Unverified Commit 37cdbf4f authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

[CK_TILE] Add fmha fwd N-Warp S-Shuffle pipeline (fmha fwd splitkv pipeline variant) (#1705)



* Add check for zero values

* Add static assertions

* Remove invalid option '-e' in smoke_test.sh

* Use correct path of smoke_test.sh

* Avoid zero-sized shared memory array

* Add warning comment

* Replace expr by integer_divide_ceil() call

* Use more readable constant names

* Write down assumption as static assertion

* Add more diagnostic error messages

* Fix wrong BlockWarps when using default pipeline policy

* Add more static assertions for A LDS desc

* Allow using vector size < 8 for data type fp16/bf16

* Align vector size between DRAM dist & LDS desc

* Remove no-longer used func decl

* Fix wrong displayed piepline name

* Undo policy template changes for tile_example_gemm_basic

* Add missing space and make error message stands out

* Unify print precision

* Add missing include directive <iomanip>

* Replace constant 64 by get_warp_size() call

* Replace constant 128 by named variable: BankLength

* Add kAMBlock/kBNBlock attributes

* Allow usig different A/B warp dist for multiple blocks

* Add helper function to get warp dist encodings

* Add 4x64x4 fp16 warp gemm attribute impl

* Complete the A/B warp dist encoding logic

* Fix wrong thread mapping for C matrix

* Use smaller vector size for small tile

* Add static assert to block unsupported warp gemm impl

* Extract common code out as helper method

* Add 4x64x16 fp16 warp gemm type alias

* Add comment to warning developers

* Undo WarpGemmAtrributeMfma<> changes

* Use more clear static assertion error message

* Add trivial wrapper to get warp dstr encodings

* Only transpose warp gemm result if it's square

* Fix compilation error

* Support multi-block warp gemm (on N direction)

* Remove duplicated code

* Fix output encoding of warp gemm

* Fix wrong shape of WarpGemmAtrributeMfmaIterateK<>

* Remove unused code

* Fix wrong shape of WarpGemmAttributeMfmaImplF16F16F32M4N64K4

* Add type config for bf16_t

* Add 4x64x16 bf16 warp gemm

* Update WarpGemmAtrributeMfmaIterateKAndTransposedCDistribution

* Add 64x4x4 fp16/bf16 warp gemm impl

* Add 64x4x16 fp16/bf16 warp gemm

* Add static assertion for better error diagnostic

* Get Q dram dstr directly form block gemm

* Add missing header: fused_moe.hpp

* Allow specifying different warp-gemm for gemm0 & gemm1

* Store P matrix into LDS before gemm1

* Fix inconsistant kernel name

* Remove constraint on gemm0 & gemm1 block warps

* Remove unsupported vector size from checking list

* Allow using 4x64x16 warp gemm for gemm0

* Finish policy customization

* Finish pipeline modification
F#

* Use block warps in codegen

* Fix wrong rank of m_lds_window origin

* Use better distributed tensor

* Make P-store earlier

* Remove duplicated experssions

* Remove unnecessary tile window

* Create new files for new splitkv pipeline

* Separate old/new pipeline codegen logic

* Sync changes form develop

* Undo gemm kernel/pipeline changes

* Undo gemm example changes

* Remove blank lines

* Fix typo

* Use new warp gemm interface

* Fix link error

* Fix wrong pipeline tag

* Fix more link error

* Avoid unnecessary padding

* Always use vector load for K

* Padding on fastest dimension when necessary

* Force padding Q on hdim_q

* Set high dimension padding flag to false

* Re-format headers

* Use warps=<1, 4, 1> for both gemm0 & gemm1

* Fix complilation errors

* Remove m/l shuffle logics

* Ignore duplicate data when write lse_acc

* Use gemm0 block warps as lds tile width

* Remove hard-coded numbers

* Fix wrong distribution width

* Remove unnecessary code

* Add s_barrier before writing to LDS

* Store Q into LDS before gemm0

* Fix wrong Q tile size

* Use simple Q lds descriptor for debuging

* Use more realistic Q lds descriptor

* Add comment & use better variable name

* Make Q lds space not overlapped with others

* Remove unnecessary block_tile_reduce_sync() call

* Move Q load statements

* Move block_sync_lds() right before use

* Re-order instructions

* Remove necessary lambda expression

* Use 8 threads on kMaxSplits direction while doing reduction

* Tiny correction for using 8 threads on kMaxSplits direction for combine kernel

* Padding num_split direction of o_acc tile window to 4x

* Update splitkv combine pipeline design

* Add kN1 back to splitkv combine pipeline problem

* Fix compilation errors

* Add missing template parameter

* Fix wrong splitkv combine kernel name

* Fix wrong origin

* Fix wrong LDS descriptor shape

* Fix sync & reduction logics

* Remove unnecessary static assertions

* Extract tile size computation logics

* Make sure we can reuse padding flags in combine kernels

* Rename variables

* Use OaccDataType in BlockFmhaSplitKVCombinePipelineTileSizes<>

* Remove unnecessary static assertion

* Fix function name typo

* Add constraint on kN1 template parameter

* Hide K tile loading latency in earlier iteration

* Fix wrong splitkv kernel name

* Use s_shuffling to replace p_shuffling which removes the needs of cross-warp reduction

* Rename pipeline

* Fix wrong pipeline name attribute

* Add GetAlignmentQ() for NWarpSShuffle pipeline

* Separate Q tile into dram tile & register tile concepts

* Remove non-squre warp gemm transpose c type alias

* Fallback tile size changes for fmha fwd splitkv

* Remove redundant change

* Refine naming for the S tile

* Use better naming of the S tile dstr (read from lds)

* Share Q lds with K lds

* Tiny change

* Fix with using static_for for passing CI checking

---------
Co-authored-by: default avatarQianfeng Zhang <Qianfeng.Zhang@amd.com>
parent 2944c508
......@@ -119,6 +119,7 @@ PIPELINE_MAP = {
PIPELINE_ENUM_MAP = {
"qr" : "ck_tile::BlockFmhaPipelineEnum::QRKSVS",
"qr_async" : "ck_tile::BlockFmhaPipelineEnum::QRKSVS_ASYNC",
"qr_nwarp_sshuffle" : "ck_tile::BlockFmhaPipelineEnum::QRKSVS",
}
BOOL_MAP = {
......
......@@ -44,13 +44,12 @@ FMHA_FWD_KERNEL_BODY="""
using fmha_dtype_{F_idx} = {F_dtype};
using fmha_block_tile_{F_idx} = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile_{F_idx} = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape_{F_idx} = ck_tile::TileFmhaShape<fmha_block_tile_{F_idx},
ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>,
fmha_warp_tile_{F_idx},
ck_tile::sequence<{F_wm0}, {F_wn0}, {F_wk0}>,
ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>,
fmha_warp_tile_{F_idx},
ck_tile::sequence<{F_wm1}, {F_wn1}, {F_wk1}>,
{F_vlayout}>;
using fmha_trait_{F_idx} = ck_tile::TileFmhaTraits<{F_spad},
......@@ -306,15 +305,19 @@ class FmhaFwdTileSize:
F_rm1 : int # number of warps for gemm1 along q seqlen
F_rn1 : int # number of warps for gemm1 along head dim v
F_rk1 : int # number of warps for gemm1 along k seqlen (not used)
F_wm : int # warp size along m (warp size)
F_wn : int # warp size along n
F_wk : int # warp size along k
F_wm0 : int # gemm0 warp size along m
F_wn0 : int # gemm0 warp size along n
F_wk0 : int # gemm0 warp size along k
F_wm1 : int # gemm1 warp size along m
F_wn1 : int # gemm1 warp size along n
F_wk1 : int # gemm1 warp size along k
F_occupancy : int # occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
@property
def name(self) -> str:
return f"b{self.F_bm0}x{self.F_bn0}x{self.F_bk0}x{self.F_bn1}x{self.F_bk1}x{self.F_bk0max}" +\
f"_r{self.F_rm0}x{self.F_rn0}x{self.F_rk0}_r{self.F_rm1}x{self.F_rn1}x{self.F_rk1}" +\
f"_w{self.F_wm}x{self.F_wn}x{self.F_wk}" + ("" if self.F_occupancy == -1 else f"_o{self.F_occupancy}")
f"_w{self.F_wm0}x{self.F_wn0}x{self.F_wk0}_w{self.F_wm1}x{self.F_wn1}x{self.F_wk1}" +\
("" if self.F_occupancy == -1 else f"_o{self.F_occupancy}")
@dataclass
class FmhaFwdKernel:
......@@ -352,9 +355,12 @@ class FmhaFwdKernel:
F_rm1 = self.F_tile.F_rm1,
F_rn1 = self.F_tile.F_rn1,
F_rk1 = self.F_tile.F_rk1,
F_wm = self.F_tile.F_wm,
F_wn = self.F_tile.F_wn,
F_wk = self.F_tile.F_wk,
F_wm0 = self.F_tile.F_wm0,
F_wn0 = self.F_tile.F_wn0,
F_wk0 = self.F_tile.F_wk0,
F_wm1 = self.F_tile.F_wm1,
F_wn1 = self.F_tile.F_wn1,
F_wk1 = self.F_tile.F_wk1,
F_vlayout = LAYOUT_MAP[self.F_pipeline.F_vlayout],
F_spad = BOOL_MAP[self.F_pipeline.F_spad],
F_skpad = BOOL_MAP[self.F_pipeline.F_skpad],
......@@ -409,17 +415,17 @@ class FmhaFwdKernel:
def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
if dtype == 'fp16' or dtype == 'bf16':
return {
'32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, -1),
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
## '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, -1),
'32' : FmhaFwdTileSize(128, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 32, 32, 16, 32, 32, 16, -1),
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 32, 32, 16, 32, 32, 16, -1),
### '96' : FmhaFwdTileSize(128, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 32, 32, 16, 32, 32, 16, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 16, 32, 32, 16, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 16, 32, 32, 16, -1),
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 2, 1, 1, 2, 1, 1, 32, 32, 32, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1)
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 2, 1, 1, 2, 1, 1, 32, 32, 32, 32, 32, 32, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 32, 32, 32, 32, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 32, 32, 32, 32, -1),
}
else:
return None
......
......@@ -39,6 +39,7 @@ K0_MAX_SUBMAX_MAP = {
FMHA_FWD_SPLITKV_PIPELINE_MAP = {
"qr" : "ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVS",
"qr_nwarp_sshuffle" : "ck_tile::BlockFmhaFwdSplitKVPipelineNWarpSShuffleQRKSVS",
"qr_async" : "ck_tile::BlockFmhaFwdSplitKVPipelineQRKSVSAsync",
}
......@@ -50,13 +51,12 @@ namespace {{
template <bool kHasUnevenSplits>
struct kernel_runner {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
using fmha_warp_tile = ck_tile::sequence<{F_wm}, {F_wn}, {F_wk}>;
using fmha_shape = ck_tile::TileFmhaShape<fmha_block_tile,
ck_tile::sequence<{F_rm0}, {F_rn0}, {F_rk0}>,
fmha_warp_tile,
ck_tile::sequence<{F_wm0}, {F_wn0}, {F_wk0}>,
ck_tile::sequence<{F_rm1}, {F_rn1}, {F_rk1}>,
fmha_warp_tile,
ck_tile::sequence<{F_wm1}, {F_wn1}, {F_wk1}>,
{F_vlayout}>;
using fmha_trait = ck_tile::TileFmhaFwdSplitKVTraits<{F_spad},
......@@ -161,9 +161,8 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaSplitKVCombinePipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType,
{F_hdim},
{F_bm0},
{F_bn1},
{F_mode},
{F_bn1},
fmha_trait>;
using fmha_pipeline = ck_tile::BlockFmhaFwdSplitKVCombinePipeline<
......@@ -177,9 +176,11 @@ using fmha_epilogue =
false, false>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVCombineKernel<ck_tile::FmhaFwdSplitKVCombineTilePartitioner<{F_bm0}, {F_bn1}>,
fmha_pipeline,
fmha_epilogue>;
ck_tile::FmhaFwdSplitKVCombineKernel<
ck_tile::FmhaFwdSplitKVCombineTilePartitioner<
fmha_pipeline_problem::kM0, fmha_pipeline_problem::kN1>,
fmha_pipeline,
fmha_epilogue>;
static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
......@@ -192,7 +193,7 @@ static void run(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
}};
}}
using trait_{F_idx} = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn1},
using trait_{F_idx} = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bn1},
{F_lse}, {F_squant}, {F_spad}, {F_dvpad}>;
#include <iostream>
......@@ -250,16 +251,25 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const
FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.do_fp8_static_quant == {F_squant}) &&
((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
// get combine kernel tile sizes
using OaccDataType = typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType;
constexpr ck_tile::index_t kM0 = ck_tile::BlockFmhaSplitKVCombinePipelineTileSizes<OaccDataType, /*F_bn1=*/32>::kM0;
// make sure we can reuse the padding flags in combine kernels
static_assert({F_bm0} % kM0 == 0);
static_assert({F_bn1} % 32 == 0);
if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, ck_tile::fp8_t>) {{
return -1;
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, true, {F_squant}, {F_spad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, /*F_bn1=*/32, true, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}/2, {F_bn1}/2, false, {F_squant}, {F_spad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, /*F_bn1=*/32, false, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
......@@ -302,7 +312,7 @@ class FmhaFwdSplitKVApiTrait:
if self.pipeline_tag == 'qr_async':
if self.spad == 't' : return 'true' # always support
else : return 'true'
elif self.pipeline_tag in ['qr']:
elif self.pipeline_tag in ['qr', 'qr_nwarp_sshuffle']:
if self.spad == 't' : return f'true /*a.seqlen_q % {self.bm0} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.seqlen_q % {self.bm0} == 0'
else: assert False
......@@ -313,7 +323,7 @@ class FmhaFwdSplitKVApiTrait:
if self.pipeline_tag == 'qr_async':
if self.skpad == 't' : return f'a.seqlen_k == 0 || a.seqlen_k % {self.bn0} != 0'
else : return f'a.seqlen_k != 0 && a.seqlen_k % {self.bn0} == 0'
elif self.pipeline_tag in ['qr', 'qr_fp8']:
elif self.pipeline_tag in ['qr', 'qr_nwarp_sshuffle']:
if self.skpad == 't' : return f'true /*a.seqlen_k % {self.bn0} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.seqlen_k % {self.bn0} == 0'
else: assert False
......@@ -324,7 +334,7 @@ class FmhaFwdSplitKVApiTrait:
vec = int((32 * 4) / DTYPE_BITS[self.dtype])
if self.dpad == 't': return f'a.hdim_q % {vec} == 0'
else : assert False
elif self.pipeline_tag in ['qr']:
elif self.pipeline_tag in ['qr', 'qr_nwarp_sshuffle']:
bk0submax = K0_MAX_SUBMAX_MAP[self.bk0max]
if self.dpad == 't': return f'true /*a.hdim_q % {bk0submax} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.hdim_q % {bk0submax} == 0'
......@@ -336,7 +346,7 @@ class FmhaFwdSplitKVApiTrait:
vec = int((32 * 4) / DTYPE_BITS[self.dtype])
if self.dvpad == 't': return f'a.hdim_v % {vec} == 0'
else : assert False
elif self.pipeline_tag in ['qr']:
elif self.pipeline_tag in ['qr', 'qr_nwarp_sshuffle']:
bk0submax = K0_MAX_SUBMAX_MAP[self.bk0max]
if self.dvpad == 't': return f'true /*a.hdim_v % {bk0submax} != 0*/' # TODO: order of get_pipelines() matters! (ugly)
else : return f'a.hdim_v % {bk0submax} == 0'
......@@ -447,12 +457,11 @@ class FmhaFwdSplitKVApiPool:
@dataclass
class FmhaFwdSplitKVCombineTileSize:
F_bm0 : int # tile size along q seqlen
F_bn1 : int # tile size along v head_dim
F_occupancy : int # occupancy, -1 will let pipeline decide the occupancy, other value will overwrite occupancy
@property
def name(self) -> str:
return f"b{self.F_bm0}x{self.F_bn1}" +\
return f"b{self.F_bn1}" +\
("" if self.F_occupancy == -1 else f"_o{self.F_occupancy}")
@dataclass
......@@ -485,9 +494,12 @@ class FmhaFwdSplitKVKernel:
F_rm1 = self.F_tile.F_rm1,
F_rn1 = self.F_tile.F_rn1,
F_rk1 = self.F_tile.F_rk1,
F_wm = self.F_tile.F_wm,
F_wn = self.F_tile.F_wn,
F_wk = self.F_tile.F_wk,
F_wm0 = self.F_tile.F_wm0,
F_wn0 = self.F_tile.F_wn0,
F_wk0 = self.F_tile.F_wk0,
F_wm1 = self.F_tile.F_wm1,
F_wn1 = self.F_tile.F_wn1,
F_wk1 = self.F_tile.F_wk1,
F_vlayout = LAYOUT_MAP[self.F_pipeline.F_vlayout],
F_spad = BOOL_MAP[self.F_pipeline.F_spad],
F_skpad = BOOL_MAP[self.F_pipeline.F_skpad],
......@@ -553,7 +565,6 @@ class FmhaFwdSplitKVCombineKernel:
F_idx = self.F_idx,
F_hdim = self.F_hdim,
F_dtype = FWD_DTYPE_MAP[self.F_dtype],
F_bm0 = self.F_tile.F_bm0,
F_bn1 = self.F_tile.F_bn1,
F_spad = BOOL_MAP[self.F_pipeline.F_spad],
F_dvpad = BOOL_MAP[self.F_pipeline.F_dvpad],
......@@ -577,17 +588,17 @@ class FmhaFwdSplitKVCombineKernel:
def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
if dtype == 'fp16' or dtype == 'bf16':
return {
'32' : FmhaFwdTileSize(32, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 16, 16, 16, -1),
'64' : FmhaFwdTileSize(64, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
## '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'128' : FmhaFwdTileSize(64, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, -1),
'32' : FmhaFwdTileSize(32, 64, 16, 32, 32, 32, 2, 1, 1, 2, 1, 1, 16, 16, 16, 16, 16, 16, -1),
'64' : FmhaFwdTileSize(64, 64, 32, 64, 32, 64, 4, 1, 1, 4, 1, 1, 16, 16, 16, 16, 16, 16, -1),
### '96' : FmhaFwdTileSize(64, 128, 32, 128, 32, 96, 4, 1, 1, 4, 1, 1, 16, 16, 16, 16, 16, 16, -1),
'128' : FmhaFwdTileSize(64, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 16, 16, 16, 16, 16, 16, -1),
'256' : FmhaFwdTileSize(64, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 16, 16, 16, 16, 16, 16, -1),
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 2, 1, 1, 2, 1, 1, 32, 32, 32, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 32, -1)
'64' : FmhaFwdTileSize(128, 64, 32, 64, 32, 64, 2, 1, 1, 2, 1, 1, 32, 32, 32, 32, 32, 32, -1),
'128' : FmhaFwdTileSize(128, 128, 32, 128, 32, 128, 4, 1, 1, 4, 1, 1, 32, 32, 32, 32, 32, 32, -1),
'256' : FmhaFwdTileSize(128, 128, 32, 256, 32, 256, 4, 1, 1, 4, 1, 1, 32, 32, 32, 32, 32, 32, -1),
}
else:
return None
......@@ -595,17 +606,17 @@ def get_fmha_fwd_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[dict]:
if dtype == 'fp16' or dtype == 'bf16':
return {
'32' : FmhaFwdSplitKVCombineTileSize(16, 16, -1),
'64' : FmhaFwdSplitKVCombineTileSize(32, 32, -1),
## '96' : FmhaFwdSplitKVCombineTileSize(32, 64, -1),
'128' : FmhaFwdSplitKVCombineTileSize(32, 64, -1),
'256' : FmhaFwdSplitKVCombineTileSize(32, 128, -1),
'32' : FmhaFwdSplitKVCombineTileSize(32, -1),
'64' : FmhaFwdSplitKVCombineTileSize(32, -1),
### '96' : FmhaFwdSplitKVCombineTileSize(32, -1),
'128' : FmhaFwdSplitKVCombineTileSize(32, -1),
'256' : FmhaFwdSplitKVCombineTileSize(32, -1),
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
'64' : FmhaFwdSplitKVCombineTileSize(64, 32, -1),
'128' : FmhaFwdSplitKVCombineTileSize(64, 64, -1),
'256' : FmhaFwdSplitKVCombineTileSize(64, 128, -1),
'64' : FmhaFwdSplitKVCombineTileSize(32, -1),
'128' : FmhaFwdSplitKVCombineTileSize(32, -1),
'256' : FmhaFwdSplitKVCombineTileSize(32, -1),
}
else:
return None
......
......@@ -709,7 +709,6 @@ std::string fmha_fwd_splitkv_get_name_();
template <ck_tile::index_t HDim_,
typename DataType_,
bool kIsGroupMode_,
ck_tile::index_t kM0_,
ck_tile::index_t kN1_,
bool kStoreLse_,
bool kDoFp8StaticQuant_,
......@@ -720,7 +719,6 @@ struct fmha_fwd_splitkv_combine_traits_
static constexpr ck_tile::index_t HDim = HDim_;
using DataType = ck_tile::remove_cvref_t<DataType_>;
static constexpr bool kIsGroupMode = kIsGroupMode_;
static constexpr ck_tile::index_t kM0 = kM0_;
static constexpr ck_tile::index_t kN1 = kN1_;
static constexpr bool kStoreLse = kStoreLse_;
static constexpr bool kDoFp8StaticQuant = kDoFp8StaticQuant_;
......
......@@ -1303,8 +1303,8 @@ CK_TILE_DEVICE thread_buffer<T, N> amd_buffer_load_impl(int32x4_t src_wave_buffe
static_assert(
(std::is_same<T, double>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, float>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, bf16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, bf16_t>::value && (N == 1 || N == 2 || N == 4 || N == 8)) ||
(std::is_same<T, int32_t>::value &&
(N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
(std::is_same<T, fp8_t>::value && (N == 1 || N == 2 || N == 4 || N == 8 || N == 16)) ||
......
......@@ -29,6 +29,7 @@ struct static_distributed_tensor
remove_cvref_t<decltype(StaticTileDistribution{}.get_ys_to_d_descriptor())>;
static constexpr index_t kThreadElementSpaceSize = ThreadTensorDesc{}.get_element_space_size();
static_assert(0 < kThreadElementSpaceSize, "Make sure tile distribution is valid");
CK_TILE_HOST_DEVICE static constexpr auto get_num_of_dimension()
{
......
......@@ -29,6 +29,8 @@
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_appendkv_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_combine_pipeline_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_nwarp_sshuffle_qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_nwarp_sshuffle_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_fwd_splitkv_pipeline_qr_ks_vs_default_policy.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_enum.hpp"
......
......@@ -71,7 +71,8 @@ struct FmhaFwdKernel
using bfs = typename FmhaPipeline::BlockFmhaShape;
using g0br = typename bfs::Gemm0BlockWarps;
using g1br = typename bfs::Gemm1BlockWarps;
using gwt = typename bfs::Gemm0WarpTile;
using g0wt = typename bfs::Gemm0WarpTile;
using g1wt = typename bfs::Gemm1WarpTile;
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
......@@ -88,7 +89,8 @@ struct FmhaFwdKernel
_TS_(bfs::kN1) + "x" + _TS_(bfs::kK1) + "x" + _TS_(bfs::kQKHeaddim) + "_" +
"r" + _TS_(g0br::at(ck_tile::number<0>{})) + "x" + _TS_(g0br::at(ck_tile::number<1>{})) + "x" + _TS_(g0br::at(ck_tile::number<2>{})) + "_" +
"r" + _TS_(g1br::at(ck_tile::number<0>{})) + "x" + _TS_(g1br::at(ck_tile::number<1>{})) + "x" + _TS_(g1br::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(gwt::at(ck_tile::number<0>{})) + "x" + _TS_(gwt::at(ck_tile::number<1>{})) + "x" + _TS_(gwt::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(g0wt::at(ck_tile::number<0>{})) + "x" + _TS_(g0wt::at(ck_tile::number<1>{})) + "x" + _TS_(g0wt::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(g1wt::at(ck_tile::number<0>{})) + "x" + _TS_(g1wt::at(ck_tile::number<1>{})) + "x" + _TS_(g1wt::at(ck_tile::number<2>{})) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) + _SS_(FmhaPipeline::name) + "_" +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
......
......@@ -8,9 +8,11 @@ namespace ck_tile {
template <typename TilePartitioner_, typename FmhaPipeline_, typename EpiloguePipeline_>
struct FmhaFwdSplitKVCombineKernel
{
using TilePartitioner = remove_cvref_t<TilePartitioner_>;
using FmhaPipeline = remove_cvref_t<FmhaPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>;
using TilePartitioner = remove_cvref_t<TilePartitioner_>;
using FmhaPipeline = remove_cvref_t<FmhaPipeline_>;
using EpiloguePipeline = remove_cvref_t<EpiloguePipeline_>;
static constexpr index_t kNumWarps = FmhaPipeline::kNumWarps;
static constexpr index_t kBlockSize = FmhaPipeline::kBlockSize;
static constexpr index_t kBlockPerCu = FmhaPipeline::kBlockPerCu;
static_assert(kBlockPerCu > 0);
......@@ -50,8 +52,7 @@ struct FmhaFwdSplitKVCombineKernel
return
_SS_("fmha_fwd_splitkv_combine_d") + _TS_(FmhaPipeline::kHeadDimV) + "_" + _SS_(t2s<ODataType>::name) +
"_" + (kIsGroupMode ? "group" : "batch") + "_"
"b" + _TS_(FmhaPipeline::kM0) + "x" +
_TS_(FmhaPipeline::kN1) + "_" +
"b" + _TS_(FmhaPipeline::kN1) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) +
_SS_(FmhaPipeline::name) +
(pn.empty() ? "" : "_" + pn) +
......@@ -339,37 +340,56 @@ struct FmhaFwdSplitKVCombineKernel
number<FmhaPipeline::kAlignmentOacc>{},
number<1>{});
// read 4 * (kM0, kN1) o_acc tiles simultaneously by 4 warps
const auto o_acc_dram_view = pad_tensor_view(
o_acc_dram_naive,
make_tuple(number<1>{}, number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
sequence<false, kPadSeqLenQ, kPadHeadDimV>{});
make_tuple(
number<kNumWarps>{}, number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
sequence<true, kPadSeqLenQ, kPadHeadDimV>{});
const index_t padded_num_splits =
o_acc_dram_view.get_tensor_descriptor().get_lengths()[number<0>{}];
const index_t padded_seqlen_q =
o_acc_dram_view.get_tensor_descriptor().get_lengths()[number<1>{}];
const index_t padded_hdim_v =
o_acc_dram_view.get_tensor_descriptor().get_lengths()[number<2>{}];
return transform_tensor_view(
const index_t num_m_tiles = integer_divide_floor(padded_seqlen_q, FmhaPipeline::kM0);
// transform tensor view by following steps, given shape: (padded_num_splits,
// padded_seqlen_q, padded_hdim_v)
// 1. unmerge to (padded_num_splits, num_m_tiles, kM0, padded_hdim_v)
// 2. transpose to (num_m_tiles, padded_num_splits, kM0, padded_hdim_v)
// 3. merge to (num_m_tiles * padded_num_splits * kM0, padded_hdim_v)
auto transposed = transform_tensor_view(
o_acc_dram_view,
make_tuple(make_merge_transform(make_tuple(kargs.num_splits, padded_seqlen_q)),
make_tuple(make_pass_through_transform(padded_num_splits),
make_unmerge_transform(make_tuple(num_m_tiles, FmhaPipeline::kM0)),
make_pass_through_transform(padded_hdim_v)),
make_tuple(sequence<0, 1>{}, sequence<2>{}),
make_tuple(sequence<0>{}, sequence<1>{}, sequence<2>{}),
make_tuple(sequence<1>{}, sequence<0, 2>{}, sequence<3>{}));
return transform_tensor_view(
transposed,
make_tuple(make_merge_transform(
make_tuple(num_m_tiles, padded_num_splits, FmhaPipeline::kM0)),
make_pass_through_transform(padded_hdim_v)),
make_tuple(sequence<0, 1, 2>{}, sequence<3>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
}();
auto lse_acc_dram_window = make_tile_window(
lse_acc_dram,
[&]() {
return make_tuple(number<FmhaPipeline::kMaxSplits>{}, number<FmhaPipeline::kM0>{});
}(),
make_tuple(number<FmhaPipeline::kMaxSplits>{}, number<FmhaPipeline::kM0>{}),
{0, i_m0});
const index_t padded_num_splits =
integer_divide_ceil(kargs.num_splits, kNumWarps) * kNumWarps;
auto o_acc_dram_window = make_tile_window(
o_acc_dram,
[&]() {
return make_tuple(number<FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{});
}(),
{i_m0, i_n1});
make_tuple(number<kNumWarps * FmhaPipeline::kM0>{}, number<FmhaPipeline::kN1>{}),
{i_tile_m * padded_num_splits * FmhaPipeline::kM0, i_n1});
// LSE DRAM window
auto lse_dram_window = [&, i_nhead_ = i_nhead]() {
......@@ -410,7 +430,6 @@ struct FmhaFwdSplitKVCombineKernel
identity{}, // lse_element_func
composes(saturates<fp8_t>{}, scales{kargs.scale_o}), // o_acc_element_func
kargs.num_splits,
kargs.seqlen_q,
smem_ptr);
}
else
......@@ -419,7 +438,6 @@ struct FmhaFwdSplitKVCombineKernel
o_acc_dram_window,
lse_dram_window,
kargs.num_splits,
kargs.seqlen_q,
smem_ptr);
}
}();
......
......@@ -45,6 +45,7 @@ struct FmhaFwdSplitKVKernel
static constexpr bool kPadHeadDimQ = FmhaPipeline::kPadHeadDimQ;
static constexpr bool kPadHeadDimV = FmhaPipeline::kPadHeadDimV;
static constexpr auto BiasEnum = FmhaPipeline::BiasEnum;
static constexpr bool kStoreLSE = FmhaPipeline::kStoreLSE;
static constexpr bool kDoFp8StaticQuant = FmhaPipeline::Problem::kDoFp8StaticQuant;
static constexpr bool kIsPagedKV = FmhaPipeline::Problem::kIsPagedKV;
......@@ -67,7 +68,8 @@ struct FmhaFwdSplitKVKernel
using bfs = typename FmhaPipeline::BlockFmhaShape;
using g0br = typename bfs::Gemm0BlockWarps;
using g1br = typename bfs::Gemm1BlockWarps;
using gwt = typename bfs::Gemm0WarpTile;
using g0wt = typename bfs::Gemm0WarpTile;
using g1wt = typename bfs::Gemm1WarpTile;
#define _SS_ std::string
#define _TS_ std::to_string
auto pn = [&] () {
......@@ -84,11 +86,12 @@ struct FmhaFwdSplitKVKernel
_TS_(bfs::kN1) + "x" + _TS_(bfs::kK1) + "x" + _TS_(bfs::kQKHeaddim) + "_" +
"r" + _TS_(g0br::at(ck_tile::number<0>{})) + "x" + _TS_(g0br::at(ck_tile::number<1>{})) + "x" + _TS_(g0br::at(ck_tile::number<2>{})) + "_" +
"r" + _TS_(g1br::at(ck_tile::number<0>{})) + "x" + _TS_(g1br::at(ck_tile::number<1>{})) + "x" + _TS_(g1br::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(gwt::at(ck_tile::number<0>{})) + "x" + _TS_(gwt::at(ck_tile::number<1>{})) + "x" + _TS_(gwt::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(g0wt::at(ck_tile::number<0>{})) + "x" + _TS_(g0wt::at(ck_tile::number<1>{})) + "x" + _TS_(g0wt::at(ck_tile::number<2>{})) + "_" +
"w" + _TS_(g1wt::at(ck_tile::number<0>{})) + "x" + _TS_(g1wt::at(ck_tile::number<1>{})) + "x" + _TS_(g1wt::at(ck_tile::number<2>{})) + "_" +
(kBlockPerCuInput == -1 ? "" : ("o" + _TS_(kBlockPerCu) + "_")) + _SS_(FmhaPipeline::name) + "_" +
"v" + (std::is_same_v<VLayout, ck_tile::tensor_layout::gemm::RowMajor> ? "r" : "c") + (pn.empty() ? "" : "_" + pn) +
(BiasEnum == BlockAttentionBiasEnum::NO_BIAS ? _SS_("") : (_SS_("_") + BlockAttentionBiasEnumToStr<BiasEnum>::name)) +
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kDoFp8StaticQuant ? "_squant" : "") + (kIsPagedKV ? "_pagedkv" : "" );
(kHasMask ? "_" + _SS_(FmhaMask::name) : "") + (kStoreLSE ? "_lse" : "" ) + (kDoFp8StaticQuant ? "_squant" : "") + (kIsPagedKV ? "_pagedkv" : "" );
#undef _SS_
#undef _TS_
// clang-format on
......
......@@ -53,6 +53,7 @@ struct BlockFmhaFwdSplitKVCombinePipeline
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
using ODataType = remove_cvref_t<typename Problem::ODataType>;
static constexpr index_t kNumWarps = Problem::kNumWarps;
static constexpr index_t kBlockSize = Problem::kBlockSize;
static constexpr index_t kHeadDimV = Problem::kHeadDimV;
......@@ -117,7 +118,6 @@ struct BlockFmhaFwdSplitKVCombinePipeline
const LSEElementFunction& lse_element_func,
const OaccElementFunction& o_acc_element_func,
index_t num_splits,
index_t seqlen_q,
void* smem_ptr) const
{
// lse_acc tile in LDS
......@@ -143,11 +143,12 @@ struct BlockFmhaFwdSplitKVCombinePipeline
// copy lse_acc tile (shape=[kMaxSplits, kM0]) to LDS (shape=[kMaxSplits, kM0]).
auto lse_acc_tile = load_tile(lse_acc_dram_window);
store_tile(lse_acc_lds_write_window, lse_acc_tile);
block_sync_lds();
auto lse_accum = make_static_distributed_tensor<LSEDataType>(
Policy::template MakeLSEaccRegTileDistribution<Problem>());
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
// copy LDS (shape=[kM0, kMaxSplits]) to lse_accum (shape=[kM0, kMaxSplits])
// and fill up -INF values outside the [kM0, num_splits] region.
{
......@@ -264,46 +265,94 @@ struct BlockFmhaFwdSplitKVCombinePipeline
}
});
}
block_sync_lds();
if constexpr(kStoreLSE)
{
store_tile(lse_dram_window_tmp, tile_elementwise_in(lse_element_func, lse_logsum));
}
auto o_acc_dist = Policy::template MakeOaccDramTileDistribution<Problem>();
auto o_acc_dram_window =
auto o_acc_4_dist = Policy::template MakeOacc4DramTileDistribution<Problem>();
auto o_acc_4_dram_window =
make_tile_window(o_acc_dram_block_window_tmp.get_bottom_tensor_view(),
o_acc_dram_block_window_tmp.get_window_lengths(),
o_acc_dram_block_window_tmp.get_window_origin(),
o_acc_dist);
auto o_acc = make_static_distributed_tensor<OaccDataType>(o_acc_dist);
clear_tile(o_acc);
o_acc_4_dist);
const index_t padded_seqlen_q = integer_divide_ceil(seqlen_q, kM0) * kM0;
// shape=[4 * KM0, kN1]
auto o_acc_4 = make_static_distributed_tensor<OaccDataType>(o_acc_4_dist);
clear_tile(o_acc_4);
for(index_t i_split = 0; i_split < num_splits; ++i_split)
const index_t padded_num_splits = integer_divide_ceil(num_splits, kNumWarps) * kNumWarps;
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
// each warp handles a [KM0, kN1] tile
for(index_t split_start = 0; split_start < padded_num_splits; split_start += kNumWarps)
{
auto o_tile = load_tile(o_acc_dram_window);
auto o_tile = load_tile(o_acc_4_dram_window);
const index_t i_split = split_start + get_warp_id();
const index_t row_start = kM0 * get_warp_id();
{
constexpr auto spans = decltype(o_acc)::get_distributed_spans();
constexpr auto spans = decltype(o_acc_4)::get_distributed_spans();
sweep_tile_span(spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
const auto x_indices = get_x_indices_from_distributed_indices(
o_acc.get_tile_distribution(), i_j_idx);
o_acc_4.get_tile_distribution(), i_j_idx);
const auto row = x_indices.at(number<0>{});
const LSEDataType lse_scale = lse_acc_lds(row, i_split);
o_acc(i_j_idx) += lse_scale * o_tile(i_j_idx);
const LSEDataType lse_scale = lse_acc_lds(row - row_start, i_split);
o_acc_4(i_j_idx) += lse_scale * o_tile(i_j_idx);
});
});
}
move_tile_window(o_acc_dram_window, {padded_seqlen_q, 0});
move_tile_window(o_acc_4_dram_window, {kNumWarps * kM0, 0});
}
// 4 o_acc tiles in LDS. shape=[4 * kM0, kN1]
OaccDataType* o_acc_4_lds_ptr = static_cast<OaccDataType*>(static_cast<void*>(
static_cast<char*>(smem_ptr) + Policy::template GetSmemSizeLSEacc<Problem>()));
{
auto o_acc_4_lds_window = [&]() {
auto desc = Policy::template MakeOacc4LdsBlockDescriptor<Problem>();
auto view = make_tensor_view<address_space_enum::lds>(o_acc_4_lds_ptr, desc);
return make_tile_window(view, desc.get_lengths(), {0, 0});
}();
store_tile(o_acc_4_lds_window, o_acc_4);
}
auto o_acc_dist = Policy::template MakeOaccDramTileDistribution<Problem>();
auto o_acc_4_lds_window = [&]() {
auto desc = Policy::template MakeOacc4LdsBlockDescriptor<Problem>();
auto view = make_tensor_view<address_space_enum::lds>(o_acc_4_lds_ptr, desc);
return make_tile_window(view, desc.get_lengths(), {0, 0}, o_acc_dist);
}();
auto o_acc = make_static_distributed_tensor<OaccDataType>(o_acc_dist);
clear_tile(o_acc);
__builtin_amdgcn_sched_barrier(0);
block_sync_lds();
static_for<0, kNumWarps, 1>{}([&](auto) {
auto o_acc_in = load_tile(o_acc_4_lds_window);
{
constexpr auto spans = decltype(o_acc)::get_distributed_spans();
sweep_tile_span(spans[number<0>{}], [&](auto idx0) {
sweep_tile_span(spans[number<1>{}], [&](auto idx1) {
constexpr auto i_j_idx = make_tuple(idx0, idx1);
o_acc(i_j_idx) += o_acc_in(i_j_idx);
});
});
}
move_tile_window(o_acc_4_lds_window, {kM0, 0});
});
o_acc = tile_elementwise_in(o_acc_element_func, o_acc);
return o_acc;
......@@ -316,7 +365,6 @@ struct BlockFmhaFwdSplitKVCombinePipeline
const OaccDramBlockWindow& o_acc_dram_block_window,
LSEDramBlockWindow& lse_dram_block_window,
index_t num_splits,
index_t seqlen_q,
void* smem_ptr) const
{
return operator()(lse_acc_dram_block_window,
......@@ -325,7 +373,6 @@ struct BlockFmhaFwdSplitKVCombinePipeline
identity{},
identity{},
num_splits,
seqlen_q,
smem_ptr);
}
};
......
......@@ -10,23 +10,38 @@ namespace ck_tile {
struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
{
template <index_t BlockSize, index_t M, index_t N, typename DataType>
template <index_t NumWarps, index_t M, index_t N, typename DataType>
CK_TILE_HOST_DEVICE static constexpr auto GetMaxNumWarpsForTile()
{
static_assert(NumWarps == 1 || NumWarps == 2 || NumWarps == 4);
constexpr index_t ElemPerThread = (M * N) / (NumWarps * get_warp_size());
if constexpr(0 < ElemPerThread)
{
return NumWarps;
}
else
{ // try dividing tile by smaller # of warps
return GetMaxNumWarpsForTile<NumWarps / 2, M, N, DataType>();
}
}
template <index_t NumWarps, index_t M, index_t N, typename DataType>
CK_TILE_HOST_DEVICE static constexpr auto GetVectorSizeForTile()
{
constexpr index_t PixelsPerThread = (M * N) / BlockSize;
static_assert(0 < PixelsPerThread);
constexpr index_t MaxNumWarps = GetMaxNumWarpsForTile<NumWarps, M, N, DataType>();
constexpr index_t MaxNPerThread = 16 / sizeof(DataType);
constexpr index_t NPerThread = min(MaxNPerThread, PixelsPerThread);
constexpr index_t ElemPerThread = (M * N) / (MaxNumWarps * get_warp_size());
return NPerThread;
constexpr index_t MaxNPerThread = 16 / sizeof(DataType);
return min(MaxNPerThread, ElemPerThread);
}
// alignment for dram lse tile (shape=[kMaxSplits, kM0])
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentLSE()
{
return GetVectorSizeForTile<Problem::kBlockSize,
return GetVectorSizeForTile<Problem::kNumWarps,
Problem::kMaxSplits,
Problem::kM0,
typename Problem::LSEDataType>();
......@@ -56,40 +71,54 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeLSEacc()
{
return sizeof(typename Problem::LSEDataType) *
MakeLSEaccLdsBlockDescriptor<Problem>().get_element_space_size();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeOacc4()
{
return sizeof(typename Problem::OaccDataType) *
MakeOacc4LdsBlockDescriptor<Problem>().get_element_space_size();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return GetSmemSizeLSEacc<Problem>() + GetSmemSizeOacc4<Problem>();
}
// shape=[kMaxSplits, kM0]
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeLSEaccDramTileDistribution()
{
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kNumWarps = Problem::kNumWarps;
constexpr index_t kNPerBlock = Problem::kM0;
constexpr index_t kMPerBlock = Problem::kMaxSplits;
constexpr index_t kNPerBlock = Problem::kM0;
constexpr index_t MaxNumWarps =
GetMaxNumWarpsForTile<Problem::kNumWarps, kNPerBlock, kMPerBlock, LSEDataType>();
constexpr index_t Replicate = Problem::kNumWarps / MaxNumWarps;
constexpr index_t NPerThread =
GetVectorSizeForTile<kBlockSize, kMPerBlock, kNPerBlock, LSEDataType>();
GetVectorSizeForTile<MaxNumWarps, kMPerBlock, kNPerBlock, LSEDataType>();
constexpr index_t NThreads = kNPerBlock / NPerThread;
constexpr index_t MThreadsPerWarp = get_warp_size() / NThreads;
constexpr index_t MPerThread = kMPerBlock / (kNumWarps * MThreadsPerWarp);
constexpr index_t MPerThread = kMPerBlock / (MaxNumWarps * MThreadsPerWarp);
static_assert(MPerThread * MaxNumWarps * MThreadsPerWarp == kMPerBlock);
static_assert(NThreads * NPerThread == kNPerBlock);
static_assert(MPerThread * kNumWarps * MThreadsPerWarp == kMPerBlock);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<MPerThread, kNumWarps, MThreadsPerWarp>,
tile_distribution_encoding<sequence<Replicate>,
tuple<sequence<MPerThread, MaxNumWarps, MThreadsPerWarp>,
sequence<NThreads, NPerThread>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
tuple<sequence<0, 1>, sequence<1, 2>>,
tuple<sequence<0, 1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
......@@ -100,17 +129,15 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
{
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::kMaxSplits;
constexpr index_t kNPerBlock = Problem::kM0;
constexpr index_t kMPerBlock = Problem::kM0;
constexpr index_t kNPerBlock = Problem::kMaxSplits;
constexpr index_t NPack =
GetVectorSizeForTile<kBlockSize, kMPerBlock, kNPerBlock, LSEDataType>();
GetVectorSizeForTile<Problem::kNumWarps, kMPerBlock, kNPerBlock, LSEDataType>();
constexpr auto lse_acc_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kNPerBlock / NPack>{}, number<kMPerBlock>{}, number<NPack>{}),
make_tuple(number<(kMPerBlock + 1) * NPack>{}, number<NPack>{}, number<1>{}),
number<8>{},
number<NPack>{},
number<1>{});
constexpr auto lse_acc_lds_block_desc = transform_tensor_descriptor(
......@@ -129,17 +156,15 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
{
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::kMaxSplits;
constexpr index_t kNPerBlock = Problem::kM0;
constexpr index_t kMPerBlock = Problem::kM0;
constexpr index_t kNPerBlock = Problem::kMaxSplits;
constexpr index_t NPack =
GetVectorSizeForTile<kBlockSize, kMPerBlock, kNPerBlock, LSEDataType>();
GetVectorSizeForTile<Problem::kNumWarps, kMPerBlock, kNPerBlock, LSEDataType>();
constexpr auto lse_acc_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kNPerBlock / NPack>{}, number<kMPerBlock>{}, number<NPack>{}),
make_tuple(number<(kMPerBlock + 1) * NPack>{}, number<NPack>{}, number<1>{}),
number<8>{},
number<NPack>{},
number<1>{});
constexpr auto lse_acc_t_lds_block_desc = transform_tensor_descriptor(
......@@ -152,33 +177,86 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
return lse_acc_t_lds_block_desc;
}
// 3d + padding, shape=[4 * kM0, kN1]
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeLSEaccRegTileDistribution()
CK_TILE_HOST_DEVICE static constexpr auto MakeOacc4LdsBlockDescriptor()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
using LSEDataType = remove_cvref_t<typename Problem::LSEDataType>;
constexpr index_t kNPerBlock = Problem::kMaxSplits;
constexpr index_t kMPerBlock = 4 * Problem::kM0;
constexpr index_t kNPerBlock = Problem::kN1;
constexpr index_t NPack =
GetVectorSizeForTile<Problem::kNumWarps, kMPerBlock, kNPerBlock, LSEDataType>();
constexpr auto o_acc_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kNPerBlock / NPack>{}, number<kMPerBlock>{}, number<NPack>{}),
make_tuple(number<(kMPerBlock + 1) * NPack>{}, number<NPack>{}, number<1>{}),
number<8>{},
number<1>{});
constexpr auto o_acc_t_lds_block_desc = transform_tensor_descriptor(
o_acc_lds_block_desc_0,
make_tuple(make_pass_through_transform(kMPerBlock),
make_merge_transform(make_tuple(kNPerBlock / NPack, NPack))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<1>{}, sequence<0>{}));
return o_acc_t_lds_block_desc;
}
// shape=[kM0, kMaxSplits]
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeLSEaccRegTileDistribution()
{
constexpr index_t kMPerBlock = Problem::kM0;
constexpr index_t kNPerBlock = Problem::kMaxSplits;
constexpr index_t NThreads = 4;
constexpr index_t NPerThread = kNPerBlock / NThreads;
constexpr index_t MaxNThreads = 8;
constexpr index_t NThreads = min(kNPerBlock, MaxNThreads);
constexpr index_t NPerThread = kNPerBlock / NThreads;
constexpr index_t MThreads = kBlockSize / NThreads;
constexpr index_t MPerThread = kMPerBlock / MThreads;
constexpr index_t MWarps = kBlockSize / get_warp_size();
constexpr index_t MPerThread = 1;
constexpr index_t MThreads = kMPerBlock / MPerThread;
constexpr index_t MThreadPerWarp = get_warp_size() / NThreads;
constexpr index_t MaxNumWarps = (MThreads * NThreads) / get_warp_size();
constexpr index_t Replicate = Problem::kNumWarps / MaxNumWarps;
static_assert(MaxNumWarps * MThreadPerWarp * MPerThread == kMPerBlock);
static_assert(NThreads * NPerThread == kNPerBlock);
static_assert(MWarps * MThreadPerWarp * MPerThread == kMPerBlock);
return make_static_tile_distribution(
tile_distribution_encoding<
sequence<1>,
tuple<sequence<MWarps, MThreadPerWarp, MPerThread>, sequence<NThreads, NPerThread>>,
tuple<sequence<1>, sequence<2, 1>>,
tuple<sequence<0>, sequence<0, 1>>,
sequence<1, 2>,
sequence<2, 1>>{});
tile_distribution_encoding<sequence<Replicate>,
tuple<sequence<MaxNumWarps, MThreadPerWarp, MPerThread>,
sequence<NThreads, NPerThread>>,
tuple<sequence<0, 1>, sequence<2, 1>>,
tuple<sequence<0, 0>, sequence<0, 1>>,
sequence<1, 2>,
sequence<2, 1>>{});
}
// similar to MakeOaccDramTileDistribution(), but duplicate same 1-warp encoding 4 times on M
// direction
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeOacc4DramTileDistribution()
{
constexpr index_t kMPerBlock = Problem::kM0; // real kMPerBlock we want is (4 * kM0)
constexpr index_t kNPerBlock = Problem::kN1;
static_assert(get_warp_size() <= kMPerBlock * kNPerBlock);
constexpr index_t M1 = 1; // compose encoding base on 1 warp
constexpr index_t M2 = min(kMPerBlock / M1, get_warp_size());
constexpr index_t N0 = get_warp_size() / M2;
constexpr index_t N1 = kNPerBlock / N0;
constexpr index_t M0 = kMPerBlock / (M2 * M1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<4, M0, M1, M2>, sequence<N0, N1>>,
tuple<sequence<1, 1>, sequence<1, 2>>,
tuple<sequence<0, 2>, sequence<3, 0>>,
sequence<1, 2>,
sequence<1, 1>>{});
}
template <typename Problem>
......@@ -187,6 +265,7 @@ struct BlockFmhaFwdSplitKVCombinePipelineDefaultPolicy
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::kM0;
constexpr index_t kNPerBlock = Problem::kN1;
static_assert(kBlockSize <= kMPerBlock * kNPerBlock);
constexpr index_t M1 = kBlockSize / get_warp_size();
constexpr index_t M2 = min(kMPerBlock / M1, get_warp_size());
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/ops/fmha/pipeline/block_fmha_pipeline_qx_ks_vs_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1_custom_policy.hpp"
#include "ck_tile/ops/gemm/block/block_gemm_asmem_bsmem_creg_v1.hpp"
namespace ck_tile {
// This pipeline is qkv all located in LDS
struct BlockFmhaFwdSplitKVPipelineNWarpSShuffleQRKSVSDefaultPolicy
: BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ true,
/* AsyncCopyK = */ false,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 1,
/* NumPrefetchV = */ 1>
{
using BasePolicy = BlockFmhaPipelineQXKSVSCustomPolicy</* QLoadOnce = */ true,
/* AsyncCopyK = */ false,
/* AsyncCopyV = */ false,
/* NumPrefetchK = */ 1,
/* NumPrefetchV = */ 1>;
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kSubQKHeaddim;
constexpr index_t MaxVectorSize = 16 / sizeof(typename Problem::QDataType);
// this should align with MakeQDramTileDistribution()
constexpr index_t ElemPerThread = (kMPerBlock * kKPerBlock) / kBlockSize;
static_assert(0 < ElemPerThread);
return min(ElemPerThread, MaxVectorSize);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentOacc()
{
using OaccDataType = remove_cvref_t<typename Problem::OaccDataType>;
return static_cast<index_t>(16 / sizeof(OaccDataType));
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kSubQKHeaddim;
constexpr index_t MaxVectorSize = 16 / sizeof(typename Problem::QDataType);
constexpr index_t ElemPerThread = (kMPerBlock * kKPerBlock) / kBlockSize;
static_assert(0 < ElemPerThread);
constexpr index_t kMaxVecLoad = min(ElemPerThread, MaxVectorSize);
constexpr index_t KPerThread = kMaxVecLoad;
constexpr index_t KThreads = kKPerBlock / KPerThread;
constexpr index_t MThreadPerWarp = get_warp_size() / KThreads;
constexpr index_t NumWarps = kBlockSize / get_warp_size();
constexpr index_t MPerThread = kMPerBlock / (MThreadPerWarp * NumWarps);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<MPerThread, NumWarps, MThreadPerWarp>,
sequence<KThreads, KPerThread>>,
tuple<sequence<1>, sequence<1, 2>>,
tuple<sequence<1>, sequence<2, 0>>,
sequence<1, 2>,
sequence<0, 1>>{});
}
template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeQRegTileDistribution()
{
return BasePolicy::template MakeQDramTileDistribution<Problem, BlockGemm>();
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemKPackQ()
{
// TODO: this is for 3d layout
using QDataType = remove_cvref_t<typename Problem::QDataType>;
return static_cast<index_t>(16 / sizeof(QDataType));
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeQLdsBlockDescriptor()
{
constexpr index_t kBlockSize = Problem::kBlockSize;
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kSubQKHeaddim;
constexpr index_t ElemPerThread = (kMPerBlock * kKPerBlock) / kBlockSize;
static_assert(0 < ElemPerThread);
constexpr index_t kKPack = min(ElemPerThread, GetSmemKPackQ<Problem>());
constexpr auto q_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kKPerBlock / kKPack>{}, number<kMPerBlock>{}, number<kKPack>{}),
make_tuple(number<(kMPerBlock + 1) * kKPack>{}, number<kKPack>{}, number<1>{}),
number<kKPack>{},
number<1>{});
constexpr auto q_lds_block_desc = transform_tensor_descriptor(
q_lds_block_desc_0,
make_tuple(
make_pass_through_transform(number<kMPerBlock>{}),
make_merge_transform(make_tuple(number<kKPerBlock / kKPack>{}, number<kKPack>{}))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return q_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetSmemNPackS()
{
using SDataType = remove_cvref_t<typename Problem::SaccDataType>;
return static_cast<index_t>(16 / sizeof(SDataType));
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeSLdsBlockDescriptor()
{
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kNPerBlock = Problem::BlockFmhaShape::kN0;
constexpr index_t kNPack = GetSmemNPackS<Problem>();
constexpr auto s_lds_block_desc_0 = make_naive_tensor_descriptor(
make_tuple(number<kNPerBlock / kNPack>{}, number<kMPerBlock>{}, number<kNPack>{}),
make_tuple(number<(kMPerBlock + 1) * kNPack>{}, number<kNPack>{}, number<1>{}),
number<kNPack>{},
number<1>{});
constexpr auto s_lds_block_desc = transform_tensor_descriptor(
s_lds_block_desc_0,
make_tuple(
make_pass_through_transform(number<kMPerBlock>{}),
make_merge_transform(make_tuple(number<kNPerBlock / kNPack>{}, number<kNPack>{}))),
make_tuple(sequence<1>{}, sequence<0, 2>{}),
make_tuple(sequence<0>{}, sequence<1>{}));
return s_lds_block_desc;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto MakeSRegTileDistribution()
{
using BlockGemm = remove_cvref_t<decltype(GetKVBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
static_assert(MWarp == 1, "Check failed!");
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kK1;
constexpr index_t kTileK = Problem::BlockFmhaShape::kN0;
// K2 is equal to Impl::kABKPerLane * kKIterPerWarpGemm
constexpr index_t K3 = WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K2 = WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K1 = kKPerBlock / (K2 * K3);
constexpr index_t K0 = kTileK / kKPerBlock;
constexpr index_t M2 = WG::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t M1 = MWarp;
constexpr index_t M0 = kMPerBlock / (M2 * M1);
constexpr auto s2_block_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1, K2, K3>>,
tuple<sequence<1, 0>, sequence<2, 1>>,
tuple<sequence<1, 0>, sequence<2, 2>>,
sequence<1, 2, 2, 2>,
sequence<0, 0, 1, 3>>{};
constexpr auto s2_block_dstr = make_static_tile_distribution(s2_block_dstr_encoding);
return s2_block_dstr;
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeQ()
{
return MakeQLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::QDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeK()
{
return MakeKLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::KDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeV()
{
return MakeVLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::VDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSizeS()
{
return MakeSLdsBlockDescriptor<Problem>().get_element_space_size() *
sizeof(typename Problem::SaccDataType);
}
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr ck_tile::index_t GetSmemSize()
{
return max(GetSmemSizeQ<Problem>(), GetSmemSizeK<Problem>()) +
max(GetSmemSizeV<Problem>(), GetSmemSizeS<Problem>());
}
};
} // namespace ck_tile
......@@ -106,28 +106,43 @@ struct BlockFmhaFwdSplitKVPipelineProblem
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
};
// extract tile size attributes to remove dependency on traits
template <typename OaccDataType_, ck_tile::index_t kN1_>
struct BlockFmhaSplitKVCombinePipelineTileSizes
{
static constexpr index_t MaxVectorSize = 16 / sizeof(OaccDataType_);
static constexpr index_t kN1 = kN1_;
static constexpr index_t NThreads = kN1 / MaxVectorSize;
static constexpr index_t kM0 = get_warp_size() / NThreads; // MThreadPerWarp
};
template <typename LSEDataType_,
typename OaccDataType_,
typename ODataType_,
index_t HeadDimV_,
index_t kM0_,
index_t kN1_,
bool kIsGroupMode_,
ck_tile::index_t kN1_,
typename Traits_>
struct BlockFmhaSplitKVCombinePipelineProblem
: BlockFmhaSplitKVCombinePipelineTileSizes<OaccDataType_, kN1_>
{
using BaseType = BlockFmhaSplitKVCombinePipelineTileSizes<OaccDataType_, kN1_>;
using LSEDataType = remove_cvref_t<LSEDataType_>;
using OaccDataType = remove_cvref_t<OaccDataType_>;
using ODataType = remove_cvref_t<ODataType_>;
using Traits = remove_cvref_t<Traits_>;
static constexpr index_t kNumWarps = kM0_ / (get_warp_size() / 4);
static constexpr index_t kBlockSize = kNumWarps * get_warp_size();
static constexpr bool kIsGroupMode = kIsGroupMode_;
static_assert(std::is_same_v<LSEDataType, OaccDataType>);
static constexpr index_t kHeadDimV = HeadDimV_;
static constexpr index_t kM0 = kM0_;
static constexpr index_t kN1 = kN1_;
static constexpr bool kIsGroupMode = kIsGroupMode_;
using BaseType::kM0;
using BaseType::kN1;
static_assert(kN1 <= kHeadDimV && kHeadDimV % kN1 == 0);
// attributes from traits
static constexpr bool kPadSeqLenQ = Traits::kPadSeqLenQ;
......@@ -136,6 +151,13 @@ struct BlockFmhaSplitKVCombinePipelineProblem
static constexpr bool kDoFp8StaticQuant = Traits::kDoFp8StaticQuant;
static constexpr index_t kBlockPerCu = Traits::kBlockPerCu;
static constexpr index_t kMaxSplits = Traits::kMaxSplits;
static_assert(8 <= kMaxSplits);
static constexpr index_t kNumWarps = 4; // always use 4 warps for each workgroup
static constexpr index_t kBlockSize = kNumWarps * get_warp_size();
static_assert(get_warp_size() <= (kM0 * kMaxSplits) &&
(kM0 * kMaxSplits) % get_warp_size() == 0);
};
template <typename QDataType_,
......
......@@ -41,52 +41,21 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
template <typename Problem>
CK_TILE_HOST_DEVICE static constexpr auto GetAlignmentQ()
{
constexpr index_t MaxVectorSize = 16 / sizeof(typename Problem::QDataType);
using BlockGemm = remove_cvref_t<decltype(GetQKBlockGemm<Problem>())>;
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
return WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
return min(MaxVectorSize, WG::kK / WG::WarpGemmAttribute::Impl::kABKLane);
}
template <typename Problem, typename BlockGemm>
CK_TILE_HOST_DEVICE static constexpr auto MakeQDramTileDistribution()
{
constexpr auto config = BlockGemm::Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t kMPerBlock = Problem::BlockFmhaShape::kM0;
constexpr index_t kKPerBlock = Problem::BlockFmhaShape::kSubQKHeaddim;
constexpr index_t K2 = WG::kK / WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K1 = WG::WarpGemmAttribute::Impl::kABKLane;
constexpr index_t K0 = kKPerBlock / (K1 * K2);
constexpr index_t M2 = WG::WarpGemmAttribute::Impl::kAMLane;
constexpr index_t M1 = MWarp;
constexpr index_t M0 = kMPerBlock / (M2 * M1);
if constexpr(1 < Problem::kNumGemm0Warps)
{
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1, K2>>,
tuple<sequence<1>, sequence<2, 1>>,
tuple<sequence<1>, sequence<1, 2>>,
sequence<1, 2, 2>,
sequence<0, 0, 2>>{});
}
else
{
static_assert(MWarp == 1);
return make_static_tile_distribution(
tile_distribution_encoding<sequence<1>,
tuple<sequence<M0, M1, M2>, sequence<K0, K1, K2>>,
tuple<sequence<2, 1>>,
tuple<sequence<1, 2>>,
sequence<1, 2, 2>,
sequence<0, 0, 2>>{});
}
return BlockGemm::template MakeABlockTileDistribution<
Problem::BlockFmhaShape::kM0,
Problem::BlockFmhaShape::kSubQKHeaddim>();
}
template <typename Problem>
......@@ -105,7 +74,7 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
constexpr auto warp_gemm = []() {
constexpr index_t WarpGemmM = Problem::BlockFmhaShape::Gemm0WarpTile::at(number<0>{});
static_assert(WarpGemmM == 16 || WarpGemmM == 32);
static_assert(WarpGemmM == 4 || WarpGemmM == 16 || WarpGemmM == 32);
if constexpr(std::is_same_v<typename Problem::QDataType, half_t> &&
std::is_same_v<typename Problem::KDataType, half_t> &&
......@@ -113,8 +82,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
{
if constexpr(WarpGemmM == 32)
return WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution{};
else // WarpGemmM == 16
else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaF16F16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaF16F16F32M4N64K16{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, bf16_t> &&
std::is_same_v<typename Problem::KDataType, bf16_t> &&
......@@ -122,8 +93,10 @@ struct BlockFmhaPipelineQXCustomPolicy</* QLoadOnce = */ true>
{
if constexpr(WarpGemmM == 32)
return WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution{};
else // WarpGemmM == 16
else if constexpr(WarpGemmM == 16)
return WarpGemmMfmaBf16Bf16F32M16N16K16TransposedCDistribution{};
else // WarpGemmM == 4
return WarpGemmMfmaBf16Bf16F32M4N64K16{};
}
else if constexpr(std::is_same_v<typename Problem::QDataType, fp8_t> &&
std::is_same_v<typename Problem::KDataType, fp8_t> &&
......
......@@ -43,8 +43,6 @@ struct TileFmhaShape
static constexpr index_t NumWarps = max(NumGemm0Warps, NumGemm1Warps);
static_assert(std::is_same_v<Gemm0WarpTile, Gemm1WarpTile>);
static constexpr index_t kM0 = BlockTile::at(number<0>{}); // tile size along q seqlen
static constexpr index_t kN0 = BlockTile::at(number<1>{}); // tile size along k seqlen
static constexpr index_t kK0 = BlockTile::at(number<2>{}); // tile size along qk gemm unroll
......
......@@ -65,14 +65,6 @@ struct BlockGemmARegBSmemCRegOneWarpV1
const index_t iNWarp = 0;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<>,
tuple<sequence<MIterPerWarp>, sequence<NIterPerWarp>>,
......@@ -81,19 +73,14 @@ struct BlockGemmARegBSmemCRegOneWarpV1
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto a_block_dstr = make_static_tile_distribution(a_block_dstr_encode);
// constrcut from A-block-tensor from A-Block-tensor-tmp
// FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent
// distribution
auto a_block_tensor =
make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(a_block_dstr);
auto a_block_tensor = make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(
MakeABlockTileDistribution());
a_block_tensor.get_thread_buffer() = a_block_tensor_tmp.get_thread_buffer();
......@@ -187,6 +174,33 @@ struct BlockGemmARegBSmemCRegOneWarpV1
});
}
template <index_t MPerBlock = BlockGemmShape::kM, index_t KPerBlock = BlockGemmShape::kK>
CK_TILE_DEVICE static constexpr auto MakeABlockTileDistribution()
{
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
return make_static_tile_distribution(a_block_dstr_encode);
}
CK_TILE_DEVICE static constexpr auto MakeCBlockTile()
{
constexpr index_t MPerBlock = BlockGemmShape::kM;
......
......@@ -59,14 +59,6 @@ struct BlockGemmARegBSmemCRegV2
const index_t iNWarp = get_warp_id() % NWarp;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto c_block_outer_dstr_encoding = tile_distribution_encoding<
sequence<>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<NIterPerWarp, NWarp>>,
......@@ -75,19 +67,14 @@ struct BlockGemmARegBSmemCRegV2
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
constexpr auto c_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
c_block_outer_dstr_encoding, typename WG::CWarpDstrEncoding{});
constexpr auto a_block_dstr = make_static_tile_distribution(a_block_dstr_encode);
// constrcut from A-block-tensor from A-Block-tensor-tmp
// FIXME: need method to check a_block_tensor and a_block_tensor_tmp have equivalent
// distribution
auto a_block_tensor =
make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(a_block_dstr);
auto a_block_tensor = make_static_distributed_tensor<typename ABlockTensorTmp::DataType>(
MakeABlockTileDistribution());
a_block_tensor.get_thread_buffer() = a_block_tensor_tmp.get_thread_buffer();
......@@ -182,6 +169,33 @@ struct BlockGemmARegBSmemCRegV2
});
}
template <index_t MPerBlock = BlockGemmShape::kM, index_t KPerBlock = BlockGemmShape::kK>
CK_TILE_DEVICE static constexpr auto MakeABlockTileDistribution()
{
constexpr auto config = Policy::template GetWarpGemmMWarpNWarp<Problem>();
using WG = remove_cvref_t<decltype(config.template at<0>())>;
constexpr index_t MWarp = config.template at<1>();
constexpr index_t NWarp = config.template at<2>();
constexpr index_t MIterPerWarp = MPerBlock / (MWarp * WG::kM);
constexpr index_t KIterPerWarp = KPerBlock / WG::kK;
constexpr auto a_block_outer_dstr_encoding =
tile_distribution_encoding<sequence<NWarp>,
tuple<sequence<MIterPerWarp, MWarp>, sequence<KIterPerWarp>>,
tuple<sequence<1, 0>>,
tuple<sequence<1, 0>>,
sequence<1, 2>,
sequence<0, 0>>{};
constexpr auto a_block_dstr_encode = detail::make_embed_tile_distribution_encoding(
a_block_outer_dstr_encoding, typename WG::AWarpDstrEncoding{});
return make_static_tile_distribution(a_block_dstr_encode);
}
CK_TILE_DEVICE static constexpr auto MakeCBlockTile()
{
constexpr index_t MPerBlock = BlockGemmShape::kM;
......
......@@ -56,6 +56,14 @@ using WarpGemmMfmaF16F16F32M32N32K16SwizzleBTransposedCDistribution =
WarpGemmAttributeMfmaImplF16F16F32M32N32K8<WGAttrCtlEnum::Default_>,
2>>;
using WarpGemmMfmaF16F16F32M4N64K16 = WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<
WarpGemmAttributeMfmaImplF16F16F32M4N64K4<WGAttrCtlEnum::Default_>,
4>>;
using WarpGemmMfmaF16F16F32M64N4K16 = WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<
WarpGemmAttributeMfmaImplF16F16F32M64N4K4<WGAttrCtlEnum::Default_>,
4>>;
// bf16
using WarpGemmMfmaBf16Bf16F32M32N32K8 = WarpGemmImpl<
......@@ -104,6 +112,14 @@ using WarpGemmMfmaBf16Bf16F32M32N32K16SwizzleBTransposedCDistribution =
WarpGemmAttributeMfmaImplBf16Bf16F32M32N32K8<WGAttrCtlEnum::Default_>,
2>>;
using WarpGemmMfmaBf16Bf16F32M4N64K16 = WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<
WarpGemmAttributeMfmaImplBf16Bf16F32M4N64K4<WGAttrCtlEnum::Default_>,
4>>;
using WarpGemmMfmaBf16Bf16F32M64N4K16 = WarpGemmImpl<WarpGemmAtrributeMfmaIterateK<
WarpGemmAttributeMfmaImplBf16Bf16F32M64N4K4<WGAttrCtlEnum::Default_>,
4>>;
// fp8
using WarpGemmMfma_f32_32x32x16_fp8_fp8 = WarpGemmImpl<
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment