Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
408534d4
Unverified
Commit
408534d4
authored
Aug 09, 2024
by
Rostyslav Geyyer
Committed by
GitHub
Aug 09, 2024
Browse files
Merge branch 'develop' into lwpck-1815
parents
a8efb3f0
da214a5a
Changes
204
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1757 additions
and
20 deletions
+1757
-20
example/01_gemm/gemm_xdl_fp8_v3.cpp
example/01_gemm/gemm_xdl_fp8_v3.cpp
+5
-5
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
+2
-2
example/12_reduce/CMakeLists.txt
example/12_reduce/CMakeLists.txt
+1
-0
example/12_reduce/reduce_blockwise_impl.hpp
example/12_reduce/reduce_blockwise_impl.hpp
+12
-2
example/12_reduce/reduce_threadwise_multi_d.cpp
example/12_reduce/reduce_threadwise_multi_d.cpp
+229
-0
example/12_reduce/reduce_threadwise_multi_d_impl.hpp
example/12_reduce/reduce_threadwise_multi_d_impl.hpp
+307
-0
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
+34
-11
example/35_splitK_gemm/CMakeLists.txt
example/35_splitK_gemm/CMakeLists.txt
+6
-0
example/35_splitK_gemm/common.hpp
example/35_splitK_gemm/common.hpp
+101
-0
example/35_splitK_gemm/gemm_xdl_splitk_reduce_bf16.cpp
example/35_splitK_gemm/gemm_xdl_splitk_reduce_bf16.cpp
+58
-0
example/35_splitK_gemm/gemm_xdl_splitk_reduce_bf16A_i8B.cpp
example/35_splitK_gemm/gemm_xdl_splitk_reduce_bf16A_i8B.cpp
+58
-0
example/35_splitK_gemm/gemm_xdl_splitk_reduce_multi_d_bf16.cpp
...le/35_splitK_gemm/gemm_xdl_splitk_reduce_multi_d_bf16.cpp
+58
-0
example/35_splitK_gemm/gemm_xdl_splitk_reduce_multi_d_fp16.cpp
...le/35_splitK_gemm/gemm_xdl_splitk_reduce_multi_d_fp16.cpp
+58
-0
example/35_splitK_gemm/run_gemm_splitk_reduce_multi_d_example.inc
...35_splitK_gemm/run_gemm_splitk_reduce_multi_d_example.inc
+309
-0
example/62_convnd_activ/CMakeLists.txt
example/62_convnd_activ/CMakeLists.txt
+1
-0
example/62_convnd_activ/convscale_add/CMakeLists.txt
example/62_convnd_activ/convscale_add/CMakeLists.txt
+11
-0
example/62_convnd_activ/convscale_add/convnd_fwd_convscale_add_common.hpp
...d_activ/convscale_add/convnd_fwd_convscale_add_common.hpp
+315
-0
example/62_convnd_activ/convscale_add/convnd_fwd_xdl_convscale_add_fp8.cpp
..._activ/convscale_add/convnd_fwd_xdl_convscale_add_fp8.cpp
+87
-0
example/62_convnd_activ/convscale_add/run_convnd_fwd_convscale_add_example.inc
...iv/convscale_add/run_convnd_fwd_convscale_add_example.inc
+104
-0
example/65_gemm_multiply_multiply/CMakeLists.txt
example/65_gemm_multiply_multiply/CMakeLists.txt
+1
-0
No files found.
example/01_gemm/gemm_xdl_fp8_v3.cpp
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 20
18
-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 20
23
-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
...
...
@@ -28,14 +28,14 @@ using DeviceGemmV2Instance =
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
256
,
224
,
256
,
128
,
16
,
16
,
16
,
16
,
4
,
8
,
7
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
2
,
16
,
16
,
0
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
2
,
16
,
16
,
0
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
,
ck
::
f8_t
>
;
// clang-format on
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cassert>
...
...
@@ -139,7 +139,7 @@ inline bool parse_cmd_args(int argc,
inline
HostTensorDescriptor
make_r0_host_tensor_descriptor
(
const
ck
::
utils
::
conv
::
ConvParam
&
problem_size
)
{
std
::
vector
<
ck
::
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
std
::
vector
<
ck
::
long_
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
ck
::
ranges
::
copy
(
problem_size
.
output_spatial_lengths_
,
std
::
back_inserter
(
dimensions
));
...
...
example/12_reduce/CMakeLists.txt
View file @
408534d4
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
add_example_executable
(
example_reduce_threadwise_multi_d reduce_threadwise_multi_d.cpp
)
add_example_executable
(
example_reduce_multiblock_atomic_add reduce_multiblock_atomic_add.cpp
)
add_example_executable
(
example_reduce_blockwise_two_call reduce_blockwise_two_call.cpp
)
example/12_reduce/reduce_blockwise_impl.hpp
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -316,7 +316,17 @@ int reduce_blockwise_impl(bool do_verification,
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
int
log_level
=
0
,
cold_niters
=
5
,
nrepeat
=
50
;
if
(
beta
!=
0.0
f
)
{
std
::
cerr
<<
"Warning: With beta != 0.0f there must be only one repeat for correct results "
"since out memory is being overwritten."
<<
std
::
endl
;
cold_niters
=
0
;
nrepeat
=
1
;
}
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
,
log_level
,
cold_niters
,
nrepeat
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
...
...
example/12_reduce/reduce_threadwise_multi_d.cpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/utility/reduction_enums.hpp"
#include "reduce_threadwise_multi_d_impl.hpp"
#include "reduce_example_common.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
SimpleAppArgs
{
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inLengths
=
{
16
,
64
,
32
,
16
};
std
::
vector
<
int
>
reduceDims
=
{
0
};
std
::
vector
<
float
>
scales
=
{
1.0
f
,
0.0
f
};
bool
do_verification
=
true
;
int
data_type
=
1
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
std
::
cout
<<
"--reduceDims or -R, comma separated list of to-reduce dimensions"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<<
std
::
endl
;
std
::
cout
<<
"Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)"
<<
std
::
endl
;
std
::
cout
<<
"Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
"value, 3=decimal value)"
<<
std
::
endl
;
std
::
cout
<<
"Arg3 -- time kernel (0=no, 1=yes)"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
using
ck
::
host_common
::
getTypeValuesFromString
;
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:R:v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
case
'R'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
reduceDims
=
getTypeValuesFromString
<
int
>
(
optarg
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
3
>
argc
)
{
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
};
data_type
=
std
::
atoi
(
argv
[
optind
++
]);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
time_kernel
=
static_cast
<
bool
>
(
std
::
atoi
(
argv
[
optind
]));
if
(
scales
.
empty
())
{
scales
.
push_back
(
1.0
f
);
scales
.
push_back
(
0.0
f
);
};
return
(
0
);
};
};
template
<
typename
InOutDataType
,
typename
AccDataType
,
ReduceTensorOp
ReduceOpId
,
index_t
PropagateNan
,
index_t
OutputIndex
>
bool
reduce_threadwise_multi_d_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
vector
<
int
>&
reduceDims
,
float
alpha
,
float
beta
)
{
bool
matched
=
false
;
int
result
=
0
;
const
auto
tuple_object
=
reduce_shape_instances
{};
static_for
<
0
,
std
::
tuple_size
<
reduce_shape_instances
>::
value
,
1
>
{}([
&
](
auto
i
)
{
if
(
matched
)
return
;
using
ShapeType
=
remove_cvref_t
<
decltype
(
std
::
get
<
i
>
(
tuple_object
))
>
;
if
(
ShapeType
::
Rank_
!=
inLengths
.
size
()
||
ShapeType
::
NumReduceDim_
!=
reduceDims
.
size
())
return
;
std
::
array
<
int
,
ShapeType
::
NumReduceDim_
>
arrReduceDims
;
ck
::
ranges
::
copy
(
reduceDims
,
arrReduceDims
.
begin
());
result
=
reduce_threadwise_multi_d_impl
<
InOutDataType
,
AccDataType
,
ReduceOpId
,
ShapeType
::
Rank_
,
ShapeType
::
NumReduceDim_
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
init_method
,
time_kernel
,
inLengths
,
arrReduceDims
,
alpha
,
beta
);
matched
=
true
;
});
return
(
result
==
0
)
?
true
:
false
;
};
constexpr
ReduceTensorOp
ReduceOpId
=
ReduceTensorOp
::
AVG
;
constexpr
bool
PropagateNan
=
true
;
constexpr
bool
OutputIndex
=
false
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
pass
=
true
;
if
(
argc
>
1
)
{
SimpleAppArgs
arg
;
if
(
arg
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
if
(
arg
.
data_type
==
0
)
{
pass
=
reduce_threadwise_multi_d_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
else
if
(
arg
.
data_type
==
1
)
{
pass
=
reduce_threadwise_multi_d_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
arg
.
do_verification
,
arg
.
init_method
,
arg
.
time_kernel
,
arg
.
inLengths
,
arg
.
reduceDims
,
arg
.
scales
[
0
],
arg
.
scales
[
1
]);
}
}
else
{
// for testing half_t
pass
=
pass
&&
reduce_threadwise_multi_d_test
<
ck
::
half_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
},
1.0
f
,
0.0
f
);
// for testing float
pass
=
pass
&&
reduce_threadwise_multi_d_test
<
float
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
},
1.0
f
,
0.0
f
);
// for testing bhalf_t
pass
=
pass
&&
reduce_threadwise_multi_d_test
<
ck
::
bhalf_t
,
float
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
true
,
2
,
true
,
{
16
,
64
,
32
,
960
},
{
0
},
1.0
f
,
0.0
f
);
}
return
(
pass
?
0
:
1
);
};
example/12_reduce/reduce_threadwise_multi_d_impl.hpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_threadwise_multi_d.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_reduce.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "reduce_example_common.hpp"
template
<
typename
InOutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp
ReduceOpId
,
ck
::
index_t
Rank
,
ck
::
index_t
NumReduceDim
,
bool
PropagateNan
,
bool
OutputIndex
>
int
reduce_threadwise_multi_d_impl
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
std
::
vector
<
size_t
>&
inLengths
,
const
std
::
array
<
int
,
NumReduceDim
>&
reduceDims
,
float
alpha
,
float
beta
)
{
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
constexpr
index_t
NumOutDim
=
(
Rank
-
NumReduceDim
==
0
)
?
1
:
Rank
-
NumReduceDim
;
constexpr
bool
op_support_indices
=
(
ReduceOpId
==
ReduceTensorOp
::
MIN
||
ReduceOpId
==
ReduceTensorOp
::
MAX
||
ReduceOpId
==
ReduceTensorOp
::
AMAX
);
constexpr
bool
invalid_reduce_1
=
OutputIndex
&&
!
op_support_indices
;
// 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
// operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
// reduction operations
constexpr
bool
invalid_reduce_2
=
std
::
is_same
<
InOutDataType
,
half_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
half_t
>::
value
));
// 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
// operations
constexpr
bool
invalid_reduce_3
=
std
::
is_same
<
InOutDataType
,
float
>::
value
&&
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
);
// 1) If InOutDataType is int8_t or int4_t, must use int8_t as AccDataType for indexable
// reduction operations 2) If InOutDataType is int8_t or int4_t, must use int32_t as AccDataType
// for non-indexable reduction operations
constexpr
bool
invalid_reduce_4
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int32_t
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
int8_t
>::
value
));
// 1) If InOutDataType is int8_t or int4_t, the supported operation must be either indexable
// operations or ADD/AVG
constexpr
bool
invalid_reduce_5
=
std
::
is_same
<
InOutDataType
,
int8_t
>::
value
&&
(
!
op_support_indices
&&
ReduceOpId
!=
ReduceTensorOp
::
ADD
&&
ReduceOpId
!=
ReduceTensorOp
::
AVG
);
// 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
constexpr
bool
invalid_reduce_6
=
std
::
is_same
<
InOutDataType
,
bhalf_t
>::
value
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
;
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
||
invalid_reduce_4
||
invalid_reduce_5
||
invalid_reduce_6
);
if
constexpr
(
invalid_reduce
)
{
std
::
cerr
<<
"The reduction setting is invalid, exiting!"
<<
std
::
endl
;
return
(
-
1
);
};
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
tensor_operation
::
element_wise
::
Add
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
PassThrough
;
using
OutElementwiseOperation
=
Add
;
using
InOutDataTypeInDevice
=
InOutDataType
;
using
DeviceReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceReduceThreadWiseMultiD
<
InOutDataTypeInDevice
,
ck
::
Tuple
<
InOutDataTypeInDevice
>
,
AccDataType
,
InOutDataTypeInDevice
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
OutElementwiseOperation
,
256
,
// BlockSize
4
,
// MThreadSliceSize
1
,
// KThreadSliceSize
0
,
// InSrcVectorDim
1
,
// InSrceVectorSize
1
,
Sequence
<
1
>>
;
// OutDstVectorSize
Tensor
<
InOutDataType
>
in
(
inLengths
);
std
::
vector
<
size_t
>
outLengths
;
auto
invariantDims
=
get_invariant_dims
<
Rank
,
NumReduceDim
>
(
reduceDims
);
if
(
invariantDims
.
empty
())
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
invariantDims
)
outLengths
.
push_back
(
inLengths
[
dim
]);
Tensor
<
InOutDataType
>
out_ref
(
outLengths
);
Tensor
<
InOutDataType
>
out
(
outLengths
);
Tensor
<
InOutDataType
>
d0
(
outLengths
);
Tensor
<
int
>
out_indices_ref
(
outLengths
);
Tensor
<
int
>
out_indices
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
std
::
size_t
num_thread
=
1
;
if
(
do_verification
)
{
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
d0
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOutDataType
>
{
1
},
num_thread
);
break
;
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
d0
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOutDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
d0
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOutDataType
>
{
-
5.0
,
5.0
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpaceSize
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InOutDataTypeInDevice
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_dev
(
sizeof
(
InOutDataTypeInDevice
)
*
d0
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_dev
(
sizeof
(
InOutDataTypeInDevice
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
d0_dev
.
ToDevice
(
d0
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
{
out_dev
.
ToDevice
(
out
.
mData
.
data
());
};
size_t
indicesSizeInBytes
=
OutputIndex
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int32_t
)
:
0
;
DeviceMem
out_index_dev
(
indicesSizeInBytes
);
InElementwiseOperation
in_elementwise_op
;
OutElementwiseOperation
out_elementwise_op
;
std
::
array
<
index_t
,
Rank
>
arrInLengths
;
std
::
array
<
index_t
,
Rank
>
arrInStrides
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutLengths
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutStrides
;
ck
::
ranges
::
copy
(
inLengths
,
arrInLengths
.
begin
());
ck
::
ranges
::
copy
(
inStrides
,
arrInStrides
.
begin
());
ck
::
ranges
::
copy
(
outLengths
,
arrOutLengths
.
begin
());
ck
::
ranges
::
copy
(
outStrides
,
arrOutStrides
.
begin
());
if
(
do_verification
)
{
using
ReferenceReduceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceReduce
<
InOutDataType
,
AccDataType
,
InOutDataType
,
Rank
,
NumReduceDim
,
ReduceOperation
,
InElementwiseOperation
,
PassThrough
,
PropagateNan
,
OutputIndex
>
;
auto
reduce_ref
=
ReferenceReduceInstance
{};
auto
argument_ptr_ref
=
reduce_ref
.
MakeArgumentPointer
(
arrInLengths
,
arrInStrides
,
arrOutLengths
,
arrOutStrides
,
reduceDims
,
static_cast
<
double
>
(
alpha
),
static_cast
<
double
>
(
beta
),
in
.
mData
.
data
(),
nullptr
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
(),
in_elementwise_op
,
PassThrough
{});
if
(
!
reduce_ref
.
IsSupportedArgument
(
argument_ptr_ref
.
get
()))
{
std
::
cout
<<
"The runtime parameters not supported by the reduce reference, exiting!"
<<
std
::
endl
;
return
(
false
);
};
auto
invoker_ptr_ref
=
reduce_ref
.
MakeInvokerPointer
();
invoker_ptr_ref
->
Run
(
argument_ptr_ref
.
get
());
for
(
std
::
size_t
i
=
0
;
i
<
out_ref
.
GetElementSize
();
i
++
)
out_elementwise_op
(
out_ref
.
mData
[
i
],
out_ref
.
mData
[
i
],
d0
.
mData
[
i
]);
};
auto
reduce
=
DeviceReduceInstance
{};
auto
argument_ptr
=
reduce
.
MakeArgumentPointer
(
arrInLengths
,
arrInStrides
,
{
arrOutLengths
},
{
arrOutStrides
},
arrOutLengths
,
arrOutStrides
,
reduceDims
,
in_dev
.
GetDeviceBuffer
(),
{
d0_dev
.
GetDeviceBuffer
()},
out_dev
.
GetDeviceBuffer
(),
in_elementwise_op
,
out_elementwise_op
);
if
(
!
reduce
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cerr
<<
"The runtime parameters not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
return
(
-
2
);
};
std
::
string
reduce_name
=
reduce
.
GetTypeString
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InOutDataType
)
+
invariant_total_length
*
sizeof
(
InOutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
,
out_ref
);
if
(
OutputIndex
)
{
out_index_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices
,
out_indices_ref
);
};
};
return
(
pass
?
0
:
1
);
}
example/17_convnd_bwd_data/convnd_bwd_data_common.hpp
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
...
...
@@ -80,6 +80,29 @@ int run_conv_bwd_data(bool do_verification,
// reset input to zero
in_device_buf
.
SetZero
();
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths_i32
(
NDimSpatial
);
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths_i32
(
NDimSpatial
);
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths_i32
(
NDimSpatial
);
std
::
vector
<
ck
::
index_t
>
conv_filter_strides_i32
(
NDimSpatial
);
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations_i32
(
NDimSpatial
);
std
::
vector
<
ck
::
index_t
>
input_left_pads_i32
(
NDimSpatial
);
std
::
vector
<
ck
::
index_t
>
input_right_pads_i32
(
NDimSpatial
);
for
(
ck
::
index_t
d
=
0
;
d
<
NDimSpatial
;
d
++
)
{
input_spatial_lengths_i32
[
d
]
=
static_cast
<
ck
::
index_t
>
(
conv_param
.
input_spatial_lengths_
[
d
]);
filter_spatial_lengths_i32
[
d
]
=
static_cast
<
ck
::
index_t
>
(
conv_param
.
filter_spatial_lengths_
[
d
]);
output_spatial_lengths_i32
[
d
]
=
static_cast
<
ck
::
index_t
>
(
conv_param
.
GetOutputSpatialLengths
()[
d
]);
conv_filter_strides_i32
[
d
]
=
static_cast
<
ck
::
index_t
>
(
conv_param
.
conv_filter_strides_
[
d
]);
conv_filter_dilations_i32
[
d
]
=
static_cast
<
ck
::
index_t
>
(
conv_param
.
conv_filter_dilations_
[
d
]);
input_left_pads_i32
[
d
]
=
static_cast
<
ck
::
index_t
>
(
conv_param
.
input_left_pads_
[
d
]);
input_right_pads_i32
[
d
]
=
static_cast
<
ck
::
index_t
>
(
conv_param
.
input_right_pads_
[
d
]);
}
// do GEMM
auto
conv
=
DeviceConvNdBwdDataInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
...
...
@@ -87,16 +110,16 @@ int run_conv_bwd_data(bool do_verification,
conv
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
,
conv_param
.
filter_spatial_lengths_
,
conv_param
.
GetO
utput
S
patial
L
engths
()
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
static_cast
<
ck
::
index_t
>
(
conv_param
.
N_
)
,
static_cast
<
ck
::
index_t
>
(
conv_param
.
K_
)
,
static_cast
<
ck
::
index_t
>
(
conv_param
.
C_
)
,
input_spatial_lengths_
i32
,
filter_spatial_lengths_
i32
,
o
utput
_s
patial
_l
engths
_i32
,
conv_filter_strides_
i32
,
conv_filter_dilations_
i32
,
input_left_pads_
i32
,
input_right_pads_
i32
,
in_element_op
,
wei_element_op
,
out_element_op
);
...
...
example/35_splitK_gemm/CMakeLists.txt
View file @
408534d4
...
...
@@ -21,3 +21,9 @@ if(USE_BITINT_EXTENSION_INT4)
add_example_executable
(
example_splitK_gemm_xdl_int4 splitK_gemm_xdl_int4.cpp
)
add_example_dependencies
(
example_splitK_gemm_xdl example_splitK_gemm_xdl_int4
)
endif
()
add_example_executable
(
example_gemm_xdl_splitk_reduce_multi_d_fp16 gemm_xdl_splitk_reduce_multi_d_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_splitk_reduce_multi_d_bf16 gemm_xdl_splitk_reduce_multi_d_bf16.cpp
)
add_example_executable
(
example_gemm_xdl_splitk_reduce_bf16A_i8B gemm_xdl_splitk_reduce_bf16A_i8B.cpp
)
add_example_executable
(
example_gemm_xdl_splitk_reduce_bfp16 gemm_xdl_splitk_reduce_bf16.cpp
)
example/35_splitK_gemm/common.hpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_multiple_d.hpp"
struct
ProblemSizeSplitK
final
{
ck
::
index_t
M
=
256
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
512
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
N
;
ck
::
index_t
StrideC
=
N
;
ck
::
index_t
KBatch
=
2
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
2
;
bool
time_kernel
=
true
;
};
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
bool
parse_cmd_args
(
int
argc
,
char
*
argv
[],
ProblemSizeSplitK
&
problem_size
,
ExecutionConfig
&
config
)
{
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
>=
10
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
StrideA
=
std
::
stoi
(
argv
[
7
]);
problem_size
.
StrideB
=
std
::
stoi
(
argv
[
8
]);
problem_size
.
StrideC
=
std
::
stoi
(
argv
[
9
]);
if
(
argc
>=
11
)
{
problem_size
.
KBatch
=
std
::
stoi
(
argv
[
10
]);
}
}
else
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)"
<<
std
::
endl
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC"
<<
std
::
endl
<<
"arg10: KBatch"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
example/35_splitK_gemm/gemm_xdl_splitk_reduce_bf16.cpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
ReduceDataType
=
ck
::
bhalf_t
;
using
D0DataType
=
ck
::
bhalf_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
D0Layout
=
CLayout
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3R1
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
#include "run_gemm_splitk_reduce_multi_d_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/35_splitK_gemm/gemm_xdl_splitk_reduce_bf16A_i8B.cpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
int8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
ReduceDataType
=
float
;
using
D0DataType
=
ck
::
bhalf_t
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<>
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3R1
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
,
ReduceDataType
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
#include "run_gemm_splitk_reduce_multi_d_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/35_splitK_gemm/gemm_xdl_splitk_reduce_multi_d_bf16.cpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
ReduceDataType
=
float
;
using
D0DataType
=
ck
::
bhalf_t
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
D0Layout
=
CLayout
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3R1
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
,
ReduceDataType
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
#include "run_gemm_splitk_reduce_multi_d_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/35_splitK_gemm/gemm_xdl_splitk_reduce_multi_d_fp16.cpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
ReduceDataType
=
float
;
using
D0DataType
=
ck
::
half_t
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
D0Layout
=
CLayout
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3R1
<
ALayout
,
BLayout
,
DsLayout
,
CLayout
,
ADataType
,
BDataType
,
DsDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
256
,
128
,
128
,
64
,
8
,
4
,
32
,
32
,
2
,
2
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
4
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v2
,
ReduceDataType
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
#include "run_gemm_splitk_reduce_multi_d_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/35_splitK_gemm/run_gemm_splitk_reduce_multi_d_example.inc
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1
e
-
1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1
e
-
6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1
e
-
3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5
e
-
2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1
e
-
1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1
e
-
3
;
}
}
template
<
typename
ProblemType
>
bool
run_gemm
(
const
ProblemType
&
problem_size
,
const
ExecutionConfig
&
config
)
{
using
namespace
ck
::
literals
;
auto
M
=
problem_size
.
M
;
auto
N
=
problem_size
.
N
;
auto
K
=
problem_size
.
K
;
auto
StrideA
=
problem_size
.
StrideA
;
auto
StrideB
=
problem_size
.
StrideB
;
auto
StrideC
=
problem_size
.
StrideC
;
auto
StrideD0
=
problem_size
.
StrideC
;
auto
KBatch
=
problem_size
.
KBatch
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1_
uz
,
stride
});
}
};
auto
f_get_default_stride
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
stride
==
0
)
{
// give a chance if stride is zero, return a default packed stride
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
col
;
}
else
{
return
row
;
}
}
else
return
stride
;
};
StrideA
=
f_get_default_stride
(
M
,
K
,
StrideA
,
ALayout
{});
StrideB
=
f_get_default_stride
(
K
,
N
,
StrideB
,
BLayout
{});
StrideC
=
f_get_default_stride
(
M
,
N
,
StrideC
,
CLayout
{});
StrideD0
=
f_get_default_stride
(
M
,
N
,
StrideD0
,
D0Layout
{});
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
D0DataType
>
d0_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD0
,
D0Layout
{}));
switch
(
config
.
init_method
)
{
case
0
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
break
;
case
3
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
break
;
default
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d0_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
#if 0
printf
(
"B matrix:
\n
"
);
for
(
int
in
=
0
;
in
<
N
;
in
++
)
{
for
(
int
ik
=
0
;
ik
<
K
;
ik
++
)
{
printf
(
"%02x "
,
*
(
reinterpret_cast
<
uint8_t
*>
(
&
b_k_n
(
ik
,
in
))));
if
(
ik
%
8
==
7
)
printf
(
"|"
);
}
printf
(
"
\n
"
);
}
#endif
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"init method: "
<<
config
.
init_method
<<
std
::
endl
;
std
::
cout
<<
"KBatch: "
<<
KBatch
<<
std
::
endl
;
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d0_m_n_device_buf
(
sizeof
(
D0DataType
)
*
d0_m_n
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_m_n_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CDEElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmV2Instance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
float
ave_time
=
0
;
auto
get_argment
=
[
&
]()
{
if
constexpr
(
DsDataType
::
Size
()
>
0
)
{
return
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
{
d0_m_n_device_buf
.
GetDeviceBuffer
()},
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
},
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
);
}
else
{
return
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
{},
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
);
}
};
auto
argument
=
get_argment
();
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
true
;
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
(),
StreamConfig
{});
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
if
constexpr
(
DsDataType
::
Size
()
>
0
)
{
c_m_n_host_result
.
ForEach
(
[
&
](
auto
&
self
,
auto
idx
)
{
c_element_op
(
self
(
idx
),
self
(
idx
),
d0_m_n
(
idx
));
});
}
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
,
"Error: Incorrect results!"
,
get_rtol
<
CDataType
>
(),
get_atol
<
CDataType
>
());
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
bool
run_gemm_splitk_example
(
int
argc
,
char
*
argv
[])
{
ProblemSizeSplitK
problem_size
;
ExecutionConfig
config
;
return
!
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
)
||
run_gemm
(
problem_size
,
config
);
}
example/62_convnd_activ/CMakeLists.txt
View file @
408534d4
...
...
@@ -2,6 +2,7 @@ add_subdirectory(binary)
add_subdirectory
(
convinvscale
)
add_subdirectory
(
convscale
)
add_subdirectory
(
convscale_relu
)
add_subdirectory
(
convscale_add
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
unary
)
...
...
example/62_convnd_activ/convscale_add/CMakeLists.txt
0 → 100644
View file @
408534d4
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_activ_xdl_convscale_add
)
add_example_executable
(
example_convnd_fwd_xdl_convscale_add_fp8 convnd_fwd_xdl_convscale_add_fp8.cpp
)
add_example_dependencies
(
example_convnd_activ_xdl_convscale_add example_convnd_fwd_xdl_convscale_add_fp8
)
set
(
target 1
)
endif
()
endforeach
()
example/62_convnd_activ/convscale_add/convnd_fwd_convscale_add_common.hpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ConvScaleAdd
;
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
DsDataType
>
bias
(
out_g_n_k_wos_desc
);
Tensor
<
CShuffleDataType
>
c
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias: "
<<
bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
1
,
1
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
DsDataType
>
{
-
3
,
3
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
5.0
,
5.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
1.0
,
1.0
});
bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
DsDataType
>
{
-
3.0
,
3.0
});
break
;
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
DsDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
d_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
d_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// random scale values
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
std
::
cout
<<
std
::
endl
;
std
::
cout
<<
"scale_in: "
<<
scale_in
<<
std
::
endl
;
std
::
cout
<<
"scale_wei: "
<<
scale_wei
<<
std
::
endl
;
std
::
cout
<<
"scale_out: "
<<
scale_out
<<
std
::
endl
;
// initialize out_element_op for each iteration
const
auto
out_element_op
=
OutElementOp
{
scale_in
,
scale_wei
,
scale_out
};
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d_g_n_k_wos_lengths
}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d_g_n_k_wos_strides
}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
ds_size
=
3
+
1
;
// 3 element-wise scale multipliers + 1 element-wise add
std
::
size_t
flop
=
GetFlops
<
NDimSpatial
>
(
e_g_n_k_wos_lengths
,
b_g_k_c_xs_lengths
,
ds_size
);
std
::
size_t
num_btype
=
conv_param
.
GetInputByte
<
InDataType
>
()
+
conv_param
.
GetWeightByte
<
WeiDataType
>
()
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
()
+
conv_param
.
GetOutputByte
<
DsDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
out_host
.
ForEach
(
[
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c
(
idx
),
bias
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
}
return
true
;
}
example/62_convnd_activ/convscale_add/convnd_fwd_xdl_convscale_add_fp8.cpp
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/tuple.hpp"
#include "convnd_fwd_convscale_add_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ConvScaleAdd
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
DsLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DsDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeDataType
,
BComputeDataType
>
;
#include "run_convnd_fwd_convscale_add_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/62_convnd_activ/convscale_add/run_convnd_fwd_convscale_add_example.inc
0 → 100644
View file @
408534d4
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_convnd_fwd_example
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
run
=
[
&
](
auto
ndim_spatial
,
auto
in_layout
,
auto
wei_layout
,
auto
ds_layout
,
auto
out_layout
)
{
constexpr
ck
::
index_t
ndim_spatial_value
=
ndim_spatial
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
DsLayout
=
decltype
(
ds_layout
);
using
OutLayout
=
decltype
(
out_layout
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv_fwd
<
ndim_spatial_value
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial_value
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
);
};
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
return
run
(
ck
::
Number
<
1
>
{},
ctc
::
GNWC
{},
ctc
::
GKXC
{},
ctc
::
GNWK
{},
ctc
::
GNWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
return
run
(
ck
::
Number
<
2
>
{},
ctc
::
GNHWC
{},
ctc
::
GKYXC
{},
ctc
::
GNHWK
{},
ctc
::
GNHWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
return
run
(
ck
::
Number
<
3
>
{},
ctc
::
GNDHWC
{},
ctc
::
GKZYXC
{},
ctc
::
GNDHWK
{},
ctc
::
GNDHWK
{});
}
return
true
;
}
example/65_gemm_multiply_multiply/CMakeLists.txt
View file @
408534d4
add_example_executable
(
example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_multiply_xdl_fp8.cpp
)
add_example_executable
(
example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp
)
add_example_executable
(
example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp
)
Prev
1
2
3
4
5
6
…
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment