P, M, L, Oacc type
using SBlockTileType = decltype(cast_tile<SMPLComputeDataType>(s_acc));
using MLBlockTileType = decltype(block_tile_reduce<SMPLComputeDataType>(
SBlockTileType{}, sequence<1>{}, f_max, SMPLComputeDataType{0}));
using OaccBlockTileType = decltype(gemm_1.MakeCBlockTile());
// init Oacc, M, L
auto o_acc = OaccBlockTileType{};
auto m = MLBlockTileType{};
auto l = MLBlockTileType{};
clear_tile(o_acc);
set_tile(m, -numeric<SMPLComputeDataType>::infinity());
clear_tile(l);
__builtin_amdgcn_sched_barrier(0);
const auto q_origin = q_dram_window.get_window_origin();
const auto [seqlen_k_start, seqlen_k_end] = mask.GetTileRangeAlongX(
q_origin.at(number<0>{}), number<kM0>{}, number<kN0>{}, num_splits, i_split);
const auto num_total_loop = integer_divide_ceil(seqlen_k_end - seqlen_k_start, kN0);
// check early exit if masked and no work to do.
if constexpr(FmhaMask::IsMasking || kPadSeqLenK || kHasUnevenSplits)
{
if(num_total_loop <= 0)
{
if constexpr(kStoreLSE)
{
auto lse_acc =
make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
set_tile(lse_acc, -numeric<SMPLComputeDataType>::infinity());
store_tile(lse_acc_dram_window_tmp,
tile_elementwise_in(lse_acc_element_func, lse_acc));
}
buffer_load_fence(0); // rocm-6.1, if whole tile is masked out, need to fence(0)
// otherwise will have compute error(maybe compiler bug?)
// Note: here occ are all cleard, return it
return o_acc;
}
__builtin_amdgcn_sched_barrier(0); // make sure sched_barrier(0) for this check
}
auto k_dram_block_window =
make_tile_window(k_dram_block_window_tmp.get_bottom_tensor_view(),
k_dram_block_window_tmp.get_window_lengths(),
{seqlen_k_start, 0});
auto k_dram_window = make_tile_window(
k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>()); // K DRAM tile window for
// load
const auto bias_origin = bias_dram_block_window_tmp.get_window_origin();
auto bias_dram_window = make_tile_window(
bias_dram_block_window_tmp.get_bottom_tensor_view(),
bias_dram_block_window_tmp.get_window_lengths(),
{bias_origin.at(number<0>{}), seqlen_k_start}, // M/N
Policy::template MakeBiasDramTileDistribution<Problem, decltype(gemm_0)>());
auto randval_dram_window = dropout.MakeRandvalDramWindow<decltype(gemm_0)>(
randval_dram_block_window_tmp, seqlen_k_start);
auto v_dram_window =
make_tile_window(v_dram_block_window_tmp.get_bottom_tensor_view(),
v_dram_block_window_tmp.get_window_lengths(),
{0, seqlen_k_start}, // TODO: hdim split?
Policy::template MakeVDramTileDistribution<Problem>());
// prefetch K tile
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window);
move_tile_window(k_dram_window, {0, kK0});
__builtin_amdgcn_sched_barrier(0);
buffer_load_fence(k_dram_window.get_num_access(), q.get_thread_buffer());
(void)q_element_func; // ??? rocm-6.x if use q element func will have scratch on hdim=64/32
// auto q_tile = q; // tile_elementwise_in(q_element_func, q);
index_t i_total_loops = 0;
constexpr index_t k0_loops = kK0BlockLength / kK0;
constexpr index_t k1_loops = kN0 / kK1;
static_assert(1 <= k0_loops);
static_assert(1 <= k1_loops);
// main loop
do
{
// STAGE 1, QK gemm
clear_tile(s_acc); // initialize C
if constexpr(k0_loops > 1)
{
static_for<0, k0_loops - 1, 1>{}([&](auto i_k0) {
async_load_tile_raw(k_lds_store(number<LdsSeq.at(number<i_k0 + 1>{})>{}),
k_dram_window);
if constexpr(i_k0 < k0_loops - 1)
move_tile_window(k_dram_window, {0, kK0});
async_load_fence(k_dram_window.get_num_access());
__builtin_amdgcn_s_barrier();
__builtin_amdgcn_sched_barrier(0);
gemm_0(s_acc,
get_slice_tile(
q, sequence<0, i_k0 * kK0>{}, sequence<kM0, (i_k0 + 1) * kK0>{}),
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
k_lds_load[number<LdsSeq.at(number<i_k0>{})>{}]);
#else
get_slice_tile(k_lds_load,
sequence<(LdsSeq.at(number<i_k0>{})) * kN0, 0>{},
sequence<(LdsSeq.at(number<i_k0>{}) + 1) * kN0, kK0>{}));
#endif
});
}
// TODO: this to fix a bug when loop smaller than 2,
// the following fence/barrier will be scheduled inside 1st loop
if constexpr(k0_loops <= 2)
__builtin_amdgcn_sched_barrier(0);
async_load_fence();
__builtin_amdgcn_s_barrier();
const auto bias_tile = load_tile(bias_dram_window); // load bias tile
auto v_buf = load_tile(v_dram_window, bool_constant<false>{});
__builtin_amdgcn_sched_barrier(0);
{ // tail
gemm_0(s_acc,
get_slice_tile(
q, sequence<0, (k0_loops - 1) * kK0>{}, sequence<kM0, k0_loops * kK0>{}),
#if K_LDS_LOAD_USE_OFFSET_TRANSFORM
k_lds_load[number<LdsSeq.at(number<k0_loops - 1>{})>{}]);
#else
get_slice_tile(
k_lds_load,
sequence<(LdsSeq.at(number<k0_loops - 1>{})) * kN0, 0>{},
sequence<(LdsSeq.at(number<k0_loops - 1>{}) + 1) * kN0, kK0>{}));
#endif
}
__builtin_amdgcn_sched_barrier(1);
// STAGE 2, scale_s, add bias, mask, softmax
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS)
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
tile_elementwise_inout(
[&](auto& x, const auto& y) {
#if !CK_TILE_FMHA_FWD_FAST_EXP2
x += type_convert<SaccDataType>(bias_element_func(y));
#else
x += log2e_v<SaccDataType> *
type_convert<SaccDataType>(bias_element_func(y));
#endif
},
s_acc,
bias_tile);
}
else if constexpr(BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
const auto k_origin = k_dram_block_window.get_window_origin();
constexpr auto s_spans = decltype(s_acc)::get_distributed_spans();
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
sweep_tile_span(s_spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(s_spans[number<1>{}], [&](auto idx1) {
const auto tile_idx = get_x_indices_from_distributed_indices(
s_acc.get_tile_distribution(), make_tuple(idx0, idx1));
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
constexpr auto i_j_idx = make_tuple(idx0, idx1);
s_acc(i_j_idx) *= scale_s;
position_encoding.update(s_acc(i_j_idx), row, col);
});
});
}
else
{
s_acc = tile_elementwise_in(s_acc_element_func, s_acc);
#if !CK_TILE_FMHA_FWD_FAST_EXP2
tile_elementwise_inout([&scale_s](auto& x) { x = x * scale_s; }, s_acc);
#endif
}
move_tile_window(bias_dram_window, {0, kN0});
/// TODO: only check in last iteration without increasing code size
if constexpr(kHasUnevenSplits)
{
const auto k_origin = k_dram_block_window.get_window_origin();
set_tile_if(s_acc,
-numeric<SMPLComputeDataType>::infinity(),
[&, seqlen_k_end_ = seqlen_k_end](auto tile_idx) {
const auto col =
k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return seqlen_k_end_ <= col;
});
}
if constexpr(kPadSeqLenK || FmhaMask::IsMasking)
{
const auto k_origin = k_dram_block_window.get_window_origin();
bool need_perpixel_check = mask.IsEdgeTile(q_origin.at(number<0>{}),
k_origin.at(number<0>{}),
number<kM0>{},
number<kN0>{});
if(need_perpixel_check)
{
set_tile_if(
s_acc, -numeric<SMPLComputeDataType>::infinity(), [&](auto tile_idx) {
const auto row = q_origin.at(number<0>{}) + tile_idx.at(number<0>{});
const auto col = k_origin.at(number<0>{}) + tile_idx.at(number<1>{});
return mask.IsOutOfBound(row, col);
});
}
}
const auto s = cast_tile<SMPLComputeDataType>(s_acc); // S{j}
auto m_local = block_tile_reduce<SMPLComputeDataType>(
s,
sequence<1>{},
f_max,
-numeric<SMPLComputeDataType>::infinity()); // m_local = rowmax(S{j})
block_tile_reduce_sync(m_local, f_max, bool_constant<false>{});
const auto m_old = m; // m{j-1}
tile_elementwise_inout(
[](auto& e0, auto e1, auto e2) { e0 = max(e1, e2); }, m, m_old, m_local); // m{j}
auto p_compute = make_static_distributed_tensor<SMPLComputeDataType>(
s.get_tile_distribution()); // Pcompute{j}
__builtin_amdgcn_sched_barrier(0x7F);
// store & prefetch next v, after the max reduction
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v_buf);
auto v_lds_window_tmp =
get_slice_tile(v_lds_window,
sequence<(LdsSeq.at(number<k0_loops>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops>{}) + 1) * kN1, kK1>{});
store_tile(
v_lds_window_tmp,
tile_elementwise_in(v_element_func, v_shuffle_tmp)); // store the prefetch
}
else
{
auto v_lds_window_tmp =
get_slice_tile(v_lds_window,
sequence<(LdsSeq.at(number<k0_loops>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops>{}) + 1) * kN1, kK1>{});
store_tile(v_lds_window_tmp,
tile_elementwise_in(v_element_func, v_buf)); // store the prefetch
}
if constexpr(k1_loops > 1)
{
move_tile_window(
v_dram_window,
{0, kK1}); // will have scratch if move this right after load_tile(v_dram)...
v_buf = load_tile(v_dram_window, bool_constant<false>{}); // load next v_buf
}
__builtin_amdgcn_sched_barrier(0);
static const auto get_validated_m = [](SMPLComputeDataType raw_m) {
/// NOTICE: bias might be materialized mask including -inf values, need
/// consideration. alibi does not have this problem
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
FmhaMask::IsMasking)
{
return raw_m == -numeric<SMPLComputeDataType>::infinity()
? type_convert<SMPLComputeDataType>(0.f)
: raw_m;
}
else
{
return raw_m;
}
};
constexpr auto p_spans = decltype(p_compute)::get_distributed_spans();
sweep_tile_span(p_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
auto row_max = scale_s * get_validated_m(m[i_idx]);
#endif
sweep_tile_span(p_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
p_compute(i_j_idx) = exp2(s[i_j_idx] - get_validated_m(m[i_idx]));
}
else
{
p_compute(i_j_idx) = exp2(scale_s * s[i_j_idx] - row_max);
}
#else
p_compute(i_j_idx) = exp(s[i_j_idx] - get_validated_m(m[i_idx]));
#endif
});
});
auto rowsum_p = block_tile_reduce<SMPLComputeDataType>(
p_compute, sequence<1>{}, f_sum, SMPLComputeDataType{0}); // rowsum(Pcompute{j})
block_tile_reduce_sync(rowsum_p, f_sum, bool_constant<false>{});
// l{j}, Oacc{j}
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
const auto tmp = [&]() {
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
return exp2(m_old[i_idx] - get_validated_m(m[i_idx]));
}
else
{
auto row_max = scale_s * get_validated_m(m[i_idx]);
return exp2(scale_s * m_old[i_idx] - row_max);
}
}();
#else
const auto tmp = exp(m_old[i_idx] - get_validated_m(m[i_idx]));
#endif
l(i_idx) = tmp * l[i_idx] + rowsum_p[i_idx];
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
// FIXME: this use different equation from FA v2 paper,
// but produce correc result.
// Is the equation wrong?
o_acc(i_j_idx) *= tmp;
});
});
if constexpr(kHasDropout)
{
auto randval_ptr =
reinterpret_cast<char*>(smem_ptr) + Policy::template GetSmemSizeKV<Problem>();
dropout.Run<decltype(gemm_0), SMPLComputeDataType, RandValOutputDataType>(
randval_ptr,
seqlen_k_start + i_total_loops * kN0,
p_compute,
randval_dram_window);
}
const auto p =
cast_tile<PDataType>(tile_elementwise_in(p_compute_element_func, p_compute));
// STAGE 3, KV gemm
if constexpr(k1_loops > 1)
{
static_for<0, k1_loops - 1, 1>{}([&](auto i_k1) {
if constexpr(i_k1 != 0 && i_k1 < k1_loops - 1)
{
v_buf = load_tile(v_dram_window, bool_constant<false>{}); // load next v_buf
}
block_sync_lds();
gemm_1(o_acc,
get_slice_tile(
p, sequence<0, i_k1 * kK1>{}, sequence<kM0, (i_k1 + 1) * kK1>{}),
get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + i_k1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + i_k1>{}) + 1) * kN1, kK1>{}));
if constexpr(std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
auto v_shuffle_tmp = make_static_distributed_tensor<VDataType>(
Policy::template MakeShuffledVRegBlockDescriptor<Problem>());
shuffle_tile(v_shuffle_tmp, v_buf);
auto v_lds_window_tmp = get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{}) + 1) * kN1, kK1>{});
store_tile(v_lds_window_tmp,
tile_elementwise_in(v_element_func,
v_shuffle_tmp)); // store the prefetch
}
else
{
auto v_lds_window_tmp = get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + i_k1 + 1>{}) + 1) * kN1, kK1>{});
store_tile(v_lds_window_tmp,
tile_elementwise_in(v_element_func, v_buf)); // store next v_buf
}
if constexpr(i_k1 < k1_loops - 1)
move_tile_window(v_dram_window, {0, kK1});
});
}
i_total_loops++;
if(i_total_loops < num_total_loop)
{
// move K tile windows
move_tile_window(k_dram_block_window, {kN0, 0});
k_dram_window =
make_tile_window(k_dram_block_window.get_bottom_tensor_view(),
k_dram_block_window.get_window_lengths(),
k_dram_block_window.get_window_origin(),
Policy::template MakeKDramTileDistribution<Problem>());
if constexpr(k1_loops >= 2 &&
LdsSeq.at(number<0>{}) == LdsSeq.at(number<k0_loops + k1_loops - 2>{}))
__builtin_amdgcn_s_barrier();
async_load_tile_raw(k_lds_store(LdsSeq.at(number<0>{})), k_dram_window);
move_tile_window(k_dram_window, {0, kK0});
}
// tail
{
block_sync_lds();
gemm_1(
o_acc,
get_slice_tile(p, sequence<0, (k1_loops - 1) * kK1>{}, sequence<kM0, kN0>{}),
get_slice_tile(
v_lds_window,
sequence<(LdsSeq.at(number<k0_loops + k1_loops - 1>{})) * kN1, 0>{},
sequence<(LdsSeq.at(number<k0_loops + k1_loops - 1>{}) + 1) * kN1, kK1>{}));
}
} while(i_total_loops < num_total_loop);
// store lse acc
if constexpr(kStoreLSE)
{
auto lse_acc = make_static_distributed_tensor<LSEDataType>(m.get_tile_distribution());
constexpr auto lse_acc_spans = decltype(lse_acc)::get_distributed_spans();
sweep_tile_span(lse_acc_spans[number<0>{}], [&, m_ = m, l_ = l](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
#if CK_TILE_FMHA_FWD_FAST_EXP2
if constexpr(BiasEnum == BlockAttentionBiasEnum::ELEMENTWISE_BIAS ||
BiasEnum == BlockAttentionBiasEnum::ALIBI)
{
lse_acc(i_idx) = m_[i_idx] * R_LOG2E + log(l_[i_idx]);
}
else
{
lse_acc(i_idx) = m_[i_idx] * scale_s * R_LOG2E + log(l_[i_idx]);
}
#else
lse_acc(i_idx) = m_[i_idx] + log(l_[i_idx]);
#endif
});
store_tile(lse_acc_dram_window_tmp, tile_elementwise_in(lse_acc_element_func, lse_acc));
}
// finally, O
constexpr auto o_spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(o_spans[number<0>{}], [&](auto idx0) {
constexpr auto i_idx = make_tuple(idx0);
const auto tmp = [&]() {
if constexpr(FmhaMask::IsMasking)
{
return l[i_idx] == 0.f ? 0.f : 1 / l[i_idx];
}
else
return 1 / l[i_idx];
}();
sweep_tile_span(o_spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
o_acc(i_j_idx) *= tmp;
});
});
o_acc = tile_elementwise_in(o_acc_element_func, o_acc);
return o_acc;
}
template <typename QDramBlockWindowTmp,
typename KDramBlockWindowTmp,
typename VDramBlockWindowTmp,
typename BiasDramBlockWindowTmp,
typename RandValDramBlockWindowTmp,
typename LSEaccDramBlockWindowTmp,
typename PositionEncoding>
CK_TILE_HOST_DEVICE auto
operator()(const QDramBlockWindowTmp& q_dram_block_window_tmp, // M0*K0 tile
const KDramBlockWindowTmp& k_dram_block_window_tmp, // N0*K0 tile
const VDramBlockWindowTmp& v_dram_block_window_tmp, // N1*K1 tile
const BiasDramBlockWindowTmp& bias_dram_block_window_tmp, // M0*N0 tile
RandValDramBlockWindowTmp& randval_dram_block_window_tmp, // M0*N0 tile
LSEaccDramBlockWindowTmp& lse_acc_dram_block_window_tmp, // M0*1 tile
index_t num_splits,
index_t i_split,
FmhaMask mask,
PositionEncoding position_encoding,
float scale_s,
void* smem_ptr,
BlockDropout& dropout) const
{
return operator()(q_dram_block_window_tmp,
identity{},
k_dram_block_window_tmp,
identity{},
v_dram_block_window_tmp,
identity{},
bias_dram_block_window_tmp,
identity{},
randval_dram_block_window_tmp,
lse_acc_dram_block_window_tmp,
identity{},
identity{},
identity{},
identity{},
num_splits,
i_split,
mask,
position_encoding,
scale_s,
smem_ptr,
dropout);
}
};
} // namespace ck_tile
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
using BlockFmhaFwdSplitKVPipelineQRKSVSAsyncDefaultPolicy =
BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ true,
/* AsyncCopyK = */ true,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 3,
/* NumPrefetchV = */ 3>;
} // namespace ck_tile
......@@ -54,38 +54,50 @@ struct BlockFmhaPipelineProblem
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
};
template <typename QDataType,
typename KDataType,
typename VDataType,
typename SaccDataType,
typename SMPLComputeDataType,
typename BiasDataType,
typename RandValOutputDataType,
typename LSEDataType,
typename PDataType,
typename OaccDataType,
typename ODataType,
typename BlockFmhaShape,
bool kIsGroupMode,
typename FmhaMask,
typename Traits>
struct BlockFmhaFwdSplitKVPipelineProblem : BlockFmhaPipelineProblem<QDataType,
KDataType,
VDataType,
SaccDataType,
SMPLComputeDataType,
BiasDataType,
RandValOutputDataType,
LSEDataType,
PDataType,
OaccDataType,
ODataType,
BlockFmhaShape,
kIsGroupMode,
FmhaMask,
Traits>
template <typename QDataType_,
typename KDataType_,
typename VDataType_,
typename SaccDataType_,
typename SMPLComputeDataType_,
typename BiasDataType_,
typename LSEDataType_,
typename PDataType_,
typename OaccDataType_,
typename ODataType_,
typename BlockFmhaShape_,
bool kIsGroupMode_,
typename FmhaMask_,
typename Traits_>
struct BlockFmhaFwdSplitKVPipelineProblem
{
static constexpr bool kHasUnevenSplits = kIsGroupMode || Traits::kHasUnevenSplits;
using QDataType = remove_cvref_t<QDataType_>;
using KDataType = remove_cvref_t<KDataType_>;
using VDataType = remove_cvref_t<VDataType_>;
using SaccDataType = remove_cvref_t<SaccDataType_>;
using SMPLComputeDataType = remove_cvref_t<SMPLComputeDataType_>;
using BiasDataType = remove_cvref_t<BiasDataType_>;
using LSEDataType = remove_cvref_t<LSEDataType_>;
using PDataType = remove_cvref_t<PDataType_>;
using OaccDataType = remove_cvref_t<OaccDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
using BlockFmhaShape = remove_cvref_t<BlockFmhaShape_>;
using FmhaMask = remove_cvref_t<FmhaMask_>;
using Traits = remove_cvref_t<Traits_>;
static constexpr index_t kBlockSize = BlockFmhaShape::NumWarps * get_warp_size();
static constexpr bool kIsGroupMode = kIsGroupMode_;
// attributes from traits
static constexpr bool kPadSeqLenQ = Traits::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Traits::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Traits::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Traits::kPadHeadDimV;
static constexpr auto BiasEnum = Traits::BiasEnum;
static constexpr bool kStoreLSE = Traits::kStoreLSE;
static constexpr bool kDoFp8StaticQuant = Traits::kDoFp8StaticQuant;
static constexpr bool kIsPagedKV = Traits::kIsPagedKV;
static constexpr bool kHasUnevenSplits = kIsGroupMode || Traits::kHasUnevenSplits;
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
};
template <typename LSEDataType_,
......@@ -119,4 +131,44 @@ struct BlockFmhaSplitKVCombinePipelineProblem
static constexpr index_t kMaxSplits = Traits::kMaxSplits;
};
template <typename QDataType_,
typename KDataType_,
typename VDataType_,
index_t kM0_,
index_t kN0_,
index_t kK0_,
index_t kN1_,
bool kIsVLayoutRowMajor_,
RotaryEmbeddingEnum RotaryEnum_,
bool kIsPagedKV_,
typename Traits_>
struct BlockFmhaFwdAppendKVPipelineProblem
{
using QDataType = remove_cvref_t<QDataType_>;
using KDataType = remove_cvref_t<KDataType_>;
using VDataType = remove_cvref_t<VDataType_>;
using Traits = remove_cvref_t<Traits_>;
static constexpr index_t kBlockSize = 256;
static constexpr index_t kM0 = kM0_;
static constexpr index_t kN0 = kN0_;
static constexpr index_t kK0 = kK0_;
static constexpr index_t kN1 = kN1_;
using VLayout = std::conditional_t<kIsVLayoutRowMajor_,
ck_tile::tensor_layout::gemm::RowMajor,
ck_tile::tensor_layout::gemm::ColumnMajor>;
static constexpr auto RotaryEnum = RotaryEnum_;
static constexpr bool kIsPagedKV = kIsPagedKV_;
// attributes from traits
static constexpr bool kPadSeqLenQ = Traits::kPadSeqLenQ;
static constexpr bool kPadSeqLenK = Traits::kPadSeqLenK;
static constexpr bool kPadHeadDimQ = Traits::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = Traits::kPadHeadDimV;
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
};
} // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment