Commit 3d711481 authored by Astha Rai's avatar Astha Rai
Browse files

Merge branch 'codegen_hiprtc' of github.com:ROCm/composable_kernel into codegen_hiprtc

parents db91bed2 63f670bb
......@@ -94,7 +94,7 @@ RUN pip install --upgrade cmake==3.27.5 && \
dpkg -i dumb-init_*.deb && rm dumb-init_*.deb && \
# Install packages for processing the performance results
pip3 install --upgrade pip && \
pip3 install sqlalchemy==2.0.36 pymysql pandas==2.2.3 setuptools-rust sshtunnel==0.4.0 && \
pip3 install --upgrade pytest sqlalchemy==2.0.36 pymysql pandas==2.2.3 setuptools-rust setuptools>=75 sshtunnel==0.4.0 && \
# Add render group
groupadd -f render && \
# Install the new rocm-cmake version
......
......@@ -512,6 +512,13 @@ def Build_CK(Map conf=[:]){
arch_type = 5
}
cmake_build(conf)
if ( arch_type == 1 ){
echo "Run inductor codegen tests"
sh """
pip install --verbose .
pytest python/test/test_gen_instances.py
"""
}
dir("build"){
if (params.RUN_FULL_QA && arch_type == 1 ){
// build deb packages for all gfx9 targets on gfx90a system and prepare to export
......
......@@ -16,7 +16,8 @@ namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#if(defined(CK_ENABLE_BF16) || defined(CK_ENABLE_FP8))
#ifdef CK_ENABLE_FP8
#ifdef CK_ENABLE_BF16
void add_device_gemm_multiply_multiply_xdl_f8_f8_bf16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
......@@ -95,6 +96,86 @@ void add_device_gemm_multiply_multiply_xdl_f8_f8_bf16_mk_nk_mn_mem_v2_kpadding_i
PassThrough,
MultiplyMultiply>>>& instances);
#endif
#ifdef CK_ENABLE_FP16
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances);
#endif
#endif
#if(defined(CK_ENABLE_BF16) || defined(CK_ENABLE_INT8))
void add_device_gemm_multiply_multiply_xdl_i8_i8_bf16_mk_nk_mn_comp_default_instances(
......@@ -213,7 +294,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#if(defined(CK_ENABLE_BF16) || defined(CK_ENABLE_FP8))
#ifdef CK_ENABLE_FP8
#ifdef CK_ENABLE_BF16
if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, f8_t> &&
is_same_v<CDataType, bhalf_t>)
{
......@@ -237,6 +319,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
}
}
#endif
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<ADataType, f8_t> && is_same_v<BDataType, f8_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_default_instances(
op_ptrs);
add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_kpadding_instances(
op_ptrs);
add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_default_instances(
op_ptrs);
add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_kpadding_instances(
op_ptrs);
add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_default_instances(
op_ptrs);
add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_kpadding_instances(
op_ptrs);
}
}
#endif
#endif
#if(defined(CK_ENABLE_BF16) || defined(CK_ENABLE_INT8))
if constexpr(is_same_v<ADataType, int8_t> && is_same_v<BDataType, int8_t> &&
is_same_v<CDataType, bhalf_t>)
......
......@@ -9,6 +9,13 @@ list(APPEND GEMM_MULTIPLY_MULTIPLY_INSTANCES
device_gemm_multiply_multiply_xdl_f8_f8_bf16/device_gemm_multiply_multiply_xdl_f8_f8_bf16_mk_nk_mn_mem_v2_default_instance.cpp
device_gemm_multiply_multiply_xdl_f8_f8_bf16/device_gemm_multiply_multiply_xdl_f8_f8_bf16_mk_nk_mn_mem_v2_kpadding_instance.cpp
device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_default_instance.cpp
device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_kpadding_instance.cpp
device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_default_instance.cpp
device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_kpadding_instance.cpp
device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_default_instance.cpp
device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_kpadding_instance.cpp
device_gemm_multiply_multiply_xdl_i8_i8_bf16/device_gemm_multiply_multiply_xdl_i8_i8_bf16_mk_nk_mn_comp_default_instance.cpp
device_gemm_multiply_multiply_xdl_i8_i8_bf16/device_gemm_multiply_multiply_xdl_i8_i8_bf16_mk_nk_mn_comp_kpadding_instance.cpp
device_gemm_multiply_multiply_xdl_i8_i8_bf16/device_gemm_multiply_multiply_xdl_i8_i8_bf16_mk_nk_mn_mem_v1_default_instance.cpp
......@@ -20,6 +27,9 @@ list(APPEND GEMM_MULTIPLY_MULTIPLY_INSTANCES
set_source_files_properties(device_gemm_multiply_multiply_xdl_f8_f8_bf16/device_gemm_multiply_multiply_xdl_f8_f8_bf16_mk_nk_mn_comp_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_xdl_f8_f8_bf16/device_gemm_multiply_multiply_xdl_f8_f8_bf16_mk_nk_mn_comp_kpadding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_xdl_f8_f8_f16/device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_kpadding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_xdl_i8_i8_bf16/device_gemm_multiply_multiply_xdl_i8_i8_bf16_mk_nk_mn_comp_default_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
set_source_files_properties(device_gemm_multiply_multiply_xdl_i8_i8_bf16/device_gemm_multiply_multiply_xdl_i8_i8_bf16_mk_nk_mn_comp_kpadding_instance.cpp PROPERTIES COMPILE_OPTIONS ";-mllvm;-greedy-reverse-local-assignment=1")
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_instances<GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_comp_instances<GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_instances<Intrawave,
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v1_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_instances<Intrawave,
GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_default_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_instances<Interwave,
GemmDefault>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_v2_kpadding_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleDSplitK<Row,
Col,
Tuple<Row, Col>,
Row,
F8,
F8,
Tuple<F32, F32>,
F16,
PassThrough,
PassThrough,
MultiplyMultiply>>>& instances)
{
add_device_operation_instances(
instances,
device_gemm_multiply_multiply_xdl_f8_f8_f16_mk_nk_mn_mem_instances<Interwave,
GemmKPadding>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -28,6 +28,7 @@ enum struct GemmDataType
F16_F16_F16_F8, // 6
F8_F8_BF16, // 7
INT8_INT8_BF16, // 8
F8_F8_F16, // 9
};
#define OP_NAME "gemm_multiply_multiply"
......@@ -40,7 +41,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
"f16->f8; 7: f8->bf16, "
"comp f8; 8: int8->bf16)\n");
"comp f8; 8: int8->bf16; 9: f8->f16, comp f8;)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
......@@ -89,6 +90,7 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
using F32 = float;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F8 = ck::f8_t;
using I8 = int8_t;
using I32 = int;
......@@ -165,6 +167,11 @@ int profile_gemm_multiply_multiply(int argc, char* argv[])
return profile(
F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, BF16{}, Row{}, Col{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::F8_F8_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(
F8{}, F8{}, F8{}, F32{}, F32{}, F32{}, F16{}, Row{}, Col{}, Row{}, Col{}, Row{});
}
else if(data_type == GemmDataType::INT8_INT8_BF16 && layout == GemmMatrixLayout::MK_NK_MN)
{
return profile(
......
......@@ -21,16 +21,19 @@ dependencies = []
"Bug Tracker" = "https://github.com/rocm/composable_kernel/issues"
[tool.setuptools]
packages = ["ck4inductor", "ck4inductor.include", "ck4inductor.library"]
packages = ["ck4inductor", "ck4inductor.include", "ck4inductor.library", "ck4inductor.universal_gemm", "ck4inductor.batched_universal_gemm", "ck4inductor.grouped_conv_fwd"]
[tool.setuptools.package-dir]
ck4inductor = "python/ck4inductor"
"ck4inductor.universal_gemm" = "python/ck4inductor/universal_gemm"
"ck4inductor.batched_universal_gemm" = "python/ck4inductor/batched_universal_gemm"
"ck4inductor.grouped_conv_fwd" = "python/ck4inductor/grouped_conv_fwd"
"ck4inductor.include" = "include"
"ck4inductor.library" = "library"
[tool.setuptools.package-data]
"ck4inductor.include" = ["ck/**/*.hpp"]
"ck4inductor.library" = ["src/tensor_operation_instance/gpu/gemm_universal/**/*.hpp"]
"ck4inductor.library" = ["src/tensor_operation_instance/gpu/gemm_universal/**/*.hpp", "src/tensor_operation_instance/gpu/gemm_universal_batched/**/*.hpp", "include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/**/*.hpp"]
[tool.setuptools.dynamic]
version = { attr = "setuptools_scm.get_version" }
......@@ -68,12 +68,13 @@ def parse_instances(str_instances: List[str]) -> List[CKGemmOperation]:
template_args.insert(2, tuple()) # ds layout
template_args.insert(6, tuple()) # ds dtype
new_instance = CKGemmOperation(
*template_args, # type: ignore[arg-type]
)
op_instances.append(new_instance)
try:
new_instance = CKGemmOperation(
*template_args, # type: ignore[arg-type]
)
op_instances.append(new_instance)
except TypeError as e:
log.debug(f"{e} when parsing {line}")
return op_instances
......
# SPDX-License-Identifier: MIT
# Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
import logging
import unittest
from ck4inductor.universal_gemm.gen_instances import (
gen_ops_library as gen_gemm_ops_library,
)
from ck4inductor.universal_gemm.gen_instances import (
gen_ops_preselected as gen_gemm_ops_preselected,
)
from ck4inductor.grouped_conv_fwd.gen_instances import (
gen_conv_ops_library as gen_conv_ops_library,
)
from ck4inductor.batched_universal_gemm.gen_instances import (
gen_ops_library as gen_batched_gemm_ops_library,
)
log = logging.getLogger(__name__)
class TestGenInstances(unittest.TestCase):
def test_gen_gemm_instances(self):
instances = gen_gemm_ops_library()
log.debug("%d gemm instances from library" % len(instances))
self.assertTrue(instances)
def test_preselected_gemm_instances(self):
instances = gen_gemm_ops_preselected()
log.debug("%d preselected gemm instances" % len(instances))
self.assertTrue(instances)
def test_gen_conv_instances(self):
instances = gen_conv_ops_library()
log.debug("%d gemm instances from library" % len(instances))
self.assertTrue(instances)
def test_gen_batched_gemm_instances(self):
instances = gen_batched_gemm_ops_library()
log.debug("%d gemm instances from library" % len(instances))
self.assertTrue(instances)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment