"...git@developer.sourcefind.cn:modelzoo/solov2-pytorch.git" did not exist on "084a3890db88043634ccbb3974f1ef584e19dfd5"
Unverified Commit 3e178e7c authored by Muhammed  Emin Ozturk's avatar Muhammed Emin Ozturk Committed by GitHub
Browse files

Merge branch 'develop' into muozturk_bf16fp8_streamk

parents 27fb084f 0e5e29c4
......@@ -869,9 +869,16 @@ struct GridwiseGemm_xdl_cshuffle_v2
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
constexpr auto lcm_AK1_BK1 = math::lcm(AK1Number, BK1Number);
constexpr bool is_single_rate_mfma =
((is_same<ComputeTypeA, half_t>::value || is_same<ComputeTypeA, bhalf_t>::value) &&
lcm_AK1_BK1 <= 4)
? true
: false;
constexpr index_t KPack = math::max(
lcm_AK1_BK1,
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeA, is_single_rate_mfma>::
selected_mfma.k_per_blk);
// auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
// BlockSize,
......
......@@ -147,9 +147,16 @@ struct GridwiseGemm_xdl_cshuffle_v3
static constexpr auto AK1Number = Number<AK1Value>{};
static constexpr auto BK1Number = Number<BK1Value>{};
static constexpr auto lcm_AK1_BK1 = math::lcm(AK1Number, BK1Number);
static constexpr bool is_single_rate_mfma =
((is_same<ComputeTypeA, half_t>::value || is_same<ComputeTypeA, bhalf_t>::value) &&
lcm_AK1_BK1 <= 4)
? true
: false;
static constexpr index_t KPack =
math::max(math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
math::max(lcm_AK1_BK1,
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeA, is_single_rate_mfma>::
selected_mfma.k_per_blk);
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
......
......@@ -155,9 +155,16 @@ struct GridwiseGemm_xdl_cshuffle_v3
static constexpr auto AK1Number = Number<AK1Value>{};
static constexpr auto BK1Number = Number<BK1Value>{};
static constexpr auto lcm_AK1_BK1 = math::lcm(AK1Number, BK1Number);
static constexpr bool is_single_rate_mfma =
((is_same<ComputeTypeA, half_t>::value || is_same<ComputeTypeA, bhalf_t>::value) &&
lcm_AK1_BK1 <= 4)
? true
: false;
static constexpr index_t KPack =
math::max(math::lcm(AK1Number, BK1Number),
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
math::max(lcm_AK1_BK1,
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeA, is_single_rate_mfma>::
selected_mfma.k_per_blk);
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
......@@ -1424,7 +1431,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
// b scale
// static_assert(KPerBlock <= ScaleBlockK);
static constexpr auto mfma = MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl>{};
static constexpr auto mfma =
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeA, is_single_rate_mfma>{};
static constexpr auto KPerXdlops = mfma.GetKPerXdlops();
static constexpr auto K1PerXdlops = mfma.GetK1PerXdlops();
static constexpr auto K0PerXdlops = KPerXdlops / K1PerXdlops;
......@@ -1895,7 +1903,8 @@ struct GridwiseGemm_xdl_cshuffle_v3
KPerBlock);
// B scale
static constexpr auto mfma = MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl>{};
static constexpr auto mfma =
MfmaSelector<ComputeTypeA, MPerXdl, NPerXdl, ComputeTypeA, is_single_rate_mfma>{};
static constexpr auto KPerXdlops = mfma.GetKPerXdlops();
static constexpr auto K1PerXdlops = mfma.GetK1PerXdlops();
static constexpr auto K0PerXdlops = KPerXdlops / K1PerXdlops;
......
......@@ -489,8 +489,16 @@ struct GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr auto lcm_AK1_BK1 = math::lcm(AK1, BK1);
constexpr bool is_single_rate_mfma =
((is_same<FloatAB, half_t>::value || is_same<FloatAB, bhalf_t>::value) &&
lcm_AK1_BK1 <= 4)
? true
: false;
constexpr index_t KPack = math::max(
math::lcm(AK1, BK1), MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
lcm_AK1_BK1,
MfmaSelector<FloatAB, MPerXdl, NPerXdl, FloatAB, is_single_rate_mfma>::selected_mfma
.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector<
BlockSize,
......
......@@ -487,9 +487,16 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdl_waveletmodel_cshuffle
else if(TileMathThreadGroup::IsBelong())
{
// branch early for math wave
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<ABDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
constexpr auto lcm_AK1_BK1 = math::lcm(AK1, BK1);
constexpr bool is_single_rate_mfma =
((is_same<ABDataType, half_t>::value || is_same<ABDataType, bhalf_t>::value) &&
lcm_AK1_BK1 <= 4)
? true
: false;
constexpr index_t KPack = math::max(
lcm_AK1_BK1,
MfmaSelector<ABDataType, MPerXdl, NPerXdl, ABDataType, is_single_rate_mfma>::
selected_mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<
TileMathThreadGroupSize,
......
......@@ -446,8 +446,16 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr auto lcm_AK1_BK1 = math::lcm(AK1, BK1);
constexpr bool is_single_rate_mfma =
((is_same<FloatAB, half_t>::value || is_same<FloatAB, bhalf_t>::value) &&
lcm_AK1_BK1 <= 4)
? true
: false;
constexpr index_t k_pack = math::max(
math::lcm(AK1, BK1), MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
lcm_AK1_BK1,
MfmaSelector<FloatAB, MPerXdl, NPerXdl, FloatAB, is_single_rate_mfma>::selected_mfma
.k_per_blk);
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
......
......@@ -68,52 +68,82 @@ struct transpose_vectors
}
else if constexpr(sizeof(S) == 1)
{
static_assert((NX % 4 == 0 && NY % 4 == 0), "wrong!");
static_assert(((NX % 4 == 0 && NY % 4 == 0) || (NX % 2 == 0 && NY % 2 == 0)), "wrong!");
using S4 = array<S, 4>; // typename array<S, 4>::type;
// loop over 4x4 tile and transpose data from vx_tuple into vy_tuple
static_for<0, NY, 4>{}([&](auto iy) {
static_for<0, NX, 4>{}([&](auto ix) {
// 4 int8x4 data from vx_tuple
const int32_t x_s4_0 =
bit_cast<int32_t>(vx_tuple[ix].template get_as<S4>()[iy / I4]);
const int32_t x_s4_1 =
bit_cast<int32_t>(vx_tuple[ix + I1].template get_as<S4>()[iy / I4]);
const int32_t x_s4_2 =
bit_cast<int32_t>(vx_tuple[ix + I2].template get_as<S4>()[iy / I4]);
const int32_t x_s4_3 =
bit_cast<int32_t>(vx_tuple[ix + I3].template get_as<S4>()[iy / I4]);
// transpose
int32_t t_s4_0, t_s4_1;
int32_t y_s4_0, y_s4_1, y_s4_2, y_s4_3;
constexpr int32_t m0 = 0x05010400;
constexpr int32_t m1 = 0x05040100;
constexpr int32_t m2 = 0x07060302;
constexpr int32_t m3 = 0x07030602;
// ex: v_perm_b32(0x 11 22 33 44, 0x 55 66 77 88, 0x 05 01 04 00) -> 0x33774488
// -- -- -- -- -- -- -- -- - - - -
// index 7 6 5 4 3 2 1 0 33 77 44 88
// index is reversed because of little endianness (least significant bits first)
t_s4_0 = __builtin_amdgcn_perm(x_s4_1, x_s4_0, m0);
t_s4_1 = __builtin_amdgcn_perm(x_s4_3, x_s4_2, m0);
y_s4_0 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m1);
y_s4_1 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m2);
t_s4_0 = __builtin_amdgcn_perm(x_s4_1, x_s4_0, m3);
t_s4_1 = __builtin_amdgcn_perm(x_s4_3, x_s4_2, m3);
y_s4_2 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m1);
y_s4_3 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m2);
// 4 int8x4 data from vy_tuple
vy_tuple(iy).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_0);
vy_tuple(iy + I1).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_1);
vy_tuple(iy + I2).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_2);
vy_tuple(iy + I3).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_3);
using S2 = array<S, 2>; // typename array<S, 4>::type;
if constexpr(NX % 4 == 0 && NY % 4 == 0)
{
// loop over 4x4 tile and transpose data from vx_tuple into vy_tuple
static_for<0, NY, 4>{}([&](auto iy) {
static_for<0, NX, 4>{}([&](auto ix) {
// 4 int8x4 data from vx_tuple
const int32_t x_s4_0 =
bit_cast<int32_t>(vx_tuple[ix].template get_as<S4>()[iy / I4]);
const int32_t x_s4_1 =
bit_cast<int32_t>(vx_tuple[ix + I1].template get_as<S4>()[iy / I4]);
const int32_t x_s4_2 =
bit_cast<int32_t>(vx_tuple[ix + I2].template get_as<S4>()[iy / I4]);
const int32_t x_s4_3 =
bit_cast<int32_t>(vx_tuple[ix + I3].template get_as<S4>()[iy / I4]);
// transpose
int32_t t_s4_0, t_s4_1;
int32_t y_s4_0, y_s4_1, y_s4_2, y_s4_3;
constexpr int32_t m0 = 0x05010400;
constexpr int32_t m1 = 0x05040100;
constexpr int32_t m2 = 0x07060302;
constexpr int32_t m3 = 0x07030602;
// ex: v_perm_b32(0x 11 22 33 44, 0x 55 66 77 88, 0x 05 01 04 00) ->
// 0x33774488
// -- -- -- -- -- -- -- -- - - - -
// index 7 6 5 4 3 2 1 0 33 77 44 88
// index is reversed because of little endianness (least significant bits
// first)
t_s4_0 = __builtin_amdgcn_perm(x_s4_1, x_s4_0, m0);
t_s4_1 = __builtin_amdgcn_perm(x_s4_3, x_s4_2, m0);
y_s4_0 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m1);
y_s4_1 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m2);
t_s4_0 = __builtin_amdgcn_perm(x_s4_1, x_s4_0, m3);
t_s4_1 = __builtin_amdgcn_perm(x_s4_3, x_s4_2, m3);
y_s4_2 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m1);
y_s4_3 = __builtin_amdgcn_perm(t_s4_1, t_s4_0, m2);
// 4 int8x4 data from vy_tuple
vy_tuple(iy).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_0);
vy_tuple(iy + I1).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_1);
vy_tuple(iy + I2).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_2);
vy_tuple(iy + I3).template get_as<S4>()(ix / I4) = bit_cast<S4>(y_s4_3);
});
});
});
}
else if constexpr(NX % 2 == 0 && NY % 2 == 0)
{
static_for<0, NY, 2>{}([&](auto ix) {
static_for<0, NX, 2>{}([&](auto iy) {
const int16_t x_s2_0 =
bit_cast<int16_t>(vx_tuple[ix].template get_as<S2>()[iy / I2]);
const int16_t x_s2_1 =
bit_cast<int16_t>(vx_tuple[ix + I1].template get_as<S2>()[iy / I2]);
constexpr int32_t m0 = 0x05040100;
constexpr int32_t m1 = 0x07060302;
const int32_t x0_32 = static_cast<int32_t>(x_s2_0 & 0xFFFF);
const int32_t x1_32 = static_cast<int32_t>(x_s2_1 & 0xFFFF);
const int32_t y_s2_0 = __builtin_amdgcn_perm(x1_32, x0_32, m0);
const int32_t y_s2_1 = __builtin_amdgcn_perm(x1_32, x0_32, m1);
vy_tuple(iy).template get_as<S2>()[ix / I2] =
bit_cast<S2>(static_cast<int16_t>(y_s2_0 & 0xFFFF));
vy_tuple(iy + I1).template get_as<S2>()[ix / I2] =
bit_cast<S2>(static_cast<int16_t>(y_s2_1 & 0xFFFF));
});
});
}
}
else
{
......
......@@ -29,6 +29,8 @@
#include "ck_tile/ops/gemm/kernel/grouped_gemm_kernel.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_base.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_comp_v3.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_comp_v4.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_comp_v4_default_policy.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_mem.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_ag_bg_cr_scheduler.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_pipeline_agmem_bgmem_creg_v1.hpp"
......
......@@ -14,24 +14,54 @@ namespace ck_tile {
template <typename Problem_, typename Policy_ = BlockGemmARegBRegCRegV1DefaultPolicy>
struct BlockGemmARegBRegCRegV1
{
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
static constexpr index_t MWarp = config.template at<1>();
static constexpr index_t NWarp = config.template at<2>();
static constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
static constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WG::kN);
static constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
private:
template <typename PipelineProblem_, typename GemmPolicy_>
struct GemmTraits_
{
using Problem = remove_cvref_t<PipelineProblem_>;
using Policy = remove_cvref_t<GemmPolicy_>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
using BDataType = remove_cvref_t<typename Problem::BDataType>;
using CDataType = remove_cvref_t<typename Problem::CDataType>;
using BlockGemmShape = remove_cvref_t<typename Problem::BlockGemmShape>;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t MPerBlock = BlockGemmShape::kM;
static constexpr index_t NPerBlock = BlockGemmShape::kN;
static constexpr index_t KPerBlock = BlockGemmShape::kK;
static constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WarpGemm = remove_cvref_t<decltype(config.template at<0>())>;
static constexpr index_t MWarp = config.template at<1>();
static constexpr index_t NWarp = config.template at<2>();
static constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WarpGemm::kM);
static constexpr index_t NIterPerWarp = NPerBlock / (NWarp * WarpGemm::kN);
static constexpr index_t KIterPerWarp = KPerBlock / WarpGemm::kK;
static constexpr index_t KPack = WarpGemm::kKPerThread;
};
public:
using Problem = remove_cvref_t<Problem_>;
using Policy = remove_cvref_t<Policy_>;
using Traits = GemmTraits_<Problem, Policy>;
using WarpGemm = typename Traits::WarpGemm;
using BlockGemmShape = typename Traits::BlockGemmShape;
using ADataType = remove_cvref_t<typename Traits::ADataType>;
using BDataType = remove_cvref_t<typename Traits::BDataType>;
using CDataType = remove_cvref_t<typename Traits::CDataType>;
static constexpr index_t KIterPerWarp = Traits::KIterPerWarp;
static constexpr index_t MIterPerWarp = Traits::MIterPerWarp;
static constexpr index_t NIterPerWarp = Traits::NIterPerWarp;
static constexpr index_t MWarp = Traits::MWarp;
static constexpr index_t NWarp = Traits::NWarp;
CK_TILE_DEVICE static constexpr auto MakeABlockDistributionEncode()
{
......@@ -43,7 +73,7 @@ struct BlockGemmARegBRegCRegV1
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
a_block_outer_dstr_encoding, typename WarpGemm::AWarpDstrEncoding{});
return a_block_dstr_encode;
}
......@@ -58,7 +88,7 @@ struct BlockGemmARegBRegCRegV1
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto b_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
b_block_outer_dstr_encoding, typename WG::BWarpDstrEncoding{});
b_block_outer_dstr_encoding, typename WarpGemm::BWarpDstrEncoding{});
return b_block_dstr_encode;
}
......@@ -73,7 +103,7 @@ struct BlockGemmARegBRegCRegV1
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
c_block_outer_dstr_encoding, typename WarpGemm::CWarpDstrEncoding{});
return c_block_dstr_encode;
}
......@@ -112,13 +142,13 @@ struct BlockGemmARegBRegCRegV1
.get_static_tile_distribution_encoding())>>,
"C distribution is wrong!");
using AWarpDstr = typename WG::AWarpDstr;
using BWarpDstr = typename WG::BWarpDstr;
using CWarpDstr = typename WG::CWarpDstr;
using AWarpDstr = typename WarpGemm::AWarpDstr;
using BWarpDstr = typename WarpGemm::BWarpDstr;
using CWarpDstr = typename WarpGemm::CWarpDstr;
using AWarpTensor = typename WG::AWarpTensor;
using BWarpTensor = typename WG::BWarpTensor;
using CWarpTensor = typename WG::CWarpTensor;
using AWarpTensor = typename WarpGemm::AWarpTensor;
using BWarpTensor = typename WarpGemm::BWarpTensor;
using CWarpTensor = typename WarpGemm::CWarpTensor;
constexpr auto a_warp_y_lengths =
to_sequence(AWarpDstr{}.get_ys_to_d_descriptor().get_lengths());
......@@ -157,7 +187,7 @@ struct BlockGemmARegBRegCRegV1
merge_sequences(sequence<1, 1>{}, c_warp_y_lengths));
// warp GEMM
WG{}(c_warp_tensor, a_warp_tensor, b_warp_tensor);
WarpGemm{}(c_warp_tensor, a_warp_tensor, b_warp_tensor);
// write C warp tensor into C block tensor
c_block_tensor.set_y_sliced_thread_data(
......@@ -180,7 +210,7 @@ struct BlockGemmARegBRegCRegV1
sequence<0, 0>>{};
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
c_block_outer_dstr_encoding, typename WarpGemm::CWarpDstrEncoding{});
constexpr auto c_block_dstr = make_static_tile_distribution(c_block_dstr_encode);
auto c_block_tensor = make_static_distributed_tensor<CDataType>(c_block_dstr);
return c_block_tensor;
......
......@@ -463,7 +463,9 @@ struct GemmKernel
* @param a_ptr input A pointer
* @param b_ptr input B pointer
* @param c_ptr output C pointer
* @param smem_ptr_0 The start memory pointer of the shared memory block.
* @param kargs GEMM kernel arguments
* @param splitk_batch_offset splitk_batch_offset Utility structure used to calculate k batch.
* @param block_idx_m The GEMM's output M dimension tile index processed by this workgroup.
* @param block_idx_n The GEMM's output N dimension tile index processed by this workgroup.
*
......@@ -473,7 +475,7 @@ struct GemmKernel
CK_TILE_DEVICE static void RunGemm(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
void* smem_ptr,
void* smem_ptr_0,
const GemmKernelArgs& kargs,
const SplitKBatchOffset& splitk_batch_offset,
const index_t block_idx_m,
......@@ -491,15 +493,67 @@ struct GemmKernel
// Run GEMM cooperatively by whole workgroup.
const auto& a_block_window = gemm_tile_windows.at(I0);
const auto& b_block_window = gemm_tile_windows.at(I1);
const auto& c_block_tile =
GemmPipeline{}.template operator()(a_block_window, b_block_window, num_loop, smem_ptr);
const auto& c_block_tile = GemmPipeline{}.template operator()(
a_block_window, b_block_window, num_loop, smem_ptr_0);
// Run Epilogue Pipeline
auto& c_block_window = gemm_tile_windows.at(I2);
EpiloguePipeline{}
.template operator()<decltype(c_block_window), decltype(c_block_tile), DstInMemOp>(
c_block_window, c_block_tile, smem_ptr_0);
}
/**
* @brief Runs single GEMM problem cooperatively by whole workgroup.
*
* @note RunGEMM2LDS in with two shared memory buffers using the ping pong buffer mechanism.
*
* @param a_ptr input A pointer
* @param b_ptr input B pointer
* @param c_ptr output C pointer
* @param smem_ptr_0 The starting pointer of 1st shared memory block.
* @param smem_ptr_1 The starting pointer of 2nd shared memory block.
* @param kargs GEMM kernel arguments
* @param splitk_batch_offset Utility structure used to calculate k batch.
* @param block_idx_m The GEMM's output M dimension tile index processed by this workgroup.
* @param block_idx_n The GEMM's output N dimension tile index processed by this workgroup.
*
* @tparam DstInMemOp Destination memory operation (default: set).
*/
template <memory_operation_enum DstInMemOp = memory_operation_enum::set>
CK_TILE_DEVICE static void RunGemm2LDS(const ADataType* a_ptr,
const BDataType* b_ptr,
CDataType* c_ptr,
void* __restrict__ smem_ptr_0,
void* __restrict__ smem_ptr_1,
const GemmKernelArgs& kargs,
const SplitKBatchOffset& splitk_batch_offset,
const index_t block_idx_m,
const index_t block_idx_n)
{
// Create Gemm tensor views, pad views and tile windows
const auto& gemm_tensor_views_tuple =
MakeGemmTensorViews<DstInMemOp>(a_ptr, b_ptr, c_ptr, kargs, splitk_batch_offset);
const auto& gemm_pad_views = MakeGemmPadViews(gemm_tensor_views_tuple);
auto gemm_tile_windows = MakeGemmTileWindows(gemm_pad_views, block_idx_m, block_idx_n);
const index_t num_loop = TilePartitioner::GetLoopNum(splitk_batch_offset.splitted_k);
// Run GEMM cooperatively by whole workgroup.
const auto& a_block_window = gemm_tile_windows.at(I0);
const auto& b_block_window = gemm_tile_windows.at(I1);
const auto& c_block_tile = GemmPipeline{}.template operator()(
a_block_window, b_block_window, num_loop, smem_ptr_0, smem_ptr_1);
// Run Epilogue Pipeline
auto& c_block_window = gemm_tile_windows.at(I2);
EpiloguePipeline{}
.template operator()<decltype(c_block_window), decltype(c_block_tile), DstInMemOp>(
c_block_window, c_block_tile, smem_ptr);
c_block_window, c_block_tile, smem_ptr_0);
}
CK_TILE_DEVICE void operator()(GemmKernelArgs kargs) const
......@@ -517,11 +571,27 @@ struct GemmKernel
CDataType* c_ptr = static_cast<CDataType*>(kargs.c_ptr);
// allocate LDS
__shared__ char smem_ptr[GetSmemSize()];
__shared__ char smem_ptr_0[GetSmemSize()];
__shared__ char smem_ptr_1[GetSmemSize()];
if(kargs.k_batch == 1)
{
RunGemm(a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
if constexpr(GemmPipeline::DoubleSmemBuffer == true)
{
RunGemm2LDS(a_ptr,
b_ptr,
c_ptr,
smem_ptr_0,
smem_ptr_1,
kargs,
splitk_batch_offset,
i_m,
i_n);
}
else
{
RunGemm(a_ptr, b_ptr, c_ptr, smem_ptr_0, kargs, splitk_batch_offset, i_m, i_n);
}
}
else
{
......@@ -530,8 +600,23 @@ struct GemmKernel
if constexpr(!(EpiloguePipeline::template GetVectorSizeC<CDataType>() % 2 != 0 &&
is_any_of<CDataType, fp16_t, bf16_t>::value))
{
RunGemm<memory_operation_enum::atomic_add>(
a_ptr, b_ptr, c_ptr, smem_ptr, kargs, splitk_batch_offset, i_m, i_n);
if constexpr(GemmPipeline::DoubleSmemBuffer == true)
{
RunGemm2LDS<memory_operation_enum::atomic_add>(a_ptr,
b_ptr,
c_ptr,
smem_ptr_0,
smem_ptr_1,
kargs,
splitk_batch_offset,
i_m,
i_n);
}
else
{
RunGemm<memory_operation_enum::atomic_add>(
a_ptr, b_ptr, c_ptr, smem_ptr_0, kargs, splitk_batch_offset, i_m, i_n);
}
}
}
}
......
......@@ -41,20 +41,26 @@ struct GemmPipelineAgBgCrImplBase
store_tile(lds_tile_window, block_tile_tmp);
}
template <typename DstBlockTile, typename SrcTileWindow>
CK_TILE_DEVICE void LocalPrefetch(DstBlockTile& dst_block_tile,
const SrcTileWindow& lds_tile_window) const
{
load_tile(dst_block_tile, lds_tile_window);
}
CK_TILE_DEVICE auto GetABLdsTensorViews(void* p_smem) const
{
// A tile in LDS
ADataType* p_a_lds = static_cast<ADataType*>(p_smem);
ADataType* __restrict__ p_a_lds = static_cast<ADataType*>(p_smem);
constexpr auto a_lds_block_desc = Policy::template MakeALdsBlockDescriptor<Problem>();
auto a_lds_block = make_tensor_view<address_space_enum::lds>(p_a_lds, a_lds_block_desc);
// TODO: LDS alignment should come from Policy!
constexpr index_t a_lds_block_space_size_aligned =
integer_divide_ceil(sizeof(ADataType) * a_lds_block_desc.get_element_space_size(), 16) *
16;
constexpr index_t a_lds_block_space_size_aligned = integer_least_multiple(
sizeof(ADataType) * a_lds_block_desc.get_element_space_size(), 16);
// B tile in LDS
BDataType* p_b_lds = static_cast<BDataType*>(
BDataType* __restrict__ p_b_lds = static_cast<BDataType*>(
static_cast<void*>(static_cast<char*>(p_smem) + a_lds_block_space_size_aligned));
constexpr auto b_lds_block_desc = Policy::template MakeBLdsBlockDescriptor<Problem>();
auto b_lds_block = make_tensor_view<address_space_enum::lds>(p_b_lds, b_lds_block_desc);
......
......@@ -76,6 +76,8 @@ struct GemmPipelineAgBgCrCompV3 : public BaseGemmPipelineAgBgCrCompV3<Problem>
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadK = Problem::kPadK;
static constexpr bool DoubleSmemBuffer = Problem::DoubleSmemBuffer;
static constexpr bool HasHotLoop = Problem::HasHotLoop;
static constexpr auto TailNum = Problem::TailNum;
static constexpr auto Scheduler = Problem::Scheduler;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/gemm/warp/warp_gemm_dispatcher.hpp"
#include "ck_tile/ops/common/tensor_layout.hpp"
#include "ck_tile/ops/gemm/pipeline/gemm_universal_pipeline_ag_bg_cr_policy.hpp"
namespace ck_tile {
// Default policy for GemmPipelineAGmemBGmemCregComputeV4, except the block gemm method, it shares
// the same vector size implementation, SmemSize, Global memory tile distiribution as the
// UniversalGemm Pipeline Policy.
// Default policy class should not be templated, put template on
// member functions instead.
struct GemmPipelineAgBgCrCompV4DefaultPolicy
: public UniversalGemmBasePolicy<GemmPipelineAgBgCrCompV4DefaultPolicy>
{
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
using namespace ck_tile;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t KPack = GetSmemPackA<Problem>();
constexpr auto a_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / KPack>{}, number<kMPerBlock>{}, number<KPack>{}),
make_tuple(number<kMPerBlock * KPack>{}, number<KPack>{}, number<1>{}),
number<KPack>{},
number<1>{});
constexpr auto a_lds_block_desc = transform_tensor_descriptor(
a_lds_block_desc_0,
make_tuple(
make_pass_through_transform(number<kMPerBlock>{}),
make_merge_transform(make_tuple(number<kKPerBlock>{} / KPack, number<KPack>{}))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return a_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBLdsBlockDescriptor()
{
constexpr index_t kNPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t KPack = GetSmemPackB<Problem>();
constexpr auto b_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / KPack>{}, number<kNPerBlock>{}, number<KPack>{}),
make_tuple(number<(kNPerBlock)*KPack>{}, number<KPack>{}, number<1>{}),
number<KPack>{},
number<1>{});
constexpr auto b_lds_block_desc = transform_tensor_descriptor(
b_lds_block_desc_0,
make_tuple(
make_pass_through_transform(number<kNPerBlock>{}),
make_merge_transform(make_tuple(number<kKPerBlock / KPack>{}, number<KPack>{}))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return b_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockGemm()
{
using AccDataType = float;
using BlockWarps = typename Problem::BlockGemmShape::BlockWarps;
using WarpTile = typename Problem::BlockGemmShape::WarpTile;
using WarpGemm = WarpGemmMfmaDispatcher<typename Problem::ADataType,
typename Problem::BDataType,
AccDataType,
WarpTile::at(I0),
WarpTile::at(I1),
WarpTile::at(I2),
Problem::TransposeC>;
using BlockGemmPolicy = BlockGemmARegBRegCRegV1CustomPolicy<typename Problem::ADataType,
typename Problem::BDataType,
typename Problem::CDataType,
BlockWarps,
WarpGemm>;
return BlockGemmARegBRegCRegV1<Problem, BlockGemmPolicy>{};
}
};
} // namespace ck_tile
......@@ -124,6 +124,8 @@ struct GemmPipelineAgBgCrMem : public BaseGemmPipelineAgBgCrMem<Problem>
static constexpr bool kPadN = Problem::kPadN;
static constexpr bool kPadK = Problem::kPadK;
static constexpr bool DoubleSmemBuffer = Problem::DoubleSmemBuffer;
// Where is the right place for HasHotLoop and TailNum ???
static constexpr bool HasHotLoop = Problem::HasHotLoop;
static constexpr auto TailNum = Problem::TailNum;
......
......@@ -52,6 +52,9 @@ struct GemmPipelineAGmemBGmemCRegV1
// clang-format on
}
// For the basic gemm pipelien DoubleSmemBuffer set to be false naturally.
static constexpr bool DoubleSmemBuffer = false;
CK_TILE_HOST_DEVICE static constexpr auto TransposeC() { return Problem::TransposeC; }
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
......
......@@ -338,7 +338,7 @@ struct GemmPipelineAGmemBGmemCRegV1DefaultPolicy
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
using ADataType = remove_cvref_t<typename Problem::ADataType>;
static_assert(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::RowMajor>);
static_assert(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>);
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t kKPerBlock = Problem::BlockGemmShape::kK;
......
......@@ -36,6 +36,8 @@ struct GemmPipelineProblemBase
static constexpr bool kPadN = Traits::kPadN;
static constexpr bool kPadK = Traits::kPadK;
static constexpr bool DoubleSmemBuffer = Traits::DoubleSmemBuffer;
static constexpr auto Scheduler = GemmPipelineScheduler::Default;
static constexpr index_t VectorLoadSize = Traits::_VectorSize;
......@@ -173,6 +175,8 @@ struct UniversalGemmPipelineProblem
static constexpr bool kPadN = Traits::kPadN;
static constexpr bool kPadK = Traits::kPadK;
static constexpr bool DoubleSmemBuffer = Traits::DoubleSmemBuffer;
static constexpr auto Scheduler = Scheduler_;
static constexpr auto HasHotLoop = HasHotLoop_;
static constexpr auto TailNum = TailNum_;
......
......@@ -9,8 +9,8 @@
namespace ck_tile {
// UniversalGemm Policy
struct UniversalGemmPipelineAgBgCrPolicy
template <typename Derived>
struct UniversalGemmBasePolicy
{
static constexpr auto I0 = number<0>{};
static constexpr auto I1 = number<1>{};
......@@ -113,7 +113,7 @@ struct UniversalGemmPipelineAgBgCrPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetVectorSizeC()
{
using BlockGemm = remove_cvref_t<decltype(GetBlockGemm<Problem>())>;
using BlockGemm = remove_cvref_t<decltype(Derived::template GetBlockGemm<Problem>())>;
using WG = typename BlockGemm::WarpGemm;
constexpr bool TransposeC = Problem::TransposeC;
......@@ -166,10 +166,116 @@ struct UniversalGemmPipelineAgBgCrPolicy
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto IsTransposeC()
{
return Problem::TransposeC;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeA<Problem>();
// Tile: MPerBlock X KPerBlock
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
MPerBlock,
KPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
// Tile: KPerBlock X MPerBlock
else
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
MPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBDramTileDistribution()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeB<Problem>();
// Tile: KPerBlock X NPerBlock
if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
NPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
// Tile: NPerBlock X KPerBlock
else
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
NPerBlock,
KPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegTileDistribution()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
static_assert(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>);
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeA<Problem>();
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
MPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::MakeShuffled2DStaticTileDistribution();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegTileDistribution()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
static_assert(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeB<Problem>();
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
NPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::MakeShuffled2DStaticTileDistribution();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackA()
{
using BlockGemm = decltype(GetBlockGemm<Problem>());
using BlockGemm = remove_cvref_t<decltype(Derived::template GetBlockGemm<Problem>())>;
constexpr index_t KPack = BlockGemm::Traits::KPack;
return KPack;
}
......@@ -177,11 +283,43 @@ struct UniversalGemmPipelineAgBgCrPolicy
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemPackB()
{
using BlockGemm = decltype(GetBlockGemm<Problem>());
using BlockGemm = remove_cvref_t<decltype(Derived::template GetBlockGemm<Problem>())>;
constexpr index_t KPack = BlockGemm::Traits::KPack;
return KPack;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSizeA()
{
constexpr auto a_lds_desc = Derived::template MakeALdsBlockDescriptor<Problem>();
constexpr index_t smem_size_a = integer_least_multiple(
sizeof(typename Problem::ADataType) * a_lds_desc.get_element_space_size(), 16);
return smem_size_a;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSizeB()
{
constexpr auto b_lds_desc = Derived::template MakeBLdsBlockDescriptor<Problem>();
constexpr index_t smem_size_b = integer_least_multiple(
sizeof(typename Problem::BDataType) * b_lds_desc.get_element_space_size(), 16);
return smem_size_b;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{
constexpr index_t smem_size_a = GetSmemSizeA<Problem>();
constexpr index_t smem_size_b = GetSmemSizeB<Problem>();
return smem_size_a + smem_size_b;
}
};
// UniversalGemm Policy
struct UniversalGemmPipelineAgBgCrPolicy
: public UniversalGemmBasePolicy<UniversalGemmPipelineAgBgCrPolicy>
{
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeALdsBlockDescriptor()
{
......@@ -421,133 +559,6 @@ struct UniversalGemmPipelineAgBgCrPolicy
#endif
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSizeA()
{
constexpr index_t smem_size_a = sizeof(typename Problem::ADataType) *
MakeALdsBlockDescriptor<Problem>().get_element_space_size();
return smem_size_a;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSizeB()
{
constexpr index_t smem_size_b = sizeof(typename Problem::BDataType) *
MakeBLdsBlockDescriptor<Problem>().get_element_space_size();
return smem_size_b;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr index_t GetSmemSize()
{
constexpr index_t smem_size_a = GetSmemSizeA<Problem>();
constexpr index_t smem_size_b = GetSmemSizeB<Problem>();
index_t smem_size = 0;
smem_size += smem_size_a + smem_size_b;
return smem_size;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeADramTileDistribution()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeA<Problem>();
// Tile: MPerBlock X KPerBlock
if constexpr(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
MPerBlock,
KPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
// Tile: KPerBlock X MPerBlock
else
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
MPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeBDramTileDistribution()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeB<Problem>();
// Tile: KPerBlock X NPerBlock
if constexpr(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>)
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
NPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
// Tile: NPerBlock X KPerBlock
else
{
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
NPerBlock,
KPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::Make2DStaticTileDistribution();
}
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledARegTileDistribution()
{
using ALayout = remove_cvref_t<typename Problem::ALayout>;
static_assert(std::is_same_v<ALayout, ck_tile::tensor_layout::gemm::ColumnMajor>);
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t MPerBlock = Problem::BlockGemmShape::kM;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeA<Problem>();
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
MPerBlock,
VecLoadSize,
ATileAccessPattern>;
return TileEncodingPattern::MakeShuffled2DStaticTileDistribution();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeShuffledBRegTileDistribution()
{
using BLayout = remove_cvref_t<typename Problem::BLayout>;
static_assert(std::is_same_v<BLayout, ck_tile::tensor_layout::gemm::RowMajor>);
constexpr index_t BlockSize = Problem::kBlockSize;
constexpr index_t NPerBlock = Problem::BlockGemmShape::kN;
constexpr index_t KPerBlock = Problem::BlockGemmShape::kK;
constexpr index_t VecLoadSize = GetVectorSizeB<Problem>();
using TileEncodingPattern = TileDistributionEncodingPattern2D<BlockSize,
KPerBlock,
NPerBlock,
VecLoadSize,
BTileAccessPattern>;
return TileEncodingPattern::MakeShuffled2DStaticTileDistribution();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetBlockGemm()
{
......
......@@ -32,6 +32,7 @@ struct TileGemmTraits
template <bool kPadM_,
bool kPadN_,
bool kPadK_,
bool DoubleSmemBuffer_,
typename ALayout_,
typename BLayout_,
typename CLayout_,
......@@ -42,6 +43,8 @@ struct TileGemmUniversalTraits
static constexpr bool kPadN = kPadN_;
static constexpr bool kPadK = kPadK_;
static constexpr bool DoubleSmemBuffer = DoubleSmemBuffer_;
using ALayout = ALayout_;
using BLayout = BLayout_;
using CLayout = CLayout_;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment