Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
4396a224
Unverified
Commit
4396a224
authored
Apr 16, 2024
by
Harisankar Sadasivan
Committed by
GitHub
Apr 16, 2024
Browse files
Merge branch 'develop' into mi300_time_measurement
parents
0a27f07e
501a6b68
Changes
187
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2764 additions
and
9 deletions
+2764
-9
.gitignore
.gitignore
+2
-0
CMakeLists.txt
CMakeLists.txt
+2
-0
client_example/30_gemm_multi_abd/CMakeLists.txt
client_example/30_gemm_multi_abd/CMakeLists.txt
+13
-0
client_example/30_gemm_multi_abd/gemm_bias_fastgelu_xdl_bf16_i8.cpp
...mple/30_gemm_multi_abd/gemm_bias_fastgelu_xdl_bf16_i8.cpp
+262
-0
client_example/30_gemm_multi_abd/gemm_bias_xdl_bf16_i8.cpp
client_example/30_gemm_multi_abd/gemm_bias_xdl_bf16_i8.cpp
+262
-0
client_example/30_gemm_multi_abd/gemm_xdl_bf16_i8.cpp
client_example/30_gemm_multi_abd/gemm_xdl_bf16_i8.cpp
+257
-0
client_example/30_gemm_multi_abd/gemm_xdl_gelu_bf16_i8.cpp
client_example/30_gemm_multi_abd/gemm_xdl_gelu_bf16_i8.cpp
+261
-0
client_example/31_grouped_gemm_multi_abd/CMakeLists.txt
client_example/31_grouped_gemm_multi_abd/CMakeLists.txt
+7
-0
client_example/31_grouped_gemm_multi_abd/grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
...gemm_multi_abd/grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
+286
-0
client_example/31_grouped_gemm_multi_abd/grouped_gemm_fastgelu_xdl_bf16_i8.cpp
...uped_gemm_multi_abd/grouped_gemm_fastgelu_xdl_bf16_i8.cpp
+282
-0
cmake/EnableCompilerWarnings.cmake
cmake/EnableCompilerWarnings.cmake
+1
-0
docs/index.rst
docs/index.rst
+1
-1
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
+7
-0
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
..._ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
+401
-0
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
...lti_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
+397
-0
example/60_gemm_multi_ABD/CMakeLists.txt
example/60_gemm_multi_ABD/CMakeLists.txt
+1
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_bf16_i8.cpp
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_bf16_i8.cpp
+270
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
+6
-6
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
..._contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
+2
-2
example/ck_tile/01_fmha/CMakeLists.txt
example/ck_tile/01_fmha/CMakeLists.txt
+44
-0
No files found.
.gitignore
View file @
4396a224
...
@@ -64,3 +64,5 @@ build*/
...
@@ -64,3 +64,5 @@ build*/
# Python virtualenv
# Python virtualenv
.venv/
.venv/
# Python cache
__pycache__/
CMakeLists.txt
View file @
4396a224
...
@@ -26,6 +26,8 @@ set(version 1.1.0)
...
@@ -26,6 +26,8 @@ set(version 1.1.0)
project
(
composable_kernel VERSION
${
version
}
LANGUAGES CXX
)
project
(
composable_kernel VERSION
${
version
}
LANGUAGES CXX
)
include
(
CTest
)
include
(
CTest
)
find_package
(
Python3 3.8 COMPONENTS Interpreter REQUIRED
)
list
(
APPEND CMAKE_MODULE_PATH
"
${
PROJECT_SOURCE_DIR
}
/cmake"
)
list
(
APPEND CMAKE_MODULE_PATH
"
${
PROJECT_SOURCE_DIR
}
/cmake"
)
if
(
DTYPES
)
if
(
DTYPES
)
...
...
client_example/30_gemm_multi_abd/CMakeLists.txt
0 → 100644
View file @
4396a224
if
(
GPU_TARGETS MATCHES
"gfx9"
AND
((
DTYPES MATCHES
"int8"
AND DTYPES MATCHES
"bf16"
)
OR NOT DEFINED DTYPES
))
add_executable
(
client_gemm_bias_fastgelu_bf16_i8_bf16 gemm_bias_fastgelu_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_gemm_bias_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_gemm_bias_bf16_i8_bf16 gemm_bias_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_gemm_bias_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_gemm_gelu_bf16_i8_bf16 gemm_xdl_gelu_bf16_i8.cpp
)
target_link_libraries
(
client_gemm_gelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_gemm_bf16_i8_bf16 gemm_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_gemm_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
endif
()
client_example/30_gemm_multi_abd/gemm_bias_fastgelu_xdl_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Col
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
AddFastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
64
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD
=
N
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
8
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideD
=
std
::
stoi
(
argv
[
6
]);
StrideE
=
std
::
stoi
(
argv
[
7
]);
}
else
{
printf
(
"arg1 to 7: M, N, K, StrideA, StrideB, StrideD, StrideE
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
A0Layout
{}));
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
B0Layout
{}));
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
f_matrix_space_size
(
K
,
N
,
0
,
B1Layout
{}));
SimpleDeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD
,
ELayout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
found
)
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/30_gemm_multi_abd/gemm_bias_xdl_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Col
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
64
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
M
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideD
=
N
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
8
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideD
=
std
::
stoi
(
argv
[
6
]);
StrideE
=
std
::
stoi
(
argv
[
7
]);
}
else
{
printf
(
"arg1 to 7: M, N, K, StrideA, StrideB, StrideD, StrideE
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
A0Layout
{}));
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
B0Layout
{}));
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
f_matrix_space_size
(
K
,
N
,
0
,
B1Layout
{}));
SimpleDeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD
,
ELayout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
found
)
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/30_gemm_multi_abd/gemm_xdl_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Col
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
64
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
7
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideE
=
std
::
stoi
(
argv
[
6
]);
}
else
{
printf
(
"arg1 to 7: M, N, K, StrideA, StrideB, StrideE
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
A0Layout
{}));
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
B0Layout
{}));
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
f_matrix_space_size
(
K
,
N
,
0
,
B1Layout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
0
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
found
)
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/30_gemm_multi_abd/gemm_xdl_gelu_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Col
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
FastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
64
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
7
)
{
M
=
std
::
stoi
(
argv
[
1
]);
N
=
std
::
stoi
(
argv
[
2
]);
K
=
std
::
stoi
(
argv
[
3
]);
StrideA
=
std
::
stoi
(
argv
[
4
]);
StrideB
=
std
::
stoi
(
argv
[
5
]);
StrideE
=
std
::
stoi
(
argv
[
6
]);
}
else
{
printf
(
"arg1 to 7: M, N, K, StrideA, StrideB, StrideE
\n
"
);
exit
(
0
);
}
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
Row
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
A0Layout
{}));
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
B0Layout
{}));
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
f_matrix_space_size
(
K
,
N
,
0
,
B1Layout
{}));
SimpleDeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideE
,
ELayout
{}));
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
0
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
if
(
found
)
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/31_grouped_gemm_multi_abd/CMakeLists.txt
0 → 100644
View file @
4396a224
if
(
GPU_TARGETS MATCHES
"gfx9"
AND
((
DTYPES MATCHES
"int8"
AND DTYPES MATCHES
"bf16"
)
OR NOT DEFINED DTYPES
))
add_executable
(
client_grouped_gemm_bias_fastgelu_bf16_i8_bf16 grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_bias_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
add_executable
(
client_grouped_gemm_fastgelu_bf16_i8_bf16 grouped_gemm_fastgelu_xdl_bf16_i8.cpp
)
target_link_libraries
(
client_grouped_gemm_fastgelu_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations
)
endif
()
client_example/31_grouped_gemm_multi_abd/grouped_gemm_bias_fastgelu_xdl_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Col
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
AddFastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
SimpleDeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
}
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
gemm_descs
.
push_back
(
{
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
1
,
1
},
{
0
},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
],
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmMultiABDFixedNK
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
SimpleDeviceMem
gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetElementwiseOps
(
argument_ptr
.
get
(),
a_element_op
,
b_element_op
,
cde_element_op
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sum_of_m
*
problem_size
.
Ns
[
0
]
*
problem_size
.
Ks
[
0
];
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
0
]
+
sizeof
(
B0DataType
)
*
problem_size
.
Ks
[
0
]
*
problem_size
.
Ns
[
0
]
+
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
0
];
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
client_example/31_grouped_gemm_multi_abd/grouped_gemm_fastgelu_xdl_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_multi_abd_fixed_nk.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Col
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Row
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
FastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
SimpleDeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
}
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
0
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
SimpleDeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
gemm_descs
.
push_back
(
{
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
1
,
1
},
{},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
],
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemmMultiABDFixedNK
<
AsLayout
,
BsLayout
,
DsLayout
,
Row
,
AsDataType
,
BsDataType
,
DsDataType
,
BF16
,
AElementOp
,
BElementOp
,
CDEElementOp
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
SimpleDeviceMem
gemm_kernel_args_dev
(
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
op_ptr
->
GetDeviceKernelArgSize
(
argument_ptr
.
get
()),
hipMemcpyHostToDevice
));
op_ptr
->
SetDeviceKernelArgs
(
argument_ptr
.
get
(),
gemm_kernel_args_dev
.
GetDeviceBuffer
());
op_ptr
->
SetElementwiseOps
(
argument_ptr
.
get
(),
a_element_op
,
b_element_op
,
cde_element_op
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
sum_of_m
*
problem_size
.
Ns
[
0
]
*
problem_size
.
Ks
[
0
];
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
0
]
+
sizeof
(
B0DataType
)
*
problem_size
.
Ks
[
0
]
*
problem_size
.
Ns
[
0
]
+
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
0
];
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
return
true
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ns
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
cmake/EnableCompilerWarnings.cmake
View file @
4396a224
...
@@ -95,6 +95,7 @@ else()
...
@@ -95,6 +95,7 @@ else()
-Wno-weak-vtables
-Wno-weak-vtables
-Wno-covered-switch-default
-Wno-covered-switch-default
-Wno-unsafe-buffer-usage
-Wno-unsafe-buffer-usage
-Wno-unused-lambda-capture
)
)
else
()
else
()
if
(
CMAKE_
${
COMPILER
}
_COMPILER_ID MATCHES
"GNU"
AND
${
COMPILER
}
MATCHES
"CXX"
)
if
(
CMAKE_
${
COMPILER
}
_COMPILER_ID MATCHES
"GNU"
AND
${
COMPILER
}
MATCHES
"CXX"
)
...
...
docs/index.rst
View file @
4396a224
...
@@ -33,6 +33,6 @@ The CK documentation is structured as follows:
...
@@ -33,6 +33,6 @@ The CK documentation is structured as follows:
* :ref:`hello-world`
* :ref:`hello-world`
To contribute to the documentation refer to `Contributing to ROCm <https://rocm.docs.amd.com/en/latest/contribute/
index
.html>`_.
To contribute to the documentation refer to `Contributing to ROCm <https://rocm.docs.amd.com/en/latest/contribute/
contributing
.html>`_.
You can find licensing information on the `Licensing <https://rocm.docs.amd.com/en/latest/about/license.html>`_ page.
You can find licensing information on the `Licensing <https://rocm.docs.amd.com/en/latest/about/license.html>`_ page.
example/59_grouped_gemm_multi_ABD/CMakeLists.txt
0 → 100644
View file @
4396a224
add_custom_target
(
example_grouped_gemm_xdl_multi_abd
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16 grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16
)
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8 grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
)
add_example_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8
)
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Col
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
DsLayout
=
ck
::
Tuple
<
Row
>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
AddFastGelu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
128
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
A0DataType
>>
a0_tensors
;
std
::
vector
<
Tensor
<
B1DataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
B0DataType
>>
b0_tensors
;
std
::
vector
<
Tensor
<
B1DataType
>>
b1_tensors
;
std
::
vector
<
Tensor
<
D0DataType
>>
d0_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a0_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
b0_tensors
.
reserve
(
group_count
);
b1_tensors
.
reserve
(
group_count
);
d0_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
b0_tensors_device
,
b1_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
b0_tensors_device
.
reserve
(
group_count
);
b1_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a0_tensors
.
push_back
(
Tensor
<
A0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
A0Layout
{})));
b_tensors
.
push_back
(
Tensor
<
B1DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
B0Layout
{})));
b0_tensors
.
push_back
(
Tensor
<
B0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
B0Layout
{})));
b1_tensors
.
push_back
(
Tensor
<
B1DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
0
,
B1Layout
{})));
d0_tensors
.
push_back
(
Tensor
<
D0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
0
,
ELayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a0_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b0_tensors
[
i
].
mDesc
<<
" d_m_n: "
<<
d0_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
A0DataType
)
*
a0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
B0DataType
)
*
b0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
B1DataType
)
*
b1_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
D0DataType
)
*
d0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
b0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
0
,
5
});
break
;
case
2
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
5
,
5
});
b1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
default:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
b1_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B1DataType
)
*
problem_size
.
Ns
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a0_tensors_device
[
i
]
->
ToDevice
(
a0_tensors
[
i
].
mData
.
data
(),
a0_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
A0DataType
));
b0_tensors_device
[
i
]
->
ToDevice
(
b0_tensors
[
i
].
mData
.
data
(),
b0_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
B0DataType
));
b1_tensors_device
[
i
]
->
ToDevice
(
b1_tensors
[
i
].
mData
.
data
(),
b1_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
B1DataType
));
d0_tensors_device
[
i
]
->
ToDevice
(
d0_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
SetZero
();
gemm_descs
.
push_back
(
{
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
1
,
1
},
{
0
},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
b1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
],
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_kernel_args_dev
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
gemm
.
SetElementwiseOps
(
argument
,
a_element_op
,
b_element_op
,
cde_element_op
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B1DataType
,
EDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
for
(
int
k
=
0
;
k
<
problem_size
.
Ks
[
i
];
++
k
)
{
b_element_op
(
b_tensors
[
i
](
k
,
n
),
b0_tensors
[
i
](
k
,
n
),
b1_tensors
[
i
](
k
,
n
));
}
}
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
cde_element_op
(
c_host_tensors
[
i
](
m
,
n
),
c_host_tensors
[
i
](
m
,
n
),
d0_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (>0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/59_grouped_gemm_multi_ABD/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/combined_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
AddScale
=
ck
::
tensor_operation
::
element_wise
::
BinaryWithUnaryCombinedOp
<
Add
,
Scale
,
Scale
>
;
using
A0DataType
=
F16
;
using
A1DataType
=
F32
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
,
A1DataType
>
;
using
B0DataType
=
F16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
F32
;
using
A0Layout
=
Row
;
using
A1Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
,
A1Layout
>
;
using
B0Layout
=
Col
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
AddScale
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
128
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
,
ck
::
half_t
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
A0DataType
>>
a0_tensors
;
std
::
vector
<
Tensor
<
A1DataType
>>
a1_tensors
;
std
::
vector
<
Tensor
<
B0DataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
D0DataType
>>
d0_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
e_device_tensors
;
a0_tensors
.
reserve
(
group_count
);
a1_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d0_tensors
.
reserve
(
group_count
);
e_host_tensors
.
reserve
(
group_count
);
e_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a0_tensors_device
,
a1_tensors_device
,
b_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a0_tensors_device
.
reserve
(
group_count
);
a1_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a0_tensors
.
push_back
(
Tensor
<
A0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
A0Layout
{})));
a1_tensors
.
push_back
(
Tensor
<
A1DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
A1Layout
{})));
b_tensors
.
push_back
(
Tensor
<
B0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
B0Layout
{})));
d0_tensors
.
push_back
(
Tensor
<
D0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
0
,
ELayout
{})));
e_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
e_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a0_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" d_m_n: "
<<
d0_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
e_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
A0DataType
)
*
a0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
A1DataType
)
*
a1_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
B0DataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
D0DataType
)
*
d0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
e_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
a1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
A1DataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
break
;
case
2
:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
a1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
A1DataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
break
;
default:
a0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
a1_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
constexpr
ck
::
index_t
NumATensor
=
2
;
constexpr
ck
::
index_t
NumBTensor
=
1
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
a1_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
A1DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a0_tensors_device
[
i
]
->
ToDevice
(
a0_tensors
[
i
].
mData
.
data
(),
a0_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
A0DataType
));
a1_tensors_device
[
i
]
->
ToDevice
(
a1_tensors
[
i
].
mData
.
data
(),
a1_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
A1DataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
B0DataType
));
d0_tensors_device
[
i
]
->
ToDevice
(
d0_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
SetZero
();
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
,
1
},
{
problem_size
.
stride_Bs
[
i
]},
{
0
},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_tensors_device
[
i
]
->
GetDeviceBuffer
(),
a1_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
problem_size
.
stride_As
[
i
],
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
problem_size
.
stride_Bs
[
i
]},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
constexpr
float
scale
=
1.
f
;
auto
a_element_op
=
AElementOp
{
Add
{},
Scale
{
scale
},
Scale
{
scale
}};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_kernel_args_dev
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
gemm
.
SetElementwiseOps
(
argument
,
a_element_op
,
b_element_op
,
cde_element_op
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B0DataType
,
EDataType
,
AccDataType
,
PassThrough
,
BElementOp
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
k
=
0
;
k
<
problem_size
.
Ks
[
i
];
++
k
)
{
a_element_op
(
a0_tensors
[
i
](
m
,
k
),
a0_tensors
[
i
](
m
,
k
),
a1_tensors
[
i
](
m
,
k
));
}
}
c_tensors_device
[
i
]
->
FromDevice
(
e_device_tensors
[
i
].
mData
.
data
(),
e_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_tensors
[
i
],
b_tensors
[
i
],
e_host_tensors
[
i
],
PassThrough
{},
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
cde_element_op
(
e_host_tensors
[
i
](
m
,
n
),
e_host_tensors
[
i
](
m
,
n
),
d0_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
e_device_tensors
[
i
],
e_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
32
+
rand
()
%
32
);
problem_size
.
Ns
.
push_back
(
1024
);
problem_size
.
Ks
.
push_back
(
512
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (>0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
example/60_gemm_multi_ABD/CMakeLists.txt
View file @
4396a224
add_example_executable
(
example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_multi_ABD_xdl_bf16_i8 gemm_multi_ABD_xdl_bf16_i8.cpp
)
\ No newline at end of file
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_bf16_i8.cpp
0 → 100644
View file @
4396a224
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
I8
=
int8_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
A0DataType
=
BF16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
B0DataType
=
I8
;
using
B1DataType
=
BF16
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
,
B1DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
BF16
;
using
D0DataType
=
BF16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
BF16
;
using
A0Layout
=
Row
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
B0Layout
=
Col
;
using
B1Layout
=
B0Layout
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
,
B1Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
Scales
=
ck
::
tensor_operation
::
element_wise
::
Scales
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
Scales
;
using
CDEElementOp
=
AddFastGelu
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
128
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
>
;
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
64
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD
=
N
;
ck
::
index_t
StrideE
=
N
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
A0DataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
A0Layout
{}));
Tensor
<
B0DataType
>
b0_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
0
,
B1Layout
{}));
Tensor
<
D0DataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
D0Layout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_k_n: "
<<
b0_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_k_n: "
<<
b1_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b0_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
0
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
b0_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
b1_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
D0DataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_k_n
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
constexpr
ck
::
index_t
NumATensor
=
1
;
constexpr
ck
::
index_t
NumBTensor
=
2
;
constexpr
ck
::
index_t
NumDTensor
=
1
;
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
NumATensor
>
{
a0_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumBTensor
>
{
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
NumDTensor
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
NumATensor
>
{
StrideA
},
std
::
array
<
ck
::
index_t
,
NumBTensor
>
{
StrideB
,
0
},
std
::
array
<
ck
::
index_t
,
NumDTensor
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
A0DataType
>
a_m_k
({
M
,
K
});
Tensor
<
B1DataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
B0Layout
{}));
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
b_element_op
(
b_k_n
(
k
,
n
),
b0_k_n
(
k
,
n
),
b1_k_n
(
k
,
n
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B1DataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a0_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
View file @
4396a224
...
@@ -37,7 +37,7 @@ using DDataType = F16;
...
@@ -37,7 +37,7 @@ using DDataType = F16;
using
EDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
BLayout
=
Row
;
using
DLayout
=
Row
;
using
DLayout
=
Row
;
using
ELayout
=
Row
;
using
ELayout
=
Row
;
...
@@ -141,9 +141,9 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl
...
@@ -141,9 +141,9 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl
S
<
4
,
64
,
1
>
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
1
,
2
,
2
,
8
,
8
,
8
,
1
,
1
,
1
,
1
,
1
,
1
,
...
@@ -161,10 +161,10 @@ int main(int argc, char* argv[])
...
@@ -161,10 +161,10 @@ int main(int argc, char* argv[])
ck
::
index_t
N
=
4096
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideD
=
4096
;
ck
::
index_t
StrideD
=
N
;
ck
::
index_t
StrideE
=
4096
;
ck
::
index_t
StrideE
=
N
;
float
alpha
=
1.0
f
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
float
beta
=
1.0
f
;
...
...
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
View file @
4396a224
...
@@ -102,7 +102,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceContractionMultiple
...
@@ -102,7 +102,7 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceContractionMultiple
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
8
,
1
,
8
,
8
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
4
,
64
,
1
>
,
...
@@ -131,7 +131,7 @@ int main(int argc, char* argv[])
...
@@ -131,7 +131,7 @@ int main(int argc, char* argv[])
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_strides
{
0
,
64
,
0
,
1
};
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_strides
{
0
,
64
,
1
,
0
};
// B[N0, N1, K0, K1]
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
*
32
*
64
,
32
*
64
,
64
,
1
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
*
32
*
64
,
32
*
64
,
64
,
1
};
...
...
example/ck_tile/01_fmha/CMakeLists.txt
0 → 100644
View file @
4396a224
# generate a list of kernels, but not actually emit files at config stage
execute_process
(
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--list_blobs
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt
)
# NOTE: for cmake, the FMHA_FWD_GEN_BLOBS files must be in the same directory
# as current cmake list, otherwise will not figure out the dependency properly
file
(
STRINGS
${
CMAKE_CURRENT_BINARY_DIR
}
/blob_list.txt FMHA_FWD_GEN_BLOBS
)
add_custom_command
(
OUTPUT
${
FMHA_FWD_GEN_BLOBS
}
COMMAND
${
Python3_EXECUTABLE
}
${
CMAKE_CURRENT_LIST_DIR
}
/generate.py
--output_dir
${
CMAKE_CURRENT_BINARY_DIR
}
)
set
(
EXAMPLE_FMHA_FWD
"tile_example_fmha_fwd"
)
# not using add_example_executable() to add this target, since we don't want this to have
# to be included in "make all/install/check"
message
(
"adding tile_example
${
EXAMPLE_NAME
}
"
)
add_executable
(
${
EXAMPLE_FMHA_FWD
}
EXCLUDE_FROM_ALL fmha_fwd.cpp
)
target_include_directories
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
CMAKE_CURRENT_LIST_DIR
}
)
target_sources
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
FMHA_FWD_GEN_BLOBS
}
)
# NOTE: this is dangerous since will change the whole kernel to flush denormals
# WIP with compiler team for an exp2 intrinsic..., then remove this
if
(
NOT DEFINED FMHA_FWD_FAST_EXP2
)
set
(
FMHA_FWD_FAST_EXP2 true
)
endif
()
set
(
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
)
# NOTE: we turn off undefined-func-template to let source compile without explicit declare function specializations
# ... because they are auto-generated
if
(
FMHA_FWD_FAST_EXP2
)
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=1 -fgpu-flush-denormals-to-zero
)
else
()
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-undefined-func-template -DCK_TILE_FMHA_FWD_FAST_EXP2=0
)
endif
()
# Allow comparing floating points directly in order to check sentinel values
list
(
APPEND EXAMPLE_FMHA_FWD_COMPILE_OPTIONS -Wno-float-equal
)
target_compile_options
(
${
EXAMPLE_FMHA_FWD
}
PRIVATE
${
EXAMPLE_FMHA_FWD_COMPILE_OPTIONS
}
)
Prev
1
2
3
4
5
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment