Commit 3552041a authored by danyao12's avatar danyao12
Browse files

Merge branch 'develop' into ck_tile/fa_bwd_opt

parents e8927110 733f33af
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3r1.hpp"
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using AccDataType = float;
using CShuffleDataType = ck::half_t;
using CDataType = ck::half_t;
using ReduceDataType = float;
using D0DataType = ck::half_t;
using DsDataType = ck::Tuple<D0DataType>;
using ALayout = Row;
using BLayout = Row;
using CLayout = Row;
using D0Layout = CLayout;
using DsLayout = ck::Tuple<D0Layout>;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Add;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
// clang-format off
using DeviceGemmV2Instance =
ck::tensor_operation::device::DeviceGemm_Xdl_CShuffleV3R1<
ALayout, BLayout, DsLayout, CLayout,
ADataType, BDataType, DsDataType, CDataType, AccDataType, CShuffleDataType,
AElementOp, BElementOp, CDEElementOp, GemmDefault,
256,
128, 128, 64,
8, 4,
32, 32,
2, 2,
S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>,
2, 8, 8, 0,
S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>,
1, 8, 4, 0,
1, 1, S<1, 32, 1, 8>, 8,
ck::BlockGemmPipelineScheduler::Intrawave,ck::BlockGemmPipelineVersion::v2, ReduceDataType>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
#include "run_gemm_splitk_reduce_multi_d_example.inc"
int main(int argc, char* argv[]) { return !run_gemm_splitk_example(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
{
using namespace ck::literals;
auto M = problem_size.M;
auto N = problem_size.N;
auto K = problem_size.K;
auto StrideA = problem_size.StrideA;
auto StrideB = problem_size.StrideB;
auto StrideC = problem_size.StrideC;
auto StrideD0 = problem_size.StrideC;
auto KBatch = problem_size.KBatch;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
auto f_get_default_stride =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(stride == 0)
{
// give a chance if stride is zero, return a default packed stride
if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
{
return col;
}
else
{
return row;
}
}
else
return stride;
};
StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
StrideC = f_get_default_stride(M, N, StrideC, CLayout{});
StrideD0 = f_get_default_stride(M, N, StrideD0, D0Layout{});
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
switch(config.init_method)
{
case 0:
a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
d0_m_n.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
break;
case 2:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-2, 2});
break;
case 3:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
d0_m_n.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
#if 0
printf("B matrix:\n");
for (int in = 0; in < N; in++)
{
for (int ik = 0; ik < K; ik++)
{
printf("%02x ", *(reinterpret_cast<uint8_t*>(&b_k_n(ik,in))));
if(ik%8==7) printf("|");
}
printf("\n");
}
#endif
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "init method: " << config.init_method << std::endl;
std::cout << "KBatch: " << KBatch << std::endl;
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CDEElementOp{};
// do GEMM
auto gemm = DeviceGemmV2Instance{};
auto invoker = gemm.MakeInvoker();
float ave_time = 0;
auto get_argment = [&]() {
if constexpr(DsDataType::Size() > 0)
{
return gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
{d0_m_n_device_buf.GetDeviceBuffer()},
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
{StrideD0},
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op);
}
else
{
return gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
{},
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
{},
StrideC,
KBatch,
a_element_op,
b_element_op,
c_element_op);
}
};
auto argument = get_argment();
if(!gemm.IsSupportedArgument(argument))
{
std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;
return true;
}
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer(), StreamConfig{});
bool pass = true;
if(config.do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
ave_time = invoker.Run(argument, StreamConfig{nullptr, false, 1});
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
if constexpr(DsDataType::Size() > 0)
{
c_m_n_host_result.ForEach(
[&](auto& self, auto idx) { c_element_op(self(idx), self(idx), d0_m_n(idx)); });
}
pass &= ck::utils::check_err(c_m_n_device_result,
c_m_n_host_result,
"Error: Incorrect results!",
get_rtol<CDataType>(),
get_atol<CDataType>());
}
if(config.time_kernel)
{
ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t flop = 2_uz * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
return pass;
}
bool run_gemm_splitk_example(int argc, char* argv[])
{
ProblemSizeSplitK problem_size;
ExecutionConfig config;
return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp"
#include "common.hpp" #include "common.hpp"
#include "ck/host_utility/device_prop.hpp"
using OutDataType = FP16; using OutDataType = FP16;
using WeiDataType = FP16; using WeiDataType = FP16;
...@@ -31,4 +32,14 @@ using DeviceConvInstance = ck::tensor_operation::device::DeviceGroupedConvBwdDat ...@@ -31,4 +32,14 @@ using DeviceConvInstance = ck::tensor_operation::device::DeviceGroupedConvBwdDat
#include "run_grouped_conv_bwd_data_example.inc" #include "run_grouped_conv_bwd_data_example.inc"
int main(int argc, char* argv[]) { return run_grouped_conv_bwd_data_example(argc, argv); } int main(int argc, char* argv[])
{
bool is_supported = ck::is_gfx11_supported();
if(!is_supported)
{
std::cout << "WARNING: wmma example not supported on the platform " << ck::get_device_name()
<< std::endl;
return 0;
}
return run_grouped_conv_bwd_data_example(argc, argv);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/numeric.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using A0DataType = F8;
using A1DataType = F32;
using B0DataType = F8;
using B1DataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using EDataType = F16;
using ComputeDataType = F8;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
struct Multiply
{
__host__ __device__ constexpr void
operator()(ck::f8_t& a, const ck::f8_t& a0, const float& a1) const
{
a = ck::type_convert<ck::half_t>(ck::type_convert<float>(a0) * a1);
}
};
using AElementOp = Multiply;
using BElementOp = Multiply;
using CDEElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using DeviceOpInstance = ck::tensor_operation::device::DeviceContractionMultipleABD_Xdl_CShuffle<
NumDimM,
NumDimN,
NumDimK,
ck::Tuple<A0DataType, A1DataType>,
ck::Tuple<B0DataType, B1DataType>,
AccDataType,
CShuffleDataType,
ck::Tuple<>,
EDataType,
AElementOp,
BElementOp,
CDEElementOp,
GemmSpec,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
1,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A0[M0, M1, K0, K1]
std::vector<ck::index_t> a0_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a0_ms_ks_strides{128 * 32 * 64, 32 * 64, 64, 1};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std::vector<ck::index_t> a1_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a1_ms_ks_strides{0, 64, 1, 0};
// B0[N0, N1, K0, K1]
std::vector<ck::index_t> b0_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b0_ns_ks_strides{64 * 32 * 64, 32 * 64, 64, 1};
// B1[N0, N1, K0, K1]
std::vector<ck::index_t> b1_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b1_ns_ks_strides{64 * 32 * 64, 32 * 64, 64, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{128 * 32 * 64, 32 * 64, 64, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<A0DataType> a0_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
Tensor<A1DataType> a1_ms_ks(a1_ms_ks_lengths, a1_ms_ks_strides);
Tensor<B0DataType> b0_ns_ks(b0_ns_ks_lengths, b0_ns_ks_strides);
Tensor<B1DataType> b1_ns_ks(b1_ns_ks_lengths, b1_ns_ks_strides);
Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
std::cout << "a0_ms_ks: " << a0_ms_ks.mDesc << std::endl;
std::cout << "a1_ms_ks: " << a1_ms_ks.mDesc << std::endl;
std::cout << "b0_ns_ks: " << b0_ns_ks.mDesc << std::endl;
std::cout << "b1_ns_ks: " << b1_ns_ks.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_2<A1DataType>{-5, 5});
b0_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_ns_ks.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
default:
a0_ms_ks.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
a1_ms_ks.GenerateTensorValue(GeneratorTensor_3<A1DataType>{0.0, 1.0});
b0_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
b1_ns_ks.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem a1_device_buf(sizeof(A1DataType) * a1_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_ms_ks.mData.data());
a1_device_buf.ToDevice(a1_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_ns_ks.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument = device_op.MakeArgument(
std::array<const void*, 2>{a0_device_buf.GetDeviceBuffer(),
a1_device_buf.GetDeviceBuffer()},
std::array<const void*, 2>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, 0>{},
e_device_buf.GetDeviceBuffer(),
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_lengths, a1_ms_ks_lengths},
std::array<std::vector<ck::index_t>, 2>{a0_ms_ks_strides, a1_ms_ks_strides},
std::array<std::vector<ck::index_t>, 2>{b0_ns_ks_lengths, b1_ns_ks_lengths},
std::array<std::vector<ck::index_t>, 2>{b0_ns_ks_strides, b1_ns_ks_strides},
std::array<std::vector<ck::index_t>, 0>{},
std::array<std::vector<ck::index_t>, 0>{},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
PassThrough{});
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_contraction with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
if(time_kernel)
{
ck::index_t M =
ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
ck::index_t N = ck::accumulate_n<ck::index_t>(
e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
ck::index_t K = ck::accumulate_n<ck::index_t>(
a0_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + +sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
}
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
Tensor<A0DataType> a_ms_ks(a0_ms_ks_lengths, a0_ms_ks_strides);
for(size_t m0 = 0; m0 < a_ms_ks.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < a_ms_ks.mDesc.GetLengths()[1]; ++m1)
{
for(size_t k0 = 0; k0 < a_ms_ks.mDesc.GetLengths()[2]; ++k0)
{
for(size_t k1 = 0; k1 < a_ms_ks.mDesc.GetLengths()[3]; ++k1)
{
a_element_op(a_ms_ks(m0, m1, k0, k1),
a0_ms_ks(m0, m1, k0, k1),
a1_ms_ks(m0, m1, k0, k1));
}
}
}
}
Tensor<B0DataType> b_ns_ks(b0_ns_ks_lengths, b0_ns_ks_strides);
for(size_t n0 = 0; n0 < b_ns_ks.mDesc.GetLengths()[0]; ++n0)
{
for(size_t n1 = 0; n1 < b_ns_ks.mDesc.GetLengths()[1]; ++n1)
{
for(size_t k0 = 0; k0 < b_ns_ks.mDesc.GetLengths()[2]; ++k0)
{
for(size_t k1 = 0; k1 < b_ns_ks.mDesc.GetLengths()[3]; ++k1)
{
b_element_op(b_ns_ks(n0, n1, k0, k1),
b0_ns_ks(n0, n1, k0, k1),
b1_ns_ks(n0, n1, k0, k1));
}
}
}
}
using ReferenceOpInstance =
ck::tensor_operation::host::ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
A0DataType,
B0DataType,
CShuffleDataType,
AccDataType,
ComputeDataType,
PassThrough,
PassThrough>;
auto ref_op = ReferenceOpInstance{};
auto ref_invoker = ref_op.MakeInvoker();
Tensor<float> empty_tensor(std::vector<ck::index_t>{}, std::vector<ck::index_t>{});
auto ref_argument = ref_op.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
}
return 0;
}
add_subdirectory(binary) add_subdirectory(binary)
add_subdirectory(convinvscale) add_subdirectory(convinvscale)
add_subdirectory(convscale) add_subdirectory(convscale)
add_subdirectory(convscale_relu)
add_subdirectory(convscale_add)
add_subdirectory(multi_AB) add_subdirectory(multi_AB)
add_subdirectory(unary) add_subdirectory(unary)
......
...@@ -12,6 +12,9 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -12,6 +12,9 @@ foreach(gpu IN LISTS GPU_TARGETS)
add_example_executable(example_convnd_fwd_xdl_convscale_fp8_bf8 convnd_fwd_xdl_convscale_fp8_bf8.cpp) add_example_executable(example_convnd_fwd_xdl_convscale_fp8_bf8 convnd_fwd_xdl_convscale_fp8_bf8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8_bf8) add_example_dependencies(example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8_bf8)
add_example_executable(example_convnd_fwd_xdl_convscale_bf8_fp8 convnd_fwd_xdl_convscale_bf8_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_bf8_fp8)
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using InDataType = ck::bf8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = ck::Tuple<>;
using OutDataType = ck::f8_t;
using AComputeDataType = ck::bf8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScale;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convscale_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_activ_xdl_convscale_add)
add_example_executable(example_convnd_fwd_xdl_convscale_add_fp8 convnd_fwd_xdl_convscale_add_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale_add example_convnd_fwd_xdl_convscale_add_fp8 )
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ConvScaleAdd = ck::tensor_operation::element_wise::ConvScaleAdd;
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths,
const std::size_t& ds_size)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return G * N * C *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
(static_cast<std::size_t>(2) * K *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) +
ds_size);
}
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename CShuffleDataType,
typename DsDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<DsDataType> bias(out_g_n_k_wos_desc);
Tensor<CShuffleDataType> c(out_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "bias: " << bias.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-1, 1});
bias.GenerateTensorValue(GeneratorTensor_2<DsDataType>{-3, 3});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-1.0, 1.0});
bias.GenerateTensorValue(GeneratorTensor_3<DsDataType>{-3.0, 3.0});
break;
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem bias_device_buf(sizeof(DsDataType) * bias.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
bias_device_buf.ToDevice(bias.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> d_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), d_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), d_g_n_k_wos_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// random scale values
float scale_in = float(std::rand()) / float(RAND_MAX);
float scale_wei = float(std::rand()) / float(RAND_MAX);
float scale_out = float(std::rand()) / float(RAND_MAX);
std::cout << std::endl;
std::cout << "scale_in: " << scale_in << std::endl;
std::cout << "scale_wei: " << scale_wei << std::endl;
std::cout << "scale_out: " << scale_out << std::endl;
// initialize out_element_op for each iteration
const auto out_element_op = OutElementOp{scale_in, scale_wei, scale_out};
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(
in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{bias_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d_g_n_k_wos_lengths}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 1>{{d_g_n_k_wos_strides}},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t ds_size = 3 + 1; // 3 element-wise scale multipliers + 1 element-wise add
std::size_t flop = GetFlops<NDimSpatial>(e_g_n_k_wos_lengths, b_g_k_c_xs_lengths, ds_size);
std::size_t num_btype =
conv_param.GetInputByte<InDataType>() + conv_param.GetWeightByte<WeiDataType>() +
sizeof(float) + sizeof(float) + sizeof(float) + conv_param.GetOutputByte<OutDataType>() +
conv_param.GetOutputByte<DsDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
out_host.ForEach(
[&](auto&, auto idx) { out_element_op(out_host(idx), c(idx), bias(idx)); });
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device,
out_host,
"Error: incorrect results!",
get_rtol<OutDataType>(),
get_atol<OutDataType>());
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/utility/tuple.hpp"
#include "convnd_fwd_convscale_add_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = float;
using OutDataType = ck::f8_t;
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScaleAdd;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<DsLayout>,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
ck::Tuple<DsDataType>,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convscale_add_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool run_convnd_fwd_example(int argc, char* argv[])
{
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto run =
[&](auto ndim_spatial, auto in_layout, auto wei_layout, auto ds_layout, auto out_layout) {
constexpr ck::index_t ndim_spatial_value = ndim_spatial.value;
using InLayout = decltype(in_layout);
using WeiLayout = decltype(wei_layout);
using DsLayout = decltype(ds_layout);
using OutLayout = decltype(out_layout);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_grouped_conv_fwd<ndim_spatial_value,
InDataType,
WeiDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<ndim_spatial_value,
InLayout,
WeiLayout,
DsLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op);
};
namespace ctc = ck::tensor_layout::convolution;
if(conv_param.num_dim_spatial_ == 1)
{
return run(ck::Number<1>{}, ctc::GNWC{}, ctc::GKXC{}, ctc::GNWK{}, ctc::GNWK{});
}
else if(conv_param.num_dim_spatial_ == 2)
{
return run(ck::Number<2>{}, ctc::GNHWC{}, ctc::GKYXC{}, ctc::GNHWK{}, ctc::GNHWK{});
}
else if(conv_param.num_dim_spatial_ == 3)
{
return run(ck::Number<3>{}, ctc::GNDHWC{}, ctc::GKZYXC{}, ctc::GNDHWK{}, ctc::GNDHWK{});
}
return true;
}
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_activ_xdl_convscale_relu)
add_example_executable(example_convnd_fwd_xdl_convscale_relu_fp8 convnd_fwd_xdl_convscale_relu_fp8.cpp)
add_example_dependencies(example_convnd_activ_xdl_convscale_relu example_convnd_fwd_xdl_convscale_relu_fp8 )
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ConvScaleRelu = ck::tensor_operation::element_wise::ConvScaleRelu;
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 1e-1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 1.5e-1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
if constexpr(std::is_same_v<DataType, float>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, double>)
{
return 1e-6;
}
else if constexpr(std::is_same_v<DataType, ck::half_t>)
{
return 1e-3;
}
else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
{
return 5e-2;
}
else if constexpr(std::is_same_v<DataType, int32_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, int8_t>)
{
return 1e-1;
}
else if constexpr(std::is_same_v<DataType, ck::f8_t>)
{
return 16.1; // 240 and 224 are acceptable
}
else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
{
return 8192.1; // 57344 and 49152 are acceptable
}
else
{
return 1e-3;
}
}
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths,
const std::size_t& ds_size)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return G * N * C *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
(static_cast<std::size_t>(2) * K *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) +
ds_size);
}
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename CShuffleDataType,
typename DsDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
bool run_grouped_conv_fwd(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<CShuffleDataType> c(out_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { ck::ranges::copy(x, y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// random scale values
float scale_in = float(std::rand()) / float(RAND_MAX);
float scale_wei = float(std::rand()) / float(RAND_MAX);
float scale_out = float(std::rand()) / float(RAND_MAX);
std::cout << std::endl;
std::cout << "scale_in: " << scale_in << std::endl;
std::cout << "scale_wei: " << scale_wei << std::endl;
std::cout << "scale_out: " << scale_out << std::endl;
// initialize out_element_op for each iteration
const auto out_element_op = OutElementOp{scale_in, scale_wei, scale_out};
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument = conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t ds_size = 3 + 1; // 3 element-wise scale multipliers + 1 element-wise relu
std::size_t flop = GetFlops<NDimSpatial>(e_g_n_k_wos_lengths, b_g_k_c_xs_lengths, ds_size);
std::size_t num_btype = conv_param.GetInputByte<InDataType>() +
conv_param.GetWeightByte<WeiDataType>() + sizeof(float) +
sizeof(float) + sizeof(float) + conv_param.GetOutputByte<OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
out_host.ForEach([&](auto&, auto idx) { out_element_op(out_host(idx), c(idx)); });
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device,
out_host,
"Error: incorrect results!",
get_rtol<OutDataType>(),
get_atol<OutDataType>());
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_relu_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
using InDataType = ck::f8_t;
using WeiDataType = ck::f8_t;
using AccDataType = float;
using CShuffleDataType = float;
using DsDataType = ck::Tuple<>;
using OutDataType = ck::f8_t;
using AComputeDataType = ck::f8_t;
using BComputeDataType = ck::f8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using OutElementOp = ConvScaleRelu;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename DsLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle<
NDimSpatial,
InLayout,
WeiLayout,
DsLayout,
OutLayout,
InDataType,
WeiDataType,
AccDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
1, //
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
32, // KPerBlock
8, // AK1
8, // BK1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_AK1
1, // ABlockLdsExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_BK1
1, // BBlockLdsExtraN
1,
1,
S<1, 32, 1, 8>,
8,
AComputeDataType,
BComputeDataType>;
#include "run_convnd_fwd_convscale_relu_example.inc"
int main(int argc, char* argv[]) { return run_convnd_fwd_example(argc, argv) ? 0 : 1; }
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool run_convnd_fwd_example(int argc, char* argv[])
{
print_helper_msg();
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::utils::conv::ConvParam conv_param{
2, 1, 128, 256, 192, {3, 3}, {71, 71}, {2, 2}, {1, 1}, {1, 1}, {1, 1}};
if(argc == 1)
{
// use default
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_param = ck::utils::conv::parse_conv_param(num_dim_spatial, 5, argv);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto run =
[&](auto ndim_spatial, auto in_layout, auto wei_layout, auto ds_layout, auto out_layout) {
constexpr ck::index_t ndim_spatial_value = ndim_spatial.value;
using InLayout = decltype(in_layout);
using WeiLayout = decltype(wei_layout);
using DsLayout = decltype(ds_layout);
using OutLayout = decltype(out_layout);
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(
conv_param);
const auto wei_g_k_c_xs_desc =
ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(
conv_param);
const auto out_g_n_k_wos_desc =
ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(
conv_param);
return run_grouped_conv_fwd<ndim_spatial_value,
InDataType,
WeiDataType,
CShuffleDataType,
DsDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp,
DeviceGroupedConvNDFwdInstance<ndim_spatial_value,
InLayout,
WeiLayout,
DsLayout,
OutLayout>>(
do_verification,
init_method,
time_kernel,
conv_param,
in_g_n_c_wis_desc,
wei_g_k_c_xs_desc,
out_g_n_k_wos_desc,
in_element_op,
wei_element_op);
};
namespace ctc = ck::tensor_layout::convolution;
if(conv_param.num_dim_spatial_ == 1)
{
return run(ck::Number<1>{}, ctc::GNWC{}, ctc::GKXC{}, ck::Tuple<>{}, ctc::GNWK{});
}
else if(conv_param.num_dim_spatial_ == 2)
{
return run(ck::Number<2>{}, ctc::GNHWC{}, ctc::GKYXC{}, ck::Tuple<>{}, ctc::GNHWK{});
}
else if(conv_param.num_dim_spatial_ == 3)
{
return run(ck::Number<3>{}, ctc::GNDHWC{}, ctc::GKZYXC{}, ck::Tuple<>{}, ctc::GNDHWK{});
}
return true;
}
add_example_executable(example_gemm_multiply_multiply_xdl_fp16 gemm_multiply_multiply_xdl_fp16.cpp) add_example_executable(example_gemm_multiply_multiply_xdl_fp8 gemm_multiply_multiply_xdl_fp8.cpp)
add_example_executable(example_gemm_multiply_multiply_xdl_fp8_ab_scale gemm_multiply_multiply_xdl_fp8_ab_scale.cpp)
add_example_executable(example_gemm_add_add_xdl_fp16 gemm_add_add_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle_v3.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using FP8 = ck::f8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = F16;
using B0DataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F32;
using D1DataType = F32;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using A0Layout = Row;
using B0Layout = Col;
using D0Layout = Row;
using D1Layout = Row;
using DsLayout = ck::Tuple<D0Layout, D1Layout>;
using ELayout = Row;
struct AddAdd
{
template <typename E, typename C, typename D0, typename D1>
__host__ __device__ constexpr void
operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
template <>
__host__ __device__ constexpr void operator()<ck::half_t, float, float, float>(
ck::half_t& e, const float& c, const float& d0, const float& d1) const
{
const float x0_f = c + d0 + d1;
e = ck::type_convert<ck::half_t>(x0_f);
}
};
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAdd;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultiD_Xdl_CShuffle_V3
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| DsData| EData| AccData| CShuffle| A| B| CDE| GEMM| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | S<C, D0, D1>|
///###### RCR
< Row, Col, DsLayout, ELayout, A0DataType, B0DataType, DsDataType, EDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 256, 256, 128, 128, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, 1, 1, S<1, 32, 1, 8>, S<8, 8, 8>, ck::BlockGemmPipelineScheduler::Interwave, ck::BlockGemmPipelineVersion::v1, FP8>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideD = K;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-2, 2});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{0, 2});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{0, 2});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{0, 2});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpaceSize());
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data());
d1_device_buf.ToDevice(d1_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumDTensor = DsDataType::Size();
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a0_device_buf.GetDeviceBuffer(),
b0_device_buf.GetDeviceBuffer(),
std::array<const void*, NumDTensor>{d0_device_buf.GetDeviceBuffer(),
d1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, NumDTensor>{StrideD, StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel, 20, 50});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B0DataType,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a0_m_k, b0_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream> #include <iostream>
#include <numeric> #include <numeric>
......
...@@ -67,7 +67,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME) ...@@ -67,7 +67,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
endforeach() endforeach()
#Do not build any WMMA examples if gfx11 targets are not on the list #Do not build any WMMA examples if gfx11 targets are not on the list
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma") if(NOT EX_TARGETS MATCHES "gfx11" AND NOT EX_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
message("removing wmma example ${source} ") message("removing wmma example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
...@@ -154,7 +154,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME) ...@@ -154,7 +154,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
endforeach() endforeach()
#Do not build any WMMA examples if gfx11 targets are not on the list #Do not build any WMMA examples if gfx11 targets are not on the list
foreach(source IN LISTS FILE_NAME) foreach(source IN LISTS FILE_NAME)
if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma") if(NOT EX_TARGETS MATCHES "gfx11" AND NOT EX_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
message("removing wmma example ${source} ") message("removing wmma example ${source} ")
list(REMOVE_ITEM FILE_NAME "${source}") list(REMOVE_ITEM FILE_NAME "${source}")
endif() endif()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment