Commit 4885c38a authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'transpose_opt' of https://github.com/ROCm/composable_kernel into rowwise_opt

parents cbf14ee1 7c8e92fa
......@@ -553,12 +553,7 @@ if(NOT DEFINED INSTANCES_ONLY)
PACKAGE_NAME examples
)
add_subdirectory(example)
if(GPU_TARGETS MATCHES "gfx9" AND NOT INSTANCES_ONLY)
add_subdirectory(codegen)
endif()
if(BUILD_TESTING)
add_subdirectory(test)
endif()
add_subdirectory(test)
rocm_package_setup_component(profiler
LIBRARY_NAME composablekernel
......@@ -575,6 +570,10 @@ if(NOT DEFINED INSTANCES_ONLY)
endif()
endif()
if(NOT DEFINED PROFILER_ONLY AND (GPU_TARGETS MATCHES "gfx9" OR DEFINED INSTANCES_ONLY))
add_subdirectory(codegen)
endif()
#Create an interface target for the include only files and call it "composablekernels"
include(CMakePackageConfigHelpers)
......
......@@ -262,10 +262,19 @@ def cmake_build(Map conf=[:]){
// reduce parallelism when compiling, clang uses too much memory
def nt = nthreads()
def cmd
def setup_cmd
def build_cmd
def execute_cmd = conf.get("execute_cmd", "")
if(!setup_args.contains("NO_CK_BUILD")){
def setup_cmd = conf.get("setup_cmd", "${cmake_envs} cmake ${setup_args} .. ")
def build_cmd = conf.get("build_cmd", "${build_envs} dumb-init make -j${nt} ${config_targets}")
if (setup_args.contains("gfx90a") && params.NINJA_BUILD_TRACE){
echo "running ninja build trace"
setup_cmd = conf.get("setup_cmd", "${cmake_envs} cmake -G Ninja ${setup_args} .. ")
build_cmd = conf.get("build_cmd", "${build_envs} ninja -j${nt} ${config_targets}")
}
else{
setup_cmd = conf.get("setup_cmd", "${cmake_envs} cmake ${setup_args} .. ")
build_cmd = conf.get("build_cmd", "${build_envs} dumb-init make -j${nt} ${config_targets}")
}
cmd = conf.get("cmd", """
${setup_cmd}
${build_cmd}
......@@ -281,7 +290,19 @@ def cmake_build(Map conf=[:]){
echo cmd
dir("build"){
//build CK
sh cmd
//run tests
if(!setup_args.contains("NO_CK_BUILD")){
if (setup_args.contains("gfx90a") && params.NINJA_BUILD_TRACE){
sh "/ninjatracing/ninjatracing .ninja_log > ck_build_trace.json"
archiveArtifacts "ck_build_trace.json"
sh "ninja test"
}
else{
sh "make check"
}
}
}
// Only archive from master or develop
......@@ -543,7 +564,7 @@ def Build_CK(Map conf=[:]){
cmake_build(conf)
dir("build"){
//run tests and examples
sh 'make -j check'
//sh 'make -j check'
if (params.RUN_PERFORMANCE_TESTS && do_perf_tests == 0 ){
//we only need the ckProfiler to run the performance tests, so we pack and stash it
//do not stash profiler on nodes where we don't need to run performance tests
......@@ -684,8 +705,8 @@ def process_results(Map conf=[:]){
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=6.2; RUN_CK_TILE_TESTS=true
0 21 * * * % ROCMVERSION=6.2;hipTensor_test=true
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;BUILD_COMPILER=/llvm-project/build/bin/clang++;BUILD_GFX12=true;USE_SCCACHE=false
0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;BUILD_COMPILER=/llvm-project/build/bin/clang++;BUILD_GFX12=true;USE_SCCACHE=false
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-staging;BUILD_COMPILER=/llvm-project/build/bin/clang++;BUILD_GFX12=true;USE_SCCACHE=false;NINJA_BUILD_TRACE=true
0 17 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-mainline-open;BUILD_COMPILER=/llvm-project/build/bin/clang++;BUILD_GFX12=true;USE_SCCACHE=false;NINJA_BUILD_TRACE=true
0 15 * * * % BUILD_INSTANCES_ONLY=true;RUN_CODEGEN_TESTS=false;RUN_PERFORMANCE_TESTS=false;USE_SCCACHE=false''' : ""
pipeline {
......@@ -765,7 +786,10 @@ pipeline {
name: "BUILD_GFX12",
defaultValue: false,
description: "Build CK and run tests on gfx12 (default: OFF)")
booleanParam(
name: "NINJA_BUILD_TRACE",
defaultValue: false,
description: "Generate a ninja build trace (default: OFF)")
}
environment{
dbuser = "${dbuser}"
......@@ -799,6 +823,7 @@ pipeline {
}
agent{ label rocmnode("nogpu") }
environment{
setup_args = "NO_CK_BUILD"
execute_cmd = "find .. -not -path \'*.git*\' -iname \'*.h\' \
-o -not -path \'*.git*\' -iname \'*.hpp\' \
-o -not -path \'*.git*\' -iname \'*.cpp\' \
......@@ -815,7 +840,7 @@ pipeline {
--file-filter=*.cpp --force --enable=all --output-file=ck_cppcheck.log"
}
steps{
buildHipClangJobAndReboot(setup_cmd: "", build_cmd: "", execute_cmd: execute_cmd, no_reboot:true)
buildHipClangJobAndReboot(setup_args:setup_args, setup_cmd: "", build_cmd: "", execute_cmd: execute_cmd, no_reboot:true)
archiveArtifacts "build/ck_cppcheck.log"
cleanWs()
}
......@@ -827,6 +852,7 @@ pipeline {
}
agent{ label rocmnode("nogpu") }
environment{
setup_args = "NO_CK_BUILD"
execute_cmd = "find .. -not -path \'*.git*\' -iname \'*.h\' \
-o -not -path \'*.git*\' -iname \'*.hpp\' \
-o -not -path \'*.git*\' -iname \'*.cpp\' \
......@@ -838,7 +864,7 @@ pipeline {
| xargs -n 1 -P 1 -I{} -t sh -c \'clang-format-12 -style=file {} | diff - {}\'"
}
steps{
buildHipClangJobAndReboot(setup_cmd: "", build_cmd: "", execute_cmd: execute_cmd, no_reboot:true)
buildHipClangJobAndReboot(setup_args:setup_args, setup_cmd: "", build_cmd: "", execute_cmd: execute_cmd, no_reboot:true)
cleanWs()
}
}
......@@ -967,10 +993,10 @@ pipeline {
}
agent{ label rocmnode("gfx90a") }
environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1100;gfx90a" -DCMAKE_CXX_FLAGS=" -O3 " """
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx90a" -DCMAKE_CXX_FLAGS=" -O3 " """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && \
cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" \
-DGPU_TARGETS="gfx1100;gfx90a" \
-DGPU_TARGETS="gfx90a" \
-DCMAKE_CXX_COMPILER="${build_compiler()}" \
-DCMAKE_CXX_FLAGS=" -O3 " .. && make -j """
}
......@@ -1074,7 +1100,7 @@ pipeline {
options { retry(1) }
agent{ label rocmnode("gfx90a")}
environment{
setup_args = """ -DGPU_TARGETS="gfx90a" -DBUILD_DEV=On """
setup_args = "NO_CK_BUILD"
}
steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
......
if(GPU_TARGETS MATCHES "gfx9")
# Fwd scaleadd scaleadd relu
add_executable(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32
add_executable(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32
grouped_convnd_fwd_scaleadd_scaleadd_relu/grouped_conv_fwd_scaleadd_scaleadd_relu_fp32.cpp)
target_link_libraries(client_grouped_convnd_fwd_scaleadd_scaleadd_relu_fp32 PRIVATE composable_kernel::device_conv_operations)
......@@ -36,7 +36,7 @@ add_executable(client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp)
target_link_libraries(client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations)
# Fwd convinvscale
add_executable(client_conv3d_fwd_convinvscale_fp8
add_executable(client_conv3d_fwd_convinvscale_fp8
grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convinvscale_fp8 PRIVATE composable_kernel::device_conv_operations)
# Fwd convscale + Bias
......@@ -47,6 +47,22 @@ target_link_libraries(client_conv3d_fwd_convscale_add_fp8 PRIVATE composable_ker
add_executable(client_conv3d_fwd_convscale_relu_fp8
grouped_convnd_fwd_convscale_relu/conv3d_fwd_convscale_relu_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_relu_fp8 PRIVATE composable_kernel::device_conv_operations)
# Fwd convscale + ReLU + AMAX
add_executable(client_conv3d_fwd_convscale_relu_amax_fp8
grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_relu_amax_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_relu_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility)
# Fwd convscale + AMAX
add_executable(client_conv3d_fwd_convscale_amax_fp8
grouped_convnd_fwd_convscale_reduce/conv3d_fwd_convscale_amax_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_amax_fp8
PRIVATE composable_kernel::device_conv_operations
composable_kernel::device_other_operations
composable_kernel::device_reduction_operations
utility)
# Fwd convscale
add_executable(client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp)
......@@ -56,11 +72,11 @@ add_executable(client_conv3d_fwd_convscale_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_bf8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_conv3d_fwd_convscale_fp8_bf8
add_executable(client_conv3d_fwd_convscale_fp8_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_fp8_bf8 PRIVATE composable_kernel::device_conv_operations)
add_executable(client_conv3d_fwd_convscale_bf8_fp8
add_executable(client_conv3d_fwd_convscale_bf8_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_bf8_fp8.cpp)
target_link_libraries(client_conv3d_fwd_convscale_bf8_fp8 PRIVATE composable_kernel::device_conv_operations)
# Bwd data bilinear
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/type.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale_relu.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convscale.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/library/tensor_operation_instance/gpu/permute_scale.hpp"
#include "ck/library/tensor_operation_instance/gpu/reduce/reduce.hpp"
#include "ck/library/utility/host_tensor.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ConvScaleRelu = ck::tensor_operation::element_wise::ScaleScaleRelu;
using ConvScale = ck::tensor_operation::element_wise::ScaleScalePass;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths,
const std::size_t& ds_size)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product> +
// + ds_size * <output tensor size> =>
// => <output tensor size> * ( 2 * C * <filter spatial lengths product> + ds_size) =>
// => G * N * K * <output spatial lengths product> * (2 * C * <filter spatial lengths product> +
// ds_size)
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return G * N * K *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
(ds_size + static_cast<std::size_t>(2) * C *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()));
}
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t GetTensorSize(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& lengths)
{
return std::accumulate(std::begin(lengths),
std::end(lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
}
template <typename InDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetInputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& input_lengths)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) * GetTensorSize<NumDimSpatial>(input_lengths);
}
template <typename WeiDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetWeightByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * GetTensorSize<NumDimSpatial>(weights_lengths);
}
template <typename OutDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetOutputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return sizeof(OutDataType) * GetTensorSize<NumDimSpatial>(output_lengths);
}
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename ConvElementOp,
typename InLayout,
typename WeiLayout,
typename OutLayout,
ck::index_t NumDimSpatial,
ck::index_t NumNonSpatialDim = 3,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool ConvolutionScale(SimpleDeviceMem& in,
SimpleDeviceMem& wei,
SimpleDeviceMem& out,
ConvElementOp elementwise_op,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& in_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& in_strides,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& wei_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& wei_strides,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& out_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& out_strides);
template <typename InDataType,
typename OutDataType,
ck::index_t NumDimSpatial,
ck::index_t NumNonSpatialDim = 3>
bool TensorScaleConvert(SimpleDeviceMem& in,
SimpleDeviceMem& out,
float scale_out,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& strides);
template <typename InDataType,
typename OutDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t NumDimSpatial,
ck::index_t NumNonSpatialDim = 3>
bool TensorFullReduction(SimpleDeviceMem& tensor,
SimpleDeviceMem& out_amax,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& strides);
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename ConvOutDataType,
typename OutDataType,
typename ConvElementOp,
ck::ReduceTensorOp ReduceOp,
typename InLayout,
typename WeiLayout,
typename OutLayout,
ck::index_t NumNonSpatialDim = 3,
typename AComputeType = InDataType,
typename BComputeType = AComputeType>
bool run_grouped_conv_fwd_convscale_reduce(
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_lengths)
{
namespace ctc = ck::tensor_layout::convolution;
static_assert(NumDimSpatial == 3 && ck::is_same_v<InLayout, ctc::NDHWGC> &&
ck::is_same_v<WeiLayout, ctc::GKZYXC> &&
ck::is_same_v<OutLayout, ctc::NDHWGK>,
"Unsupported configuration");
const ck::index_t G = in_lengths[4];
const ck::index_t N = in_lengths[0];
const ck::index_t K = wei_lengths[1];
const ck::index_t C = in_lengths[5];
const ck::index_t Z = wei_lengths[2];
const ck::index_t Y = wei_lengths[3];
const ck::index_t X = wei_lengths[4];
const ck::index_t Di = in_lengths[1];
const ck::index_t Hi = in_lengths[2];
const ck::index_t Wi = in_lengths[3];
const ck::index_t Do = out_lengths[1];
const ck::index_t Ho = out_lengths[2];
const ck::index_t Wo = out_lengths[3];
const std::size_t in_mem_size = sizeof(InDataType) * N * Di * Hi * Wi * G * C;
const std::size_t wei_mem_size = sizeof(WeiDataType) * G * K * Z * Y * X * C;
const std::size_t conv_out_mem_size = sizeof(ConvOutDataType) * N * Do * Ho * Wo * G * K;
const std::size_t out_mem_size = sizeof(OutDataType) * N * Do * Ho * Wo * G * K;
SimpleDeviceMem in(in_mem_size);
SimpleDeviceMem wei(wei_mem_size);
SimpleDeviceMem conv_out(conv_out_mem_size);
SimpleDeviceMem out(out_mem_size);
float scale_in = float(std::rand()) / float(RAND_MAX);
float scale_wei = float(std::rand()) / float(RAND_MAX);
float scale_out = float(std::rand()) / float(RAND_MAX);
// We have NDHWGC/GKZYXC/NDHWGK (x, weight, y) in memory space.
// However, CK's API only accepts lengths and strides with order of GNCDHW/GKCZYX/GNKDHW.
// Hence, we need to adjust the order of strides.
const std::array<ck::index_t, NumDimSpatial + 3> input_lengths{G, N, C, Di, Hi, Wi};
const std::array<ck::index_t, NumDimSpatial + 3> input_strides{
C, Di * Hi * Wi * G * C, 1, Hi * Wi * G * C, Wi * G * C, G * C};
const std::array<ck::index_t, NumDimSpatial + 3> weights_lengths{G, K, C, Z, Y, X};
const std::array<ck::index_t, NumDimSpatial + 3> weights_strides{
K * Z * Y * X * C, Z * Y * X * C, 1, Y * X * C, X * C, C};
const std::array<ck::index_t, NumDimSpatial + 3> output_lengths{G, N, K, Do, Ho, Wo};
const std::array<ck::index_t, NumDimSpatial + 3> output_strides{
K, Do * Ho * Wo * G * K, 1, Ho * Wo * G * K, Wo * G * K, G * K};
/*
* FP8 Convolution with Scaling
*/
std::cout << "\n\nConvolution with scale Benchmarking:" << std::endl;
auto elementwise_op = ConvElementOp{ck::tensor_operation::element_wise::Scale{scale_in},
ck::tensor_operation::element_wise::Scale{scale_wei},
{}};
auto conv_ok = ConvolutionScale<InDataType,
WeiDataType,
ConvOutDataType,
ConvElementOp,
InLayout,
WeiLayout,
OutLayout,
NumDimSpatial>(in,
wei,
conv_out,
elementwise_op,
input_lengths,
input_strides,
weights_lengths,
weights_strides,
output_lengths,
output_strides);
if(!conv_ok)
return false;
/*
* Scale with output weight and convert to FP8
*/
std::cout << "\n\nElement-wise scale + convert Benchmarking:" << std::endl;
auto elem_wise_ok = TensorScaleConvert<ConvOutDataType, OutDataType, NumDimSpatial>(
conv_out, out, scale_out, output_lengths, output_strides);
if(!elem_wise_ok)
return false;
/*
* Compute AMAX
*/
std::cout << "\n\nAMAX Benchmarking:" << std::endl;
SimpleDeviceMem amax_device(sizeof(ConvOutDataType));
auto reduction_ok =
TensorFullReduction<ConvOutDataType,
ConvOutDataType,
ck::ReduceTensorOp::AMAX,
NumDimSpatial>(conv_out, amax_device, output_lengths, output_strides);
if(!reduction_ok)
return false;
return true;
}
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename ConvElementOp,
typename InLayout,
typename WeiLayout,
typename OutLayout,
ck::index_t NumDimSpatial,
ck::index_t NumNonSpatialDim,
typename AComputeType,
typename BComputeType>
bool ConvolutionScale(SimpleDeviceMem& in,
SimpleDeviceMem& wei,
SimpleDeviceMem& out,
ConvElementOp elementwise_op,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& in_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& in_strides,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& wei_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& wei_strides,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& out_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& out_strides)
{
const std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1, 1};
const std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1, 1};
const std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1, 1};
const std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1, 1};
const auto in_mem_size = GetInputByte<InDataType, NumDimSpatial>(in_lengths);
const auto wei_mem_size = GetWeightByte<WeiDataType, NumDimSpatial>(wei_lengths);
const auto out_mem_size = GetOutputByte<OutDataType, NumDimSpatial>(out_lengths);
std::size_t ds_size = 2; // 2 element-wise scale multipliers
if constexpr(ck::is_same_v<ConvElementOp, ConvScaleRelu>)
{
ds_size += 1; // +1 element-wise relu
}
std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths, ds_size);
std::size_t num_bytes =
in_mem_size + wei_mem_size + sizeof(float) + sizeof(float) + out_mem_size;
using ConvDeviceOp =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
ConvElementOp,
AComputeType,
BComputeType>;
// get device op instances
const auto conv_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
ConvDeviceOp>::GetInstances();
std::cout << "found " << conv_ptrs.size() << " instances" << std::endl;
std::string conv_best_op_name;
int conv_best_op_id = -1;
float conv_best_avg_time = std::numeric_limits<float>::max();
float conv_best_gb_per_sec = 0;
float conv_best_tflops = 0;
// profile device operation instances
std::cout << "Run all convolution instances and do timing" << std::endl;
for(int i = 0; i < conv_ptrs.size(); ++i)
{
auto& op_ptr = conv_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
elementwise_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > conv_best_tflops)
{
conv_best_op_id = i;
conv_best_op_name = op_name;
conv_best_avg_time = avg_time;
conv_best_gb_per_sec = gb_per_sec;
conv_best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(conv_best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return false;
}
std::cout << "Best Perf: " << std::setw(10) << conv_best_avg_time << " ms, " << conv_best_tflops
<< " TFlops, " << conv_best_gb_per_sec << " GB/s, " << conv_best_op_name << std::endl;
// run the best instance
{
auto& op_ptr = conv_ptrs[conv_best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
elementwise_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return true;
}
template <typename InDataType,
typename OutDataType,
ck::index_t NumDimSpatial,
ck::index_t NumNonSpatialDim>
bool TensorScaleConvert(SimpleDeviceMem& in,
SimpleDeviceMem& out,
float scale_out,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& strides)
{
const auto tensor_size = GetTensorSize<NumDimSpatial>(lengths);
const std::size_t in_mem_size = sizeof(InDataType) * tensor_size;
const std::size_t out_mem_size = sizeof(OutDataType) * tensor_size;
std::size_t flop = 2 * tensor_size; // element-wise scale + convert
std::size_t bytes =
in_mem_size + sizeof(float) + out_mem_size; // read from in, scale, write to out
using DeviceScaleConvert =
ck::tensor_operation::device::DeviceElementwise<ck::Tuple<InDataType>,
ck::Tuple<OutDataType>,
ck::tensor_operation::element_wise::Scale,
NumDimSpatial + NumNonSpatialDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceScaleConvert>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all DeviceScaleConvert instances and do timing" << std::endl;
auto scale_convert = ck::tensor_operation::element_wise::Scale{scale_out};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(lengths,
{strides},
{strides},
{in.GetDeviceBuffer()},
{out.GetDeviceBuffer()},
scale_convert);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance found." << std::endl;
return false;
}
else
{
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(lengths,
{strides},
{strides},
{in.GetDeviceBuffer()},
{out.GetDeviceBuffer()},
scale_convert);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return true;
}
template <typename InDataType,
typename OutDataType,
ck::ReduceTensorOp ReduceOpId,
ck::index_t NumDimSpatial,
ck::index_t NumNonSpatialDim>
bool TensorFullReduction(SimpleDeviceMem& tensor,
SimpleDeviceMem& out_amax,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& strides)
{
const auto spatial_dim_size = std::accumulate(std::next(std::begin(lengths), NumNonSpatialDim),
std::end(lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
const auto tensor_size = GetTensorSize<NumDimSpatial>(lengths);
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
// Get the reduction operation
using ReduceOperation = typename ck::reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename ck::reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename ck::reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
ck::reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(tensor_size));
std::array<ck::index_t, 1> reduce_out_lengths{1};
std::array<ck::index_t, 1> reduce_out_strides{1};
SimpleDeviceMem partial_reduce_tensor(sizeof(OutDataType) * spatial_dim_size);
std::array<ck::index_t, NumDimSpatial> reduce_part_lengths;
std::copy(std::next(std::begin(lengths), NumNonSpatialDim),
std::end(lengths),
std::begin(reduce_part_lengths));
std::array<ck::index_t, NumDimSpatial> reduce_part_strides;
copy(HostTensorDescriptor(reduce_part_lengths).GetStrides(), reduce_part_strides);
{
std::cout << "\nReduction of nonspatial dimensions:" << std::endl;
using DeviceOp =
ck::tensor_operation::device::DeviceReduce<InDataType,
OutDataType,
OutDataType,
NumDimSpatial + NumNonSpatialDim,
NumNonSpatialDim,
ReduceOperation,
InElementwiseOperation,
PassThrough,
true, // PropagateNan
false>; // OutputIndex
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
std::array<int, NumNonSpatialDim> reduce_dims;
std::iota(reduce_dims.begin(), reduce_dims.end(), 0); // 0,..., NumNonSpatialDim-1
ck::index_t num_in_elements = tensor_size;
ck::index_t num_out_elements = spatial_dim_size;
// profile device operation instances
std::cout << "Run partial reduction and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(lengths,
strides,
reduce_part_lengths,
reduce_part_strides,
reduce_dims,
1.0,
0.0,
tensor.GetDeviceBuffer(),
nullptr,
partial_reduce_tensor.GetDeviceBuffer(),
nullptr,
in_elementwise_op,
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes =
num_in_elements * sizeof(InDataType) + num_out_elements * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(ave_time < best_ave_time)
{
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance found." << std::endl;
return false;
}
else
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best instance
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(lengths,
strides,
reduce_part_lengths,
reduce_part_strides,
reduce_dims,
1.0,
0.0,
tensor.GetDeviceBuffer(),
nullptr,
partial_reduce_tensor.GetDeviceBuffer(),
nullptr,
in_elementwise_op,
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
}
{
std::cout << "\nReduction of spatial dimensions:" << std::endl;
using DeviceOp = ck::tensor_operation::device::DeviceReduce<OutDataType,
OutDataType,
OutDataType,
NumDimSpatial,
NumDimSpatial,
ReduceOperation,
PassThrough,
AccElementwiseOperation,
true, // PropagateNan
false>; // OutputIndex
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
std::array<int, NumDimSpatial> reduce_dims;
std::iota(reduce_dims.begin(), reduce_dims.end(), 0); // 0,..., NumDimSpatial-1
ck::index_t num_in_elements = spatial_dim_size;
ck::index_t num_out_elements = 1;
// profile device operation instances
std::cout << "Run final reduction and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(reduce_part_lengths,
reduce_part_strides,
reduce_out_lengths,
reduce_out_strides,
reduce_dims,
1.0,
0.0,
partial_reduce_tensor.GetDeviceBuffer(),
nullptr,
out_amax.GetDeviceBuffer(),
nullptr,
PassThrough{},
acc_elementwise_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_bytes =
num_in_elements * sizeof(OutDataType) + num_out_elements * sizeof(OutDataType);
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(ave_time < best_ave_time)
{
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance found." << std::endl;
return false;
}
else
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best instance
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(reduce_part_lengths,
reduce_part_strides,
reduce_out_lengths,
reduce_out_strides,
reduce_dims,
1.0,
0.0,
partial_reduce_tensor.GetDeviceBuffer(),
nullptr,
out_amax.GetDeviceBuffer(),
nullptr,
PassThrough{},
acc_elementwise_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using CShuffleDataType = float;
using ConvOutDataType = float; // data type of convolution result
using OutDataType = ck::f8_t; // data type of final result
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
using ConvElementOp = ConvScale;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
constexpr auto ReduceOpId = ck::ReduceTensorOp::AMAX;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd_convscale_reduce<NumDimSpatial,
InDataType,
WeiDataType,
ConvOutDataType,
OutDataType,
ConvElementOp,
ReduceOpId,
InLayout,
WeiLayout,
OutLayout,
3,
AComputeDataType,
BComputeDataType>(
{N, Di, Hi, Wi, G, C}, {G, K, Z, Y, X, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using CShuffleDataType = float;
using ConvOutDataType = float; // data type of convolution result
using OutDataType = ck::f8_t; // data type of final result
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
using ConvElementOp = ConvScaleRelu;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
constexpr auto ReduceOpId = ck::ReduceTensorOp::AMAX;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd_convscale_reduce<NumDimSpatial,
InDataType,
WeiDataType,
ConvOutDataType,
OutDataType,
ConvElementOp,
ReduceOpId,
InLayout,
WeiLayout,
OutLayout,
3,
AComputeDataType,
BComputeDataType>(
{N, Di, Hi, Wi, G, C}, {G, K, Z, Y, X, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
......@@ -27,6 +27,8 @@ file(GLOB_RECURSE KERNEL_FILES CONFIGURE_DEPENDS
add_embed_library(ck_headers ${KERNEL_FILES} RELATIVE ${CK_ROOT}/include)
file(GLOB SOURCES CONFIGURE_DEPENDS src/*.cpp)
##message(STATUS "SOURCE_FILES: ${SOURCES}")
# TODO: Use object library
add_library(ck_host STATIC ${SOURCES})
target_link_libraries(ck_host PRIVATE ck_headers)
......@@ -48,6 +50,4 @@ rocm_install(
)
rocm_install(DIRECTORY include/ck DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
if(BUILD_TESTING)
add_subdirectory(test)
endif()
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
add_subdirectory(rtc)
file(GLOB TEST_SRCS CONFIGURE_DEPENDS *.cpp)
foreach(TEST_SRC ${TEST_SRCS})
set_source_files_properties(${TEST_SRC} PROPERTIES LANGUAGE HIP)
get_filename_component(BASE_NAME ${TEST_SRC} NAME_WE)
add_executable(test_host_${BASE_NAME} ${TEST_SRC})
add_dependencies(codegen test_host_${BASE_NAME})
add_test(NAME codegen_test_${BASE_NAME} COMMAND test_host_${BASE_NAME})
target_link_libraries(test_host_${BASE_NAME} ck_rtc ck_host)
# target_link_libraries(test_host_${BASE_NAME} ${CK_ROOT}/build/lib/libutility.a)
target_include_directories(test_host_${BASE_NAME} PUBLIC include())
target_include_directories(test_host_${BASE_NAME} PUBLIC ${CK_ROOT}/include)
target_include_directories(test_host_${BASE_NAME} PUBLIC ${CK_ROOT}/library/include)
endforeach()
if(NOT INSTANCES_ONLY)
foreach(TEST_SRC ${TEST_SRCS})
set_source_files_properties(${TEST_SRC} PROPERTIES LANGUAGE HIP)
get_filename_component(BASE_NAME ${TEST_SRC} NAME_WE)
add_executable(codegen_test_${BASE_NAME} ${TEST_SRC})
add_dependencies(codegen codegen_test_${BASE_NAME})
add_dependencies(tests codegen_test_${BASE_NAME})
add_dependencies(check codegen_test_${BASE_NAME})
add_test(NAME codegen_test_${BASE_NAME} COMMAND codegen_test_${BASE_NAME})
message("adding test codegen_test_${BASE_NAME}")
target_link_libraries(codegen_test_${BASE_NAME} ck_rtc ck_host)
target_include_directories(codegen_test_${BASE_NAME} PUBLIC ${CK_ROOT}/codegen/test/include)
target_include_directories(codegen_test_${BASE_NAME} PUBLIC ${CK_ROOT}/include)
target_include_directories(codegen_test_${BASE_NAME} PUBLIC ${CK_ROOT}/library/include)
endforeach()
endif()
find_package(hip)
file(GLOB RTC_SOURCES CONFIGURE_DEPENDS src/*.cpp)
add_library(ck_rtc ${RTC_SOURCES})
target_include_directories(ck_rtc PUBLIC include)
......
rocm-docs-core==1.7.0
rocm-docs-core==1.7.2
sphinxcontrib-bibtex==2.6.2
......@@ -103,7 +103,7 @@ requests==2.32.3
# via
# pygithub
# sphinx
rocm-docs-core==1.7.0
rocm-docs-core==1.7.2
# via -r requirements.in
six==1.16.0
# via pybtex
......
......@@ -34,6 +34,7 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16_fp8_v3)
add_example_executable(example_gemm_xdl_bf16_v3 gemm_xdl_bf16_v3.cpp)
target_compile_options(example_gemm_xdl_bf16_v3 PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_bf16_v3)
target_compile_options(example_gemm_xdl_bf16_v3 PRIVATE -mllvm -greedy-reverse-local-assignment=1 -save-temps=$PWD -Wno-gnu-line-marker)
add_example_executable(example_gemm_xdl_wavelet_fp16 gemm_xdl_wavelet_fp16.cpp)
add_example_dependencies(example_gemm_xdl example_gemm_xdl_wavelet_fp16)
......
......@@ -12,7 +12,7 @@ using CShuffleDataType = ck::bhalf_t;
using CDataType = ck::bhalf_t;
using ALayout = Row;
using BLayout = Col;
using BLayout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
......@@ -28,15 +28,15 @@ using DeviceGemmV2Instance =
ADataType, BDataType, CDataType, AccDataType, CShuffleDataType,
PassThrough, PassThrough, PassThrough, GemmDefault,
256,
256, 256,
32, 8, 8,
32, 32,
4, 4,
S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>,
224, 256,
64, 8, 1,
16, 16,
7, 8,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
1, 1, S<1, 32, 1, 8>, 8,
S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>,
1, 8, 8, 1,
1, 2, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v3>;
// clang-format on
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
......@@ -7,7 +7,7 @@
using ADataType = ck::f8_t;
using BDataType = ck::f8_t;
using CDataType = ck::half_t;
using CDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......@@ -34,11 +34,11 @@ inline __host__ __device__ constexpr double get_rtol()
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
return 2e-1;
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
return 2e-1;
}
else
{
......@@ -75,11 +75,11 @@ inline __host__ __device__ constexpr double get_atol()
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
return 2e-1;
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
return 2e-1;
}
else
{
......
......@@ -3,6 +3,7 @@ add_subdirectory(convinvscale)
add_subdirectory(convscale)
add_subdirectory(convscale_relu)
add_subdirectory(convscale_add)
add_subdirectory(convscale_reduce)
add_subdirectory(multi_AB)
add_subdirectory(unary)
......
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_activ_xdl_convscale_reduce)
add_example_executable(example_convnd_fwd_xdl_convscale_relu_amax_fp8 convnd_fwd_xdl_convscale_relu_amax_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale_reduce example_convnd_fwd_xdl_convscale_relu_amax_fp8)
add_example_executable(example_convnd_fwd_xdl_convscale_amax_fp8 convnd_fwd_xdl_convscale_amax_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale_reduce example_convnd_fwd_xdl_convscale_amax_fp8)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_reduce.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/utility/type.hpp"
namespace ew = ck::tensor_operation::element_wise;
using PassThrough = ew::PassThrough;
using ConvScaleRelu = ew::UnaryCombinedOp<ew::Scale, ew::Scale, ew::Relu>;
using ConvScale = ew::UnaryCombinedOp<ew::Scale, ew::Scale, PassThrough>;
using UnaryScaleConvert = ew::Scale;
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename ConvOutDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename ConvElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<ConvOutDataType> host_conv(out_g_n_k_wos_desc);
Tensor<ConvOutDataType> device_conv(out_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
case 11: // used for debugging
in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
wei.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem conv_device_buf(conv_param.GetOutputByte<ConvOutDataType>());
DeviceMem out_device_buf(conv_param.GetOutputByte<OutDataType>());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// random scale values
float scale_in = float(std::rand()) / float(RAND_MAX);
float scale_wei = float(std::rand()) / float(RAND_MAX);
float scale_out = float(std::rand()) / float(RAND_MAX);
std::cout << std::endl;
std::cout << "scale_in: " << scale_in << std::endl;
std::cout << "scale_wei: " << scale_wei << std::endl;
std::cout << "scale_out: " << scale_out << std::endl;
// convolution elementwise operation
auto conv_element_op = ConvElementOp{ew::Scale{scale_in}, ew::Scale{scale_wei}, {}};
auto scale_convert = UnaryScaleConvert{scale_out}; // elementwise scale and type cast
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto conv_invoker = conv.MakeInvoker();
auto conv_argument =
conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
conv_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
conv_element_op);
if(!conv.IsSupportedArgument(conv_argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
std::string kernels = conv.GetTypeString();
float avg_time = conv_invoker.Run(conv_argument, StreamConfig{nullptr, time_kernel});
using DeviceElementwiseScale = ck::tensor_operation::device::DeviceElementwiseImpl<
ck::Tuple<ConvOutDataType>, // InDataTypeTuple
ck::Tuple<OutDataType>, // OutDataTypeTuple
UnaryScaleConvert, // UnaryScaleConvert
NDimSpatial + 3, // NumDim
256, // BlockSize
128, // M0PerBlock
128, // M1PerBlock
8, // M0PerThread
8, // M1PerThread
ck::Sequence<1, 0>, // ThreadClusterArrangeOrder
ck::Sequence<8>, // InScalarPerVectorSeq
ck::Sequence<8>>; // OutScalarPerVectorSeq
auto device_ew_scale = DeviceElementwiseScale{};
auto scale_invoker = device_ew_scale.MakeInvoker();
auto scale_argument = device_ew_scale.MakeArgument(e_g_n_k_wos_lengths,
{e_g_n_k_wos_strides},
{e_g_n_k_wos_strides},
{conv_device_buf.GetDeviceBuffer()},
{out_device_buf.GetDeviceBuffer()},
scale_convert);
if(!device_ew_scale.IsSupportedArgument(scale_argument))
{
throw std::runtime_error(
"wrong! DeviceElementwiseScale with the specified compilation parameters does "
"not support this problem");
}
kernels += std::string("\n\t\t ") + device_ew_scale.GetTypeString();
avg_time += scale_invoker.Run(scale_argument, StreamConfig{nullptr, time_kernel});
constexpr auto ReduceOpId = ck::ReduceTensorOp::AMAX;
using ReduceOperation = typename ck::reduce_binary_operator<ReduceOpId>::opType;
using InElementwiseOperation =
typename ck::reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
using AccElementwiseOperation =
typename ck::reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;
using DeviceReduceInstance =
ck::tensor_operation::device::DeviceReduceMultiBlock<ConvOutDataType,
ConvOutDataType,
ConvOutDataType,
NDimSpatial + 3,
NDimSpatial + 3,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
ck::InMemoryDataOperationEnum::Set,
true, // PropagateNan
false, // OutputIndex
false, // HaveIndexInputIfOutputIndex
256, // BlockSize
4, // MThreadClusterSize
64, // KThreadClusterSize
1, // MThreadSliceSize
1, // KThreadSliceSize
1, // InSrcVectorDim
1, // InSrceVectorSize
1>; // OutDstVectorSize
std::vector<size_t> outLengths = {1};
Tensor<ConvOutDataType> amax_host(outLengths);
Tensor<ConvOutDataType> amax_from_device(outLengths);
auto amax_host_strides = amax_host.mDesc.GetStrides();
std::array<int, NDimSpatial + 3> reduce_dims;
std::iota(reduce_dims.begin(), reduce_dims.end(), 0); // 0,..., NDimSpatial+3-1
std::array<ck::index_t, 1> reduce_out_lengths{1};
std::array<ck::index_t, 1> reduce_out_strides{static_cast<ck::index_t>(amax_host_strides[0])};
DeviceMem amax_device(sizeof(ConvOutDataType) * amax_host.mDesc.GetElementSpaceSize());
DeviceMem index_device;
InElementwiseOperation in_elementwise_op;
AccElementwiseOperation acc_elementwise_op;
std::tie(in_elementwise_op, acc_elementwise_op) =
ck::reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
static_cast<int32_t>(host_conv.mDesc.GetElementSize()));
// Hack convolution output strides for reduction as kernel expects stride 1 for the last
// dimension. It only works because the reduction is done on the whole tensor and result is
// independent of the order of elements.
std::array<ck::index_t, NDimSpatial + 3> reduction_strides{};
copy(HostTensorDescriptor(e_g_n_k_wos_lengths).GetStrides(), reduction_strides);
auto device_reduce = DeviceReduceInstance{};
auto reduce_invoker = device_reduce.MakeInvokerPointer();
auto reduce_argument = device_reduce.MakeArgumentPointer(e_g_n_k_wos_lengths,
reduction_strides,
reduce_out_lengths,
reduce_out_strides,
reduce_dims,
1.0,
0.0,
conv_device_buf.GetDeviceBuffer(),
nullptr,
amax_device.GetDeviceBuffer(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
if(!device_reduce.IsSupportedArgument(reduce_argument.get()))
{
throw std::runtime_error(
"wrong! DeviceReduceInstance with the specified compilation parameters does "
"not support this runtime parameters!");
};
kernels += std::string("\n\t\t ") + device_reduce.GetTypeString();
float reduce_time =
reduce_invoker->Run(reduce_argument.get(), StreamConfig{nullptr, time_kernel});
if(time_kernel)
std::cout << "\nReduce time: " << reduce_time << " ms" << std::endl;
avg_time += reduce_time;
std::size_t flop = conv_param.GetFlops(); // convolution FLOPs
auto conv_out_elems = host_conv.GetElementSize(); // number of elements in conv result tensor
// 3 element-wise scale multipliers + 1 AMAX
std::size_t elementwise_ops = 3 + 1;
if constexpr(ck::is_same_v<ConvElementOp, ConvScaleRelu>)
{
elementwise_ops += 1; // +1 element-wise relu
}
flop += elementwise_ops * conv_out_elems;
// convolution + elementwise scaling (in + wei + output byte count)
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, ConvOutDataType>();
num_btype += sizeof(float) + sizeof(float); // + 2 scales
// elementwise scaling + F8 conversion
num_btype += conv_param.GetOutputByte<ConvOutDataType>() + sizeof(float) +
conv_param.GetOutputByte<OutDataType>();
// AMAX
num_btype += conv_param.GetOutputByte<ConvOutDataType>() + sizeof(float);
if(time_kernel)
{
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << std::endl;
}
std::cout << "\nKernels: " << kernels << std::endl;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
ConvOutDataType,
InElementOp,
WeiElementOp,
ConvElementOp>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
host_conv,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
conv_element_op);
ref_invoker.Run(ref_argument);
conv_device_buf.FromDevice(device_conv.mData.data());
out_device_buf.FromDevice(out_device.mData.data());
out_host.ForEach([&](auto&, auto idx) { scale_convert(out_host(idx), host_conv(idx)); });
std::cout << "\nComparing output to reference: " << std::endl;
auto tight_tol_check = ck::utils::check_err(out_device, out_host, "Error: ");
if(!tight_tol_check)
{
std::cout << "\n\tRecompare applying tolerances...\n";
std::cout << "\t\trtol = " << get_rtol<OutDataType>() << std::endl;
std::cout << "\t\tatol = " << get_atol<OutDataType>() << std::endl;
auto loose_tol_check = ck::utils::check_err(out_device,
out_host,
"Error: incorrect convolution results!",
get_rtol<OutDataType>(),
get_atol<OutDataType>());
if(!loose_tol_check)
{
return false;
}
}
std::cout << "Success!" << std::endl;
/// Verify AMAX
using RefReduceInstance =
ck::tensor_operation::host::ReferenceReduce<ConvOutDataType,
ConvOutDataType,
ConvOutDataType,
NDimSpatial + 3,
NDimSpatial + 3,
ReduceOperation,
InElementwiseOperation,
AccElementwiseOperation,
true,
false>;
auto ref_reduce = RefReduceInstance{};
auto ref_reduce_invoker = ref_reduce.MakeInvokerPointer();
auto ref_reduce_argument = ref_reduce.MakeArgumentPointer(e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
reduce_out_lengths,
reduce_out_strides,
reduce_dims,
1.0,
0.0,
host_conv.mData.data(),
nullptr,
amax_host.mData.data(),
nullptr,
in_elementwise_op,
acc_elementwise_op);
if(!ref_reduce.IsSupportedArgument(ref_reduce_argument.get()))
{
throw std::runtime_error(
"wrong! RefReduceInstance with the specified compilation parameters does "
"not support this runtime parameters!");
};
ref_reduce_invoker->Run(ref_reduce_argument.get());
amax_device.FromDevice(amax_from_device.mData.data());
std::cout << "\namax: " << amax_from_device.mData[0] << std::endl;
std::cout << "amax_ref: " << amax_host.mData[0] << std::endl;
return ck::utils::check_err(amax_from_device, amax_host, "Error: incorrect AMAX results!");
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_reduce_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using ConvOutDataType = float; // data type of convolution result
using OutDataType = ck::f8_t; // data type of final result
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScale;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
ConvOutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_reduce_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using ConvOutDataType = float; // data type of convolution result
using OutDataType = ck::f8_t; // data type of final result
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScaleRelu;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial, typename InLayout, typename WeiLayout, typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
ConvOutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment