"tests/others/test_config.py" did not exist on "513f1fbfb0d116022b5d8519dd7e919a96e3155d"
Commit 38566a1d authored by mtgu0705's avatar mtgu0705
Browse files

added int4 which is missing in first commit.

parent bb10822b
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3_b_scale.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using FP16 = ck::half_t;
using FP8 = ck::f8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = FP16;
using B0DataType = ck::pk_i4_t;
using B1DataType = FP16;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = FP16;
using A0Layout = Row;
using B0Layout = Col;
using D0Layout = Row;
using D1Layout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
// static constexpr ck::index_t Scale_Block_M = 128;
static constexpr ck::index_t Scale_Block_N = 128;
static constexpr ck::index_t Scale_Block_K = 128;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_BScale_Xdl_CShuffle_V3
// clang-format off
<Row, Col, DsLayout, ELayout,
A0DataType, B0DataType, B1DataType, DsDataType, EDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CDEElementOp, GemmSpec,
256, Scale_Block_N, Scale_Block_K,
128, 128, 128,
// 16, 16,
8, 8,
16, 16,
4, 4,
// S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
// S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 0,
S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0,
S<16, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0,
1, 2, S<1, 32, 1, 8>, S<8, 8, 1>,
// ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3, FP8>;
ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v3>;
[[maybe_unused]] static static int KPerBlock = 128; // need to be aligned to the KPerBlock set in the device kernel above.
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideE = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE\n");
exit(0);
}
ck::index_t Scale_Stride_BN = (K + Scale_Block_K - 1) / Scale_Block_K;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b0_k_n_permute(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor((K + Scale_Block_K - 1) / Scale_Block_K,
(N + Scale_Block_N - 1) / Scale_Block_N,
Scale_Stride_BN,
B0Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
#if 1
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 2});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
break;
case 2:
a0_m_k.GenerateTensorValue(GeneratorTensor_1<A0DataType>{});
b0_k_n.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 3:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 2});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_k_n.GenerateTensorValue(GeneratorTensor_1<B1DataType>{});
break;
case 4:
a0_m_k.GenerateTensorValue(GeneratorTensor_1<A0DataType>{});
b0_k_n.GenerateTensorValue(GeneratorTensor_1<B0DataType>{});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{-0.5, 0.5});
b0_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 1.0});
}
#endif
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
// weight permute
if constexpr(PermuteB)
{
int K1 = KPerBlock;
int K0 = K / KPerBlock;
// int K0, N, K1
for(int j = 0; j < K0; j++)
{
for(int i = 0; i < N; i++)
{
for(int jj = 0; jj < K1; jj++)
{
b_k_n_permute(j * N * K1 + i * K1 + jj) = b_k_n(i * K + (j * K1 + jj));
}
}
}
}
else
{
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j++)
{
b_k_n_permute(i * K + j) = b_k_n(i * K + j);
}
}
}
// vector pk_i4x4 permute
for(int i = 0; i < N; i++)
{
for(int j = 0; j < K; j += 8)
{
int input[8];
for(int k = 0; k < 4; k++)
{
int i4x2 = b_k_n_permute(j + k * 2, i);
input[k * 2 + 0] = (i4x2 >> 4) & 0xf;
input[k * 2 + 1] = (i4x2 >> 0) & 0xf;
}
// permute 01234567->20643175
{
int hi = input[2];
int lo = input[0];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 0, i) = i4x2;
}
{
int hi = input[6];
int lo = input[4];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 2, i) = i4x2;
}
{
int hi = input[3];
int lo = input[1];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 4, i) = i4x2;
}
{
int hi = input[7];
int lo = input[5];
int i4x2 = (hi << 4) | lo;
b_k_n_permute(j + 6, i) = i4x2;
}
}
}
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n_permute.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumDTensor = DsDataType::Size();
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(a0_device_buf.GetDeviceBuffer(),
b0_device_buf.GetDeviceBuffer(),
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, NumDTensor>{},
StrideE,
b1_device_buf.GetDeviceBuffer(),
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel, 20, 50});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<AccDataType> c_m_n({M, N});
Tensor<float> a_m_k({M, K});
Tensor<float> b_k_n({K, N});
for(int m = 0; m < M; m++)
{
for(int k = 0; k < K; k++)
{
a_m_k(m, k) = ck::type_convert<float>(a0_m_k(m, k));
}
}
for(int n = 0; n < N; n++)
{
for(int k = 0; k < K; k++)
{
b_k_n(k, n) = ck::type_convert<float>(quant_b0_k_n(k, n)) *
ck::type_convert<float>(b1_k_n(k / Scale_Block_K, n / Scale_Block_N));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<float,
float,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
#if 1
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
e_m_n_host_result(m, n) = ck::type_convert<EDataType>(c_m_n(m, n));
}
}
#endif
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(
e_m_n_device_result, e_m_n_host_result, "Error: Incorrect results!", 5e-2, 5e-2)
? 0
: 1;
}
return 0;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment