Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
32806d5f
"vscode:/vscode.git/clone" did not exist on "c61396845bbb43470e5ff12a3a3433b210027aa0"
Commit
32806d5f
authored
Dec 27, 2023
by
Jun Liu
Browse files
Merge branch 'amd-develop' into amd-master
parents
e70a4d19
d0f355a3
Changes
138
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
867 additions
and
201 deletions
+867
-201
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+9
-9
docs/wrapper.rst
docs/wrapper.rst
+73
-0
example/44_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
...4_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
+6
-5
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
...4_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
+3
-1
example/53_layernorm2d_bwd/CMakeLists.txt
example/53_layernorm2d_bwd/CMakeLists.txt
+1
-0
example/53_layernorm2d_bwd/layernorm2d_bwd_fp32.cpp
example/53_layernorm2d_bwd/layernorm2d_bwd_fp32.cpp
+80
-17
example/53_layernorm_bwd/CMakeLists.txt
example/53_layernorm_bwd/CMakeLists.txt
+0
-1
example/54_groupnorm_bwd/CMakeLists.txt
example/54_groupnorm_bwd/CMakeLists.txt
+1
-1
example/54_groupnorm_bwd/groupnorm_bwd_fp32.cpp
example/54_groupnorm_bwd/groupnorm_bwd_fp32.cpp
+87
-14
example/62_conv_fwd_activ/CMakeLists.txt
example/62_conv_fwd_activ/CMakeLists.txt
+2
-0
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
...nvnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
+294
-0
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
+1
-1
example/64_tensor_transforms/CMakeLists.txt
example/64_tensor_transforms/CMakeLists.txt
+0
-2
include/ck/host_utility/device_prop.hpp
include/ck/host_utility/device_prop.hpp
+1
-1
include/ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp
...or_operation/gpu/device/device_normalization_bwd_data.hpp
+59
-0
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
...ice/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
+69
-66
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
...evice/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
+66
-77
include/ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp
...or_operation/gpu/device/impl/device_contraction_utils.hpp
+87
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
...mpl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
+27
-5
No files found.
docs/sphinx/requirements.in
View file @
32806d5f
rocm-docs-core
>
=0.
2
0.
0
rocm-docs-core
=
=0.
3
0.
2
sphinxcontrib-bibtex==2.6.1
sphinxcontrib-bibtex==2.6.1
docs/sphinx/requirements.txt
View file @
32806d5f
...
@@ -16,7 +16,7 @@ beautifulsoup4==4.11.2
...
@@ -16,7 +16,7 @@ beautifulsoup4==4.11.2
# via pydata-sphinx-theme
# via pydata-sphinx-theme
breathe==4.34.0
breathe==4.34.0
# via rocm-docs-core
# via rocm-docs-core
certifi==202
2.12.7
certifi==202
3.7.22
# via requests
# via requests
cffi==1.15.1
cffi==1.15.1
# via
# via
...
@@ -26,7 +26,7 @@ charset-normalizer==3.1.0
...
@@ -26,7 +26,7 @@ charset-normalizer==3.1.0
# via requests
# via requests
click==8.1.3
click==8.1.3
# via sphinx-external-toc
# via sphinx-external-toc
cryptography==4
0
.0.
2
cryptography==4
1
.0.
6
# via pyjwt
# via pyjwt
deprecated==1.2.13
deprecated==1.2.13
# via pygithub
# via pygithub
...
@@ -42,7 +42,7 @@ fastjsonschema==2.18.0
...
@@ -42,7 +42,7 @@ fastjsonschema==2.18.0
# via rocm-docs-core
# via rocm-docs-core
gitdb==4.0.10
gitdb==4.0.10
# via gitpython
# via gitpython
gitpython==3.1.3
5
gitpython==3.1.3
7
# via rocm-docs-core
# via rocm-docs-core
idna==3.4
idna==3.4
# via requests
# via requests
...
@@ -88,9 +88,9 @@ pydata-sphinx-theme==0.13.3
...
@@ -88,9 +88,9 @@ pydata-sphinx-theme==0.13.3
# via
# via
# rocm-docs-core
# rocm-docs-core
# sphinx-book-theme
# sphinx-book-theme
pygithub==1.58.
2
pygithub==1.58.
1
# via rocm-docs-core
# via rocm-docs-core
pygments==2.1
4
.0
pygments==2.1
5
.0
# via
# via
# accessible-pygments
# accessible-pygments
# pydata-sphinx-theme
# pydata-sphinx-theme
...
@@ -109,11 +109,11 @@ pyyaml==6.0
...
@@ -109,11 +109,11 @@ pyyaml==6.0
# pybtex
# pybtex
# rocm-docs-core
# rocm-docs-core
# sphinx-external-toc
# sphinx-external-toc
requests==2.
28.2
requests==2.
31.0
# via
# via
# pygithub
# pygithub
# sphinx
# sphinx
rocm-docs-core==0.
27.0
rocm-docs-core==0.
30.2
# via -r requirements.in
# via -r requirements.in
six==1.16.0
six==1.16.0
# via
# via
...
@@ -141,7 +141,7 @@ sphinx-book-theme==1.0.1
...
@@ -141,7 +141,7 @@ sphinx-book-theme==1.0.1
# via rocm-docs-core
# via rocm-docs-core
sphinx-copybutton==0.5.1
sphinx-copybutton==0.5.1
# via rocm-docs-core
# via rocm-docs-core
sphinx-design==0.
3.0
sphinx-design==0.
4.1
# via rocm-docs-core
# via rocm-docs-core
sphinx-external-toc==0.3.1
sphinx-external-toc==0.3.1
# via rocm-docs-core
# via rocm-docs-core
...
@@ -163,7 +163,7 @@ sphinxcontrib-serializinghtml==1.1.5
...
@@ -163,7 +163,7 @@ sphinxcontrib-serializinghtml==1.1.5
# via sphinx
# via sphinx
typing-extensions==4.5.0
typing-extensions==4.5.0
# via pydata-sphinx-theme
# via pydata-sphinx-theme
urllib3==1.26.1
5
urllib3==1.26.1
8
# via requests
# via requests
wrapt==1.15.0
wrapt==1.15.0
# via deprecated
# via deprecated
...
...
docs/wrapper.rst
0 → 100644
View file @
32806d5f
===============
Wrapper
===============
-------------------------------------
Description
-------------------------------------
.. note::
The wrapper is under development and its functionality is limited.
CK provides a lightweight wrapper for more complex operations implemented in
the library. It allows indexing of nested layouts using a simple interface
(avoiding complex descriptor transformations) and memory access (using Tensor).
Example:
.. code-block:: c
const auto shape_4x2x4 = ck::make_tuple(4, ck::make_tuple(2, 4));
const auto strides_s2x1x8 = ck::make_tuple(2, ck::make_tuple(1, 8));
const auto layout = ck::wrapper::make_layout(shape_4x2x4, strides_s2x1x8);
std::array<ck::index_t, 32> data;
auto tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Generic>(&data[0], layout);
for(ck::index_t w = 0; w < size(tensor); w++) {
tensor(w) = w;
}
// slice() == slice(0, -1) (whole dimension)
auto tensor_slice = tensor(ck::wrapper::slice(1, 3), ck::make_tuple(ck::wrapper::slice(), ck::wrapper::slice()));
std::cout << "dims:2,(2,4) strides:2,(1,8)" << std::endl;
for(ck::index_t h = 0; h < ck::wrapper::size<0>(tensor_slice); h++)
{
for(ck::index_t w = 0; w < ck::wrapper::size<1>(tensor_slice); w++)
{
std::cout << tensor_slice(h, w) << " ";
}
std::cout << std::endl;
}
Output::
dims:2,(2,4) strides:2,(1,8)
1 5 9 13 17 21 25 29
2 6 10 14 18 22 26 30
-------------------------------------
Layout
-------------------------------------
.. doxygenstruct:: ck::wrapper::Layout
-------------------------------------
Layout helpers
-------------------------------------
.. doxygenfile:: layout_utils.hpp
-------------------------------------
Tensor
-------------------------------------
.. doxygenstruct:: ck::wrapper::Tensor
-------------------------------------
Tensor helpers
-------------------------------------
.. doxygenfile:: tensor_utils.hpp
example/44_elementwise_permute/elementwise_permute_4D_fp16_col.cpp
View file @
32806d5f
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include <random>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
...
@@ -48,10 +49,8 @@ void host_elementwise4D(HostTensorB& B_nhwc,
...
@@ -48,10 +49,8 @@ void host_elementwise4D(HostTensorB& B_nhwc,
for
(
std
::
size_t
n
=
0
;
n
<
N
;
++
n
)
for
(
std
::
size_t
n
=
0
;
n
<
N
;
++
n
)
{
{
ADataType
tmp_val
;
ADataType
tmp_val
;
// auto a_val = A_nchw(n, c, h, w);
auto
a_val
=
A_nchw
.
mData
[(
n
)
+
(
c
*
N
)
+
(
h
*
C
*
N
)
+
(
w
*
H
*
C
*
N
)];
auto
a_val
=
A_nchw
.
mData
[(
n
)
+
(
c
*
N
)
+
(
h
*
C
*
N
)
+
(
w
*
H
*
C
*
N
)];
functor_b
(
tmp_val
,
a_val
);
functor_b
(
tmp_val
,
a_val
);
// functor_a(B_nhwc(n, h, w, c), scale * tmp_val);
functor_a
(
B_nhwc
.
mData
[(
n
)
+
(
c
*
W
*
H
*
N
)
+
(
h
*
N
)
+
(
w
*
H
*
N
)],
functor_a
(
B_nhwc
.
mData
[(
n
)
+
(
c
*
W
*
H
*
N
)
+
(
h
*
N
)
+
(
w
*
H
*
N
)],
scale
*
tmp_val
);
scale
*
tmp_val
);
}
}
...
@@ -62,12 +61,14 @@ int main()
...
@@ -62,12 +61,14 @@ int main()
bool
do_verification
=
true
;
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
nchw
=
{
4
,
2
,
1
,
8
};
std
::
vector
<
std
::
size_t
>
nchw
=
{
16
,
8
,
32
,
64
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
4
,
1
,
8
,
2
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
16
,
32
,
64
,
8
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
Tensor
<
BDataType
>
b
(
nhwc
);
float
scale
=
1.
f
;
float
scale
=
1.
f
;
auto
i
=
0
;
auto
i
=
0
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
1
);
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
...
@@ -75,7 +76,7 @@ int main()
...
@@ -75,7 +76,7 @@ int main()
{
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
++
;
i
=
dis
(
gen
)
;
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
...
...
example/44_elementwise_permute/elementwise_permute_4D_fp32_col.cpp
View file @
32806d5f
...
@@ -67,6 +67,8 @@ int main()
...
@@ -67,6 +67,8 @@ int main()
float
scale
=
1.
f
;
float
scale
=
1.
f
;
auto
i
=
0
;
auto
i
=
0
;
std
::
mt19937
gen
(
11939
);
std
::
uniform_int_distribution
<
int
>
dis
(
0
,
1
);
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
w
=
0
;
w
<
a
.
mDesc
.
GetLengths
()[
3
];
++
w
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
h
=
0
;
h
<
a
.
mDesc
.
GetLengths
()[
2
];
++
h
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
for
(
std
::
size_t
c
=
0
;
c
<
a
.
mDesc
.
GetLengths
()[
1
];
++
c
)
...
@@ -74,7 +76,7 @@ int main()
...
@@ -74,7 +76,7 @@ int main()
{
{
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
a
.
mData
[(
n
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
(
c
*
nchw
[
2
]
*
nchw
[
3
])
+
(
h
*
nchw
[
3
])
+
w
]
=
i
;
(
h
*
nchw
[
3
])
+
w
]
=
i
;
i
++
;
i
=
dis
(
gen
)
;
}
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
...
...
example/53_layernorm2d_bwd/CMakeLists.txt
0 → 100644
View file @
32806d5f
add_example_executable
(
example_layernorm2d_bwd_fp32 layernorm2d_bwd_fp32.cpp
)
example/53_layernorm_bwd/layernorm2d_bwd_fp
16
.cpp
→
example/53_layernorm
2d
_bwd/layernorm2d_bwd_fp
32
.cpp
View file @
32806d5f
...
@@ -15,16 +15,17 @@
...
@@ -15,16 +15,17 @@
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
using
DYDataType
=
ck
::
half_
t
;
using
DYDataType
=
floa
t
;
using
XDataType
=
ck
::
half_
t
;
using
XDataType
=
floa
t
;
using
GammaDataType
=
ck
::
half_
t
;
using
GammaDataType
=
floa
t
;
using
MeanInvStdDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
ck
::
half_
t
;
using
DGammaDataType
=
floa
t
;
using
DBetaDataType
=
ck
::
half_
t
;
using
DBetaDataType
=
floa
t
;
using
DXDataType
=
ck
::
half_
t
;
using
DXDataType
=
floa
t
;
using
ComputeDataType
=
float
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
2
;
constexpr
int
Rank
=
2
;
...
@@ -39,6 +40,7 @@ constexpr int NumReduceDim = 1;
...
@@ -39,6 +40,7 @@ constexpr int NumReduceDim = 1;
// inv_std: [M, 1]
// inv_std: [M, 1]
// Output shape
// Output shape
// dx: [M, N]
// dgamma: [1, N]
// dgamma: [1, N]
// dbeta: [1, N]
// dbeta: [1, N]
...
@@ -46,8 +48,34 @@ constexpr int NumReduceDim = 1;
...
@@ -46,8 +48,34 @@ constexpr int NumReduceDim = 1;
// dbeta = reduce_sum(dy, axis=0)
// dbeta = reduce_sum(dy, axis=0)
// [CAUSION]
// [CAUSION]
// In DeviceNormalizationBwdGammaBetaImpl, M is invarient dimension, K is reduced dimension
// In DeviceNormalizationBwdDataImpl & DeviceNormalizationBwdGammaBetaImpl, M is Invariant
// Hence, M in this example and DeviceNormalizationBwdGammaBetaImpl is different
// dimension, K is reduced dimension Hence, M in this example and
// DeviceNormalizationBwdGammaBetaImpl is different
using
XDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdDataImpl
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// MThreadClusterSize
32
,
// KThreadClusterSize
1
,
// MThreadSliceSize
4
,
// KThreadSliceSize
true
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
true
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
true
,
// IsGammaFastestDimReduced
4
,
// GammaSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
true
,
// IsDXFastestDimReduced
4
>
;
// DXDstVectorSize
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
using
GammaBetaDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdGammaBetaImpl
<
DYDataType
,
DYDataType
,
XDataType
,
XDataType
,
...
@@ -58,18 +86,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
...
@@ -58,18 +86,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
256
,
// BlockSize
256
,
// BlockSize
8
,
//
ClusterInvarient
8
,
//
MThreadClusterSize
32
,
// Cluster
Reduc
e
32
,
//
KThread
Cluster
Siz
e
8
,
//
SliceInvarient
4
,
//
MThreadSliceSize
1
,
//
SliceReduc
e
1
,
//
KThreadSliceSiz
e
false
,
// IsDYFastestDimReduced
false
,
// IsDYFastestDimReduced
8
,
// DYSrcVectorSize
4
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
false
,
// IsXFastestDimReduced
8
,
// XSrcVectorSize
4
,
// XSrcVectorSize
true
,
// IsMeanInvStdFastestDimReduced
true
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
1
,
// MeanInvStdSrcVectorSize
1
,
// DGammaDstVectorSize
4
,
// DGammaDstVectorSize
1
>
;
// DBetaDstVectorSize
4
>
;
// DBetaDstVectorSize
int
main
()
int
main
()
{
{
...
@@ -96,16 +124,48 @@ int main()
...
@@ -96,16 +124,48 @@ int main()
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
// backward x
auto
x_device_instance
=
XDeviceInstance
{};
auto
x_argument_ptr
=
x_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// lengths
{
N
,
1
},
// dyStrides
{
N
,
1
},
// xStrides
{
0
,
1
},
// gammaStrides
{
1
,
0
},
// meanStrides
{
1
,
0
},
// invStdStrides
{
N
,
1
},
// dxStrides
{
1
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
!
x_device_instance
.
IsSupportedArgument
(
x_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
x_invoker_ptr
=
x_device_instance
.
MakeInvokerPointer
();
x_invoker_ptr
->
Run
(
x_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// backward gamma & beta
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
auto
gamma_beta_argument_ptr
=
gamma_beta_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// inLengths
gamma_beta_device_instance
.
MakeArgumentPointer
({
M
,
N
},
// inLengths
...
@@ -126,7 +186,8 @@ int main()
...
@@ -126,7 +186,8 @@ int main()
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
return
1
;
};
};
...
@@ -156,9 +217,11 @@ int main()
...
@@ -156,9 +217,11 @@ int main()
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dx
,
host_dx
,
"Error: Incorrect dx"
,
1e-3
,
1e-3
);
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
example/53_layernorm_bwd/CMakeLists.txt
deleted
100644 → 0
View file @
e70a4d19
add_example_executable
(
example_layernorm2d_bwd_fp16 layernorm2d_bwd_fp16.cpp
)
example/54_groupnorm_bwd/CMakeLists.txt
View file @
32806d5f
add_example_executable
(
example_groupnorm_bwd_fp
16
groupnorm_bwd_fp
16
.cpp
)
add_example_executable
(
example_groupnorm_bwd_fp
32
groupnorm_bwd_fp
32
.cpp
)
example/54_groupnorm_bwd/groupnorm_bwd_fp
16
.cpp
→
example/54_groupnorm_bwd/groupnorm_bwd_fp
32
.cpp
View file @
32806d5f
...
@@ -15,23 +15,58 @@
...
@@ -15,23 +15,58 @@
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_data_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_normalization_bwd_gamma_beta_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
using
DYDataType
=
ck
::
half_
t
;
using
DYDataType
=
floa
t
;
using
XDataType
=
ck
::
half_
t
;
using
XDataType
=
floa
t
;
using
GammaDataType
=
ck
::
half_
t
;
using
GammaDataType
=
floa
t
;
using
MeanInvStdDataType
=
float
;
using
MeanInvStdDataType
=
float
;
using
DGammaDataType
=
ck
::
half_
t
;
using
DGammaDataType
=
floa
t
;
using
DBetaDataType
=
ck
::
half_
t
;
using
DBetaDataType
=
floa
t
;
using
DXDataType
=
ck
::
half_
t
;
using
DXDataType
=
floa
t
;
using
ComputeDataType
=
float
;
using
ComputeDataType
=
float
;
constexpr
int
Rank
=
5
;
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
constexpr
int
NumReduceDim
=
3
;
// Grouprnorm
// Grouprnorm
// kernel: M , K
// kernel 1: M , K
// dy: N, H, W, G, C -> N * G, H * W * C
// x: N, H, W, G, C -> N * G, H * W * C
// gamma: 1, 1, 1, G, C -> 1 * G, 1 * 1 * C
// mean: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// rstd: N, 1, 1, G, 1 -> N * G, 1 * 1 * 1
// dx: N, H, W, G, C -> N * G, H * W * C
using
XDeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationBwdDataImpl
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
ComputeDataType
,
DXDataType
,
Rank
,
NumReduceDim
,
256
,
// BlockSize
8
,
// MThreadClusterSize
32
,
// KThreadClusterSize
1
,
// MThreadSliceSize
4
,
// KThreadSliceSize
true
,
// IsDYFastestDimReduced
4
,
// DYSrcVectorSize
true
,
// IsXFastestDimReduced
4
,
// XSrcVectorSize
true
,
// IsGammaFastestDimReduced
4
,
// GammaSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
true
,
// IsDXFastestDimReduced
4
>
;
// DXDstVectorSize
// kernel 2: M , K
// dy: N, H, W, G, C -> G * C, N * H * W
// dy: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// x: N, H, W, G, C -> G * C, N * H * W
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
// mean: N, 1, 1, G, 1 -> G * 1, N * 1 * 1
...
@@ -52,18 +87,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
...
@@ -52,18 +87,18 @@ using GammaBetaDeviceInstance = ck::tensor_operation::device::DeviceNormalizatio
Rank
,
Rank
,
NumReduceDim
,
NumReduceDim
,
256
,
// BlockSize
256
,
// BlockSize
8
,
// ClusterInvari
e
nt
8
,
// ClusterInvari
a
nt
32
,
// ClusterReduce
32
,
// ClusterReduce
8
,
// SliceInvari
e
nt
4
,
// SliceInvari
a
nt
1
,
// SliceReduce
1
,
// SliceReduce
false
,
// IsDYFastestDimReduced
false
,
// IsDYFastestDimReduced
8
,
// DYSrcVectorSize
4
,
// DYSrcVectorSize
false
,
// IsXFastestDimReduced
false
,
// IsXFastestDimReduced
8
,
// XSrcVectorSize
4
,
// XSrcVectorSize
false
,
// IsMeanInvStdFastestDimReduced
false
,
// IsMeanInvStdFastestDimReduced
1
,
// MeanInvStdSrcVectorSize
1
,
// MeanInvStdSrcVectorSize
1
,
// DGammaDstVectorSize
4
,
// DGammaDstVectorSize
1
>
;
// DBetaDstVectorSize
4
>
;
// DBetaDstVectorSize
int
main
()
int
main
()
{
{
...
@@ -93,20 +128,55 @@ int main()
...
@@ -93,20 +128,55 @@ int main()
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
DYDataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
XDataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
mean_dev
(
sizeof
(
MeanInvStdDataType
)
*
mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
inv_std_dev
(
sizeof
(
MeanInvStdDataType
)
*
inv_std
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
DXDataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dgamma_dev
(
sizeof
(
DGammaDataType
)
*
dgamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbeta_dev
(
sizeof
(
DBetaDataType
)
*
dbeta
.
mDesc
.
GetElementSpaceSize
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
dy_dev
.
ToDevice
(
dy
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
mean_dev
.
ToDevice
(
mean
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
inv_std_dev
.
ToDevice
(
inv_std
.
mData
.
data
());
std
::
vector
<
ck
::
index_t
>
dyStrides
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
dyStrides
{
dy
.
mDesc
.
GetStrides
().
begin
(),
dy
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
xStrides
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
xStrides
{
x
.
mDesc
.
GetStrides
().
begin
(),
x
.
mDesc
.
GetStrides
().
end
()};
std
::
vector
<
ck
::
index_t
>
gammaStrides
=
{
0
,
0
,
0
,
C
,
1
};
std
::
vector
<
ck
::
index_t
>
meanStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
meanStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
invStdStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
invStdStrides
=
{
G
,
0
,
0
,
1
,
0
};
std
::
vector
<
ck
::
index_t
>
dxStrides
{
dx
.
mDesc
.
GetStrides
().
begin
(),
dx
.
mDesc
.
GetStrides
().
end
()};
// backward x
auto
x_device_instance
=
XDeviceInstance
{};
auto
x_argument_ptr
=
x_device_instance
.
MakeArgumentPointer
({
N
,
H
,
W
,
G
,
C
},
// lengths
dyStrides
,
// dyStrides
xStrides
,
// xStrides
gammaStrides
,
// gammaStrides
meanStrides
,
// meanStrides
invStdStrides
,
// invStdStrides
dxStrides
,
// dxStrides
{
1
,
2
,
4
},
// reduceDims
dy_dev
.
GetDeviceBuffer
(),
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
mean_dev
.
GetDeviceBuffer
(),
inv_std_dev
.
GetDeviceBuffer
(),
dx_dev
.
GetDeviceBuffer
());
if
(
!
x_device_instance
.
IsSupportedArgument
(
x_argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
};
auto
x_invoker_ptr
=
x_device_instance
.
MakeInvokerPointer
();
x_invoker_ptr
->
Run
(
x_argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
// backward gamma & beta
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_device_instance
=
GammaBetaDeviceInstance
{};
auto
gamma_beta_argument_ptr
=
auto
gamma_beta_argument_ptr
=
...
@@ -128,7 +198,8 @@ int main()
...
@@ -128,7 +198,8 @@ int main()
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
if
(
!
gamma_beta_device_instance
.
IsSupportedArgument
(
gamma_beta_argument_ptr
.
get
()))
{
{
std
::
cout
<<
"The runtime parameters are not supported"
<<
std
::
endl
;
std
::
cout
<<
"The runtime parameters are not supported."
<<
__FILE__
<<
":"
<<
__LINE__
<<
std
::
endl
;
return
1
;
return
1
;
};
};
...
@@ -158,9 +229,11 @@ int main()
...
@@ -158,9 +229,11 @@ int main()
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dgamma_dev
.
FromDevice
(
dgamma
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dbeta_dev
.
FromDevice
(
dbeta
.
mData
.
data
());
dx_dev
.
FromDevice
(
dx
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dgamma
,
host_dgamma
,
"Error: Incorrect dgamma"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dbeta
,
host_dbeta
,
"Error: Incorrect dbeta"
,
1e-3
,
1e-3
);
pass
&=
ck
::
utils
::
check_err
(
dx
,
host_dx
,
"Error: Incorrect dx"
,
1e-3
,
1e-3
);
}
}
return
(
pass
?
0
:
1
);
return
(
pass
?
0
:
1
);
...
...
example/62_conv_fwd_activ/CMakeLists.txt
View file @
32806d5f
...
@@ -42,6 +42,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -42,6 +42,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
# ScaleAdd ScaleAdd Relu
# ScaleAdd ScaleAdd Relu
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_fp16
)
add_example_executable
(
example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16 convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
)
add_example_dependencies
(
example_convnd_fwd_activ_xdl example_convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16
)
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
example/62_conv_fwd_activ/convnd_fwd_xdl_scaleadd_scaleadd_relu_bcasted_bias_fp16.cpp
0 → 100644
View file @
32806d5f
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
constexpr
ck
::
index_t
NDimSpatial
=
3
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAddScaleAddRelu
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
typename
OutElementOp
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
,
BiasLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
OutDataType
,
OutDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
using
DeviceGroupedConvNDFwdActivInstance
=
DeviceGroupedConvNDFwdInstance
<
OutElementOp
>
;
namespace
{
// Use custom implementation to pass two more tensors for post op
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
constexpr
ck
::
index_t
NumDs
=
2
;
const
ck
::
index_t
G
=
out_g_n_k_wos_desc
.
GetLengths
()[
0
];
const
ck
::
index_t
K
=
out_g_n_k_wos_desc
.
GetLengths
()[
2
];
// Logical broadcast bias (we have to pass bias lengths in the same format as output - GNKDHW)
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
bias_g_k_lengths
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
bias_g_k_strides
;
// Fill other lenghts than G,K with 1 and strides with 0
bias_g_k_lengths
.
fill
(
1
);
bias_g_k_strides
.
fill
(
0
);
bias_g_k_lengths
[
0
]
=
G
;
bias_g_k_lengths
[
2
]
=
K
;
bias_g_k_strides
[
0
]
=
K
;
// stride to G
bias_g_k_strides
[
2
]
=
1
;
// stride to K
const
auto
broadcasted_bias_desc
=
HostTensorDescriptor
(
bias_g_k_lengths
,
bias_g_k_strides
);
// y = relu ( alpha1 * conv(x) + alpha2 * z + bias )
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
array
<
Tensor
<
OutDataType
>
,
NumDs
>
d_tensors
=
{
Tensor
<
OutDataType
>
(
out_g_n_k_wos_desc
),
Tensor
<
OutDataType
>
(
broadcasted_bias_desc
)};
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"z_tensor: "
<<
d_tensors
[
0
].
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_tensor: "
<<
d_tensors
[
1
].
mDesc
<<
std
::
endl
;
// Make sure that we allocated only G * K values for bias
assert
(
static_cast
<
ck
::
index_t
>
(
d_tensors
[
1
].
mData
.
size
())
==
G
*
K
);
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
2
});
d_tensors
[
0
].
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
d_tensors
[
1
].
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
1.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.05
,
0.05
});
d_tensors
[
0
].
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.05
,
0.05
});
d_tensors
[
1
].
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.05
,
0.05
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
z_buf
(
sizeof
(
OutDataType
)
*
d_tensors
[
0
].
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_buf
(
sizeof
(
OutDataType
)
*
d_tensors
[
1
].
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
z_buf
.
ToDevice
(
d_tensors
[
0
].
mData
.
data
());
bias_buf
.
ToDevice
(
d_tensors
[
1
].
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
const
std
::
array
<
const
void
*
,
NumDs
>
ds
=
{
z_buf
.
GetDeviceBuffer
(),
bias_buf
.
GetDeviceBuffer
()};
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
ds
,
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
NumDs
>
{
e_g_n_k_wos_lengths
,
bias_g_k_lengths
},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
NumDs
>
{
e_g_n_k_wos_strides
,
bias_g_k_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"The device op with the specified compilation parameters does "
"not support this convolution problem."
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
()
+
G
*
K
+
conv_param
.
GetOutputByte
<
OutDataType
>
()
/
sizeof
(
OutDataType
);
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
()
+
G
*
K
*
sizeof
(
OutDataType
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
0
,
/*Num A Elementwise Tensors*/
0
,
/*Num B Elementwise Tensors*/
NumDs
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
,
{},
{},
d_tensors
);
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
);
}
return
true
;
}
}
// namespace
#include "run_convnd_fwd_activ_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_convnd_fwd_example
(
argc
,
argv
);
}
example/62_conv_fwd_activ/run_convnd_fwd_activ_example.inc
View file @
32806d5f
...
@@ -24,7 +24,7 @@ bool run_convnd_fwd_example(int argc, char* argv[])
...
@@ -24,7 +24,7 @@ bool run_convnd_fwd_example(int argc, char* argv[])
// Following shapes are selected to avoid overflow. Expect inf in case of
// Following shapes are selected to avoid overflow. Expect inf in case of
// size increase for some elementwise ops.
// size increase for some elementwise ops.
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ck
::
utils
::
conv
::
ConvParam
conv_param
{
3
,
1
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
3
,
2
,
16
,
128
,
8
,
{
3
,
3
,
3
},
{
17
,
17
,
17
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}};
if
(
argc
==
1
)
if
(
argc
==
1
)
{
{
...
...
example/64_tensor_transforms/CMakeLists.txt
deleted
100644 → 0
View file @
e70a4d19
add_example_executable
(
example_tensor_transform tensor_transform.cpp
)
add_example_executable
(
example_tensor_transform_using_wrapper tensor_transform_using_wrapper.cpp
)
include/ck/host_utility/device_prop.hpp
View file @
32806d5f
...
@@ -26,7 +26,7 @@ inline std::string get_device_name()
...
@@ -26,7 +26,7 @@ inline std::string get_device_name()
}
}
const
std
::
string
raw_name
(
props
.
gcnArchName
);
const
std
::
string
raw_name
(
props
.
gcnArchName
);
// https://github.com/ROCm
SoftwarePlatform
/MIOpen/blob/8498875aef84878e04c1eabefdf6571514891086/src/target_properties.cpp#L40
// https://github.com/ROCm/MIOpen/blob/8498875aef84878e04c1eabefdf6571514891086/src/target_properties.cpp#L40
static
std
::
map
<
std
::
string
,
std
::
string
>
device_name_map
=
{
static
std
::
map
<
std
::
string
,
std
::
string
>
device_name_map
=
{
{
"Ellesmere"
,
"gfx803"
},
{
"Ellesmere"
,
"gfx803"
},
{
"Baffin"
,
"gfx803"
},
{
"Baffin"
,
"gfx803"
},
...
...
include/ck/tensor_operation/gpu/device/device_normalization_bwd_data.hpp
0 → 100644
View file @
32806d5f
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DXDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceNormalizationBwdData
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
index_t
>
lengths
,
const
std
::
vector
<
index_t
>
dyStrides
,
const
std
::
vector
<
index_t
>
xStrides
,
const
std
::
vector
<
index_t
>
gammaStrides
,
const
std
::
vector
<
index_t
>
meanStrides
,
const
std
::
vector
<
index_t
>
invStdStrides
,
const
std
::
vector
<
index_t
>
dxStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
const
void
*
p_dy
,
const
void
*
p_x
,
const
void
*
p_gamma
,
const
void
*
p_mean
,
const
void
*
p_invStd
,
void
*
p_dx
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DXDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceNormalizationBwdDataPtr
=
std
::
unique_ptr
<
DeviceNormalizationBwdData
<
DYDataType
,
XDataType
,
GammaDataType
,
MeanInvStdDataType
,
DXDataType
,
Rank
,
NumReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp
View file @
32806d5f
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
@@ -500,22 +501,29 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
...
@@ -500,22 +501,29 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// for sanity check of vector memory access
// for sanity check of vector memory access
for
(
index_t
i
=
0
;
i
<
NumATensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumATensor
;
++
i
)
{
{
a_mz_stride_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
-
1
];
as_mz_consecutive_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
-
1
]
==
1
;
a_kz_stride_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
+
NumDimK
-
1
];
as_kz_consecutive_
[
i
]
=
a_ms_ks_strides
[
i
][
NumDimM
+
NumDimK
-
1
]
==
1
;
as_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimM
,
NumDimK
>
(
a_ms_ks_lengths
[
i
],
a_ms_ks_strides
[
i
]);
}
}
for
(
index_t
i
=
0
;
i
<
NumBTensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumBTensor
;
++
i
)
{
{
b_nz_stride_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
-
1
];
bs_nz_consecutive_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
-
1
]
==
1
;
b_kz_stride_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
+
NumDimK
-
1
];
bs_kz_consecutive_
[
i
]
=
b_ns_ks_strides
[
i
][
NumDimN
+
NumDimK
-
1
]
==
1
;
bs_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimN
,
NumDimK
>
(
b_ns_ks_lengths
[
i
],
b_ns_ks_strides
[
i
]);
}
}
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
{
ds_nz_stride_
[
i
]
=
d_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
];
ds_nz_consecutive_
[
i
]
=
d_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
]
==
1
;
ds_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
d_ms_ns_lengths
[
i
],
d_ms_ns_strides
[
i
]);
}
}
e_nz_stride_
=
e_ms_ns_stride
[
NumDimM
+
NumDimN
-
1
];
e_nz_consecutive_
=
e_ms_ns_stride
[
NumDimM
+
NumDimN
-
1
]
==
1
;
e_max_write_elems_
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
e_ms_ns_length
,
e_ms_ns_stride
);
}
}
// pointers
// pointers
...
@@ -545,16 +553,19 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
...
@@ -545,16 +553,19 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
BElementwiseOperation
b_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// for sanity check of vector load/store
// in the memory or not.
std
::
array
<
index_t
,
NumATensor
>
a_mz_stride_
;
std
::
array
<
bool
,
NumATensor
>
as_mz_consecutive_
;
std
::
array
<
index_t
,
NumATensor
>
a_kz_stride_
;
std
::
array
<
bool
,
NumATensor
>
as_kz_consecutive_
;
std
::
array
<
bool
,
NumBTensor
>
bs_nz_consecutive_
;
std
::
array
<
index_t
,
NumBTensor
>
b_nz_stride_
;
std
::
array
<
bool
,
NumBTensor
>
bs_kz_consecutive_
;
std
::
array
<
index_t
,
NumBTensor
>
b_kz_stride_
;
std
::
array
<
bool
,
NumDTensor
>
ds_nz_consecutive_
;
bool
e_nz_consecutive_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride_
;
index_t
e_nz_stride_
;
std
::
array
<
index_t
,
NumATensor
>
as_max_read_elems_
;
std
::
array
<
index_t
,
NumBTensor
>
bs_max_read_elems_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_max_read_elems_
;
index_t
e_max_write_elems_
;
};
};
// Invoker
// Invoker
...
@@ -643,73 +654,65 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
...
@@ -643,73 +654,65 @@ struct DeviceContractionMultipleABD_Xdl_CShuffle
// check vector load/store
// check vector load/store
{
{
bool
all_valid
=
true
;
bool
valid_as_access
=
true
;
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
// vector memory access of A: could be on M or AK1 dimension
const
bool
valid_a_vector_size
=
if
constexpr
(
ABlockTransferSrcVectorDim
==
1
)
arg
.
as_max_read_elems_
[
i
]
%
ABlockTransferSrcScalarPerVector
==
0
;
{
const
bool
valid_a_access_dim_m
=
if
(
!
(
arg
.
a_mz_stride_
[
i
]
==
1
&&
arg
.
as_grid_desc_ak0_m_ak1_
[
i
].
GetLength
(
I1
)
%
ABlockTransferSrcVectorDim
==
1
&&
arg
.
as_mz_consecutive_
[
i
];
ABlockTransferSrcScalarPerVector
==
const
bool
valid_a_access_dim_k
=
0
))
ABlockTransferSrcVectorDim
==
2
&&
arg
.
as_kz_consecutive_
[
i
];
{
const
bool
valid_a_access_dim
=
valid_a_access_dim_m
||
valid_a_access_dim_k
;
all_valid
=
false
;
if
(
!
(
valid_a_vector_size
&&
valid_a_access_dim
))
}
}
else
{
{
if
(
!
(
arg
.
a_kz_stride_
[
i
]
==
1
&&
arg
.
as_grid_desc_ak0_m_ak1_
[
i
].
GetLength
(
I2
)
%
valid_as_access
=
false
;
ABlockTransferSrcScalarPerVector
==
0
))
{
all_valid
=
false
;
}
}
}
});
});
if
(
!
valid_as_access
)
{
return
false
;
}
// vector memory access of B: could be on N or BK1 dimension
bool
valid_bs_access
=
true
;
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
if
constexpr
(
BBlockTransferSrcVectorDim
==
1
)
const
bool
valid_b_vector_size
=
arg
.
bs_max_read_elems_
[
i
]
%
BBlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_b_access_dim_n
=
BBlockTransferSrcVectorDim
==
1
&&
arg
.
bs_nz_consecutive_
[
i
];
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
bs_kz_consecutive_
[
i
];
const
bool
valid_b_access_dim
=
valid_b_access_dim_n
||
valid_b_access_dim_k
;
if
(
!
(
valid_b_vector_size
&&
valid_b_access_dim
))
{
{
if
(
!
(
arg
.
b_nz_stride_
[
i
]
==
1
&&
arg
.
bs_grid_desc_bk0_n_bk1_
[
i
].
GetLength
(
I1
)
%
valid_bs_access
=
false
;
BBlockTransferSrcScalarPerVector
==
0
))
{
all_valid
=
false
;
}
}
else
{
if
(
!
(
arg
.
b_kz_stride_
[
i
]
==
1
&&
arg
.
bs_grid_desc_bk0_n_bk1_
[
i
].
GetLength
(
I2
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
all_valid
=
false
;
}
}
}
});
});
if
(
!
valid_bs_access
)
{
return
false
;
}
// check vector load of Ds
bool
valid_ds_access
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
if
(
!
(
arg
.
ds_nz_stride_
[
i
]
==
1
&&
const
bool
valid_d_vector_size
=
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
[
i
].
GetLength
(
I3
)
%
arg
.
ds_max_read_elems_
[
i
]
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
CDEBlockTransferScalarPerVector_NPerBlock
==
// Vector read of Ds is always on N dimension.
0
))
const
bool
valid_d_access_dim
=
arg
.
ds_nz_consecutive_
[
i
];
if
(
!
(
valid_d_vector_size
&&
valid_d_access_dim
))
{
{
all_
valid
=
false
;
valid
_ds_access
=
false
;
}
}
});
});
if
(
!
valid_ds_access
)
// vector memory access of E: always on NPerBlock dimension
if
(
!
(
arg
.
e_nz_stride_
==
1
&&
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetLength
(
I3
)
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
{
all_valid
=
false
;
return
false
;
}
}
if
(
!
all_valid
)
const
bool
valid_e_vector_size
=
arg
.
e_max_write_elems_
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
// Vector write of E is always on N dimension.
const
bool
valid_e_access_dim
=
arg
.
e_nz_consecutive_
;
if
(
!
(
valid_e_vector_size
&&
valid_e_access_dim
))
{
{
return
false
;
return
false
;
}
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
View file @
32806d5f
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
@@ -183,7 +184,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -183,7 +184,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
num
);
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
i
];
},
num
);
};
};
const
auto
a_ms_
n
s_lengths
=
to_tuple
(
a_ms_ks_lengths_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_
k
s_lengths
=
to_tuple
(
a_ms_ks_lengths_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_ks_strides
=
to_tuple
(
a_ms_ks_strides_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_ks_strides
=
to_tuple
(
a_ms_ks_strides_vec
,
Number
<
NumDimM
+
NumDimK
>
{});
// dimension Ids for M0, M1, ...
// dimension Ids for M0, M1, ...
...
@@ -194,14 +195,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -194,14 +195,14 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
// lengths for M0, M1, ...
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
a_ms_
n
s_lengths
,
mDimIds
);
const
auto
mLengths
=
get_container_subset
(
a_ms_
k
s_lengths
,
mDimIds
);
// lengths for K0, K1, ...
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
a_ms_
n
s_lengths
,
kDimIds
);
const
auto
kLengths
=
get_container_subset
(
a_ms_
k
s_lengths
,
kDimIds
);
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
const
auto
a_grid_desc_ms_ks
=
const
auto
a_grid_desc_ms_ks
=
make_naive_tensor_descriptor
(
a_ms_
n
s_lengths
,
a_ms_ks_strides
);
make_naive_tensor_descriptor
(
a_ms_
k
s_lengths
,
a_ms_ks_strides
);
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
...
@@ -383,7 +384,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -383,7 +384,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
void
*
p_b_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
void
*
p_e_grid
,
const
std
::
vector
<
index_t
>&
a_ms_
n
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_
k
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
...
@@ -398,7 +399,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -398,7 +399,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
a_ms_
n
s_lengths
,
a_ms_ks_strides
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
a_ms_
k
s_lengths
,
a_ms_ks_strides
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
b_ns_ks_lengths
,
b_ns_ks_strides
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
b_ns_ks_lengths
,
b_ns_ks_strides
)},
ds_grid_desc_m_n_
{},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
(
e_ms_ns_lengths
,
e_ms_ns_strides
)},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
(
e_ms_ns_lengths
,
e_ms_ns_strides
)},
...
@@ -411,13 +412,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -411,13 +412,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
cde_element_op_
{
cde_element_op
}
a_mz_stride_
{},
a_kz_stride_
{},
b_nz_stride_
{},
b_kz_stride_
{},
ds_nz_stride_
{},
e_nz_stride_
{}
{
{
// populate pointer, batch stride, desc for Ds
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
...
@@ -448,18 +443,26 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -448,18 +443,26 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
}
}
// for sanity check of vector memory access
// for sanity check of vector memory access
a_mz_stride_
=
a_ms_ks_strides
[
NumDimM
-
1
];
a_mz_consecutive_
=
a_ms_ks_strides
[
NumDimM
-
1
]
==
1
;
a_kz_stride_
=
a_ms_ks_strides
[
NumDimM
+
NumDimK
-
1
];
a_kz_consecutive_
=
a_ms_ks_strides
[
NumDimM
+
NumDimK
-
1
]
==
1
;
a_max_read_elems_
=
CalculateMaxRead
<
NumDimM
,
NumDimK
>
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
b_nz_stride_
=
b_ns_ks_strides
[
NumDimN
-
1
];
b_nz_consecutive_
=
b_ns_ks_strides
[
NumDimN
-
1
]
==
1
;
b_kz_stride_
=
b_ns_ks_strides
[
NumDimN
+
NumDimK
-
1
];
b_kz_consecutive_
=
b_ns_ks_strides
[
NumDimN
+
NumDimK
-
1
]
==
1
;
b_max_read_elems_
=
CalculateMaxRead
<
NumDimN
,
NumDimK
>
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
{
ds_nz_stride_
[
i
]
=
ds_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
];
ds_nz_consecutive_
[
i
]
=
ds_ms_ns_strides
[
i
][
NumDimM
+
NumDimN
-
1
]
==
1
;
ds_max_read_elems_
[
i
]
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
ds_ms_ns_lengths
[
i
],
ds_ms_ns_strides
[
i
]);
}
}
e_nz_stride_
=
e_ms_ns_strides
[
NumDimM
+
NumDimN
-
1
];
e_nz_consecutive_
=
e_ms_ns_strides
[
NumDimM
+
NumDimN
-
1
]
==
1
;
e_max_write_elems_
=
CalculateMaxRead
<
NumDimM
,
NumDimN
>
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
}
}
void
Print
()
const
void
Print
()
const
...
@@ -499,15 +502,19 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -499,15 +502,19 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
BElementwiseOperation
b_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// Describe whether the last part of a given dimension of A/B/D/E is consecutive
// for sanity check of vector load/store
// in the memory or not.
index_t
a_mz_stride_
;
bool
a_mz_consecutive_
;
index_t
a_kz_stride_
;
bool
a_kz_consecutive_
;
index_t
b_nz_stride_
;
bool
b_nz_consecutive_
;
index_t
b_kz_stride_
;
bool
b_kz_consecutive_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride_
;
std
::
array
<
bool
,
NumDTensor
>
ds_nz_consecutive_
;
index_t
e_mz_stride_
;
bool
e_nz_consecutive_
;
index_t
e_nz_stride_
;
index_t
a_max_read_elems_
;
index_t
b_max_read_elems_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_max_read_elems_
;
index_t
e_max_write_elems_
;
};
};
// Invoker
// Invoker
...
@@ -616,65 +623,47 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -616,65 +623,47 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
(
BBlockTransferSrcVectorDim
==
1
||
BBlockTransferSrcVectorDim
==
2
),
(
BBlockTransferSrcVectorDim
==
1
||
BBlockTransferSrcVectorDim
==
2
),
"wrong!"
);
"wrong!"
);
// vector memory access of A: could be on M or AK1 dimension
const
bool
valid_a_vector_size
=
if
constexpr
(
ABlockTransferSrcVectorDim
==
1
)
arg
.
a_max_read_elems_
%
ABlockTransferSrcScalarPerVector
==
0
;
const
bool
valid_a_access_dim_m
=
ABlockTransferSrcVectorDim
==
1
&&
arg
.
a_mz_consecutive_
;
const
bool
valid_a_access_dim_k
=
ABlockTransferSrcVectorDim
==
2
&&
arg
.
a_kz_consecutive_
;
const
bool
valid_a_access_dim
=
valid_a_access_dim_m
||
valid_a_access_dim_k
;
if
(
!
(
valid_a_vector_size
&&
valid_a_access_dim
))
{
{
if
(
!
(
arg
.
a_mz_stride_
==
1
&&
return
false
;
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
arg
.
a_kz_stride_
==
1
&&
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
}
// vector memory access of B: could be on N or BK1 dimension
const
bool
valid_b_vector_size
=
if
constexpr
(
BBlockTransferSrcVectorDim
==
1
)
arg
.
b_max_read_elems_
%
BBlockTransferSrcScalarPerVector
==
0
;
{
const
bool
valid_b_access_dim_n
=
BBlockTransferSrcVectorDim
==
1
&&
arg
.
b_nz_consecutive_
;
if
(
!
(
arg
.
b_nz_stride_
==
1
&&
const
bool
valid_b_access_dim_k
=
BBlockTransferSrcVectorDim
==
2
&&
arg
.
b_kz_consecutive_
;
arg
.
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
)
%
BBlockTransferSrcScalarPerVector
==
0
))
const
bool
valid_b_access_dim
=
valid_b_access_dim_n
||
valid_b_access_dim_k
;
{
if
(
!
(
valid_b_vector_size
&&
valid_b_access_dim
))
return
false
;
}
}
else
{
{
if
(
!
(
arg
.
b_kz_stride_
==
1
&&
return
false
;
arg
.
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
}
// vector memory access of Ds: always on NPerBlock dimension
bool
valid_ds_access
=
true
;
bool
valid_d_access
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
if
(
!
(
arg
.
ds_nz_stride_
[
i
]
==
1
&&
const
bool
valid_d_vector_size
=
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
[
i
].
GetLength
(
I3
)
%
arg
.
ds_max_read_elems_
[
i
]
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
CDEBlockTransferScalarPerVector_NPerBlock
==
// Vector read of Ds is always on N dimension.
0
))
const
bool
valid_d_access_dim
=
arg
.
ds_nz_consecutive_
[
i
];
if
(
!
(
valid_d_vector_size
&&
valid_d_access_dim
))
{
{
valid_d_access
=
false
;
valid_d
s
_access
=
false
;
}
}
});
});
if
(
!
valid_ds_access
)
if
(
valid_d_access
==
false
)
{
{
return
false
;
return
false
;
}
}
// vector memory access of E: always on NPerBlock dimension
const
bool
valid_e_vector_size
=
if
(
!
(
arg
.
e_
nz_stride_
==
1
&&
arg
.
e_
max_write_elems_
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
;
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
.
GetLength
(
I3
)
%
// Vector write of E is always on N dimension.
CDEBlockTransferScalarPerVector_NPerBlock
==
const
bool
valid_e_access_dim
=
arg
.
e_nz_consecutive_
;
0
))
if
(
!
(
valid_e_vector_size
&&
valid_e_access_dim
))
{
{
return
false
;
return
false
;
}
}
...
@@ -692,7 +681,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -692,7 +681,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
void
*
p_b
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_ms_
n
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_
k
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
...
@@ -708,7 +697,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -708,7 +697,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
p_b
,
p_b
,
p_ds
,
p_ds
,
p_e
,
p_e
,
a_ms_
n
s_lengths
,
a_ms_
k
s_lengths
,
a_ms_ks_strides
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
b_ns_ks_strides
,
...
@@ -729,7 +718,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -729,7 +718,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
const
void
*
p_b
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_ms_
n
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_
k
s_lengths
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
a_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
const
std
::
vector
<
index_t
>&
b_ns_ks_strides
,
...
@@ -745,7 +734,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
...
@@ -745,7 +734,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
p_b
,
p_b
,
p_ds
,
p_ds
,
p_e
,
p_e
,
a_ms_
n
s_lengths
,
a_ms_
k
s_lengths
,
a_ms_ks_strides
,
a_ms_ks_strides
,
b_ns_ks_lengths
,
b_ns_ks_lengths
,
b_ns_ks_strides
,
b_ns_ks_strides
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_utils.hpp
0 → 100644
View file @
32806d5f
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cassert>
#include <sstream>
#include <vector>
#include "ck/ck.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
/**
* Calculates the maximum number of subsequent elements of the fast changing dimension
* that are consecutive in memory.
*
* Example:
* NumDimM = 2, NumDimK = 3
* A shape = [ 2, 3, 4, 5, 6]
* A strides = [360, 120, 30, 6, 1]
* | M | | K |
* It follows from strides that K is FCD and all the subsequent elements of K are consecutive
* in memory.
* But if strides were [360, 120, 6, 24, 1], then only 6 subsequent elements of K would be
* consecutive in memory.
*
* Assumes that the dimensions are split into two groups of `NumDim1` and `NumDim2` dimensions.
*/
template
<
index_t
NumDim1
,
index_t
NumDim2
>
auto
CalculateMaxRead
(
const
std
::
vector
<
index_t
>&
lengths
,
const
std
::
vector
<
index_t
>&
strides
)
{
if
(
lengths
.
size
()
!=
NumDim1
+
NumDim2
)
{
std
::
ostringstream
err
;
err
<<
"Incorrect number of lengths in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
if
(
strides
.
size
()
!=
NumDim1
+
NumDim2
)
{
std
::
ostringstream
err
;
err
<<
"Incorrect number of strides in "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
;
throw
std
::
runtime_error
(
err
.
str
());
}
// Determine the beginning and end idx of the group representing the FCD.
index_t
begin_idx
,
end_idx
;
if
(
strides
[
NumDim1
-
1
]
==
1
)
{
begin_idx
=
0
;
end_idx
=
NumDim1
-
1
;
}
else
if
(
strides
[
NumDim1
+
NumDim2
-
1
]
==
1
)
{
begin_idx
=
NumDim1
;
end_idx
=
NumDim1
+
NumDim2
-
1
;
}
else
{
// The dimension consecutive in memory is not the last dimension of any group, so only
// one element can be read/written at once.
return
1
;
}
index_t
consecutive_stride
=
1
;
for
(
index_t
dim_idx
=
end_idx
;
dim_idx
>=
begin_idx
;
--
dim_idx
)
{
if
(
strides
[
dim_idx
]
==
consecutive_stride
)
{
consecutive_stride
*=
lengths
[
dim_idx
];
}
else
{
break
;
}
}
const
index_t
max_subsequent_elems
=
consecutive_stride
;
return
max_subsequent_elems
;
}
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp
View file @
32806d5f
...
@@ -357,15 +357,17 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -357,15 +357,17 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
return
out_gemmm_gemmn_desc
;
return
out_gemmm_gemmn_desc
;
}
}
// Shape of Ds and E must be aligned. Strides can be different.
// Pass e_g_n_k_wos_lengths for logical broadcast.
static
auto
MakeDsGridDescriptor_M_N
(
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds
_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>
&
e
_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
{
return
generate_tuple
(
return
generate_tuple
(
[
&
](
auto
i
)
{
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds
_g_n_k_wos_lengths
[
i
]
,
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
e
_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
ds_g_n_k_wos_strides
[
i
]);
},
},
Number
<
NumDTensor
>
{});
Number
<
NumDTensor
>
{});
...
@@ -569,7 +571,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -569,7 +571,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// D desc
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds
_g_n_k_wos_lengths
[
i
]
,
ds_g_n_k_wos_strides
[
i
]);
e
_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
[
i
]);
});
});
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
...
@@ -916,8 +918,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -916,8 +918,7 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
GK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
...
@@ -925,6 +926,27 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
...
@@ -925,6 +926,27 @@ struct DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
{
{
valid
=
false
;
valid
=
false
;
}
}
if
constexpr
(
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
// G and K must be the same
if
(
arg
.
ds_g_n_k_wos_lengths_
[
i
][
0
]
!=
arg
.
e_g_n_k_wos_lengths_
[
0
]
||
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
]
!=
arg
.
e_g_n_k_wos_lengths_
[
2
])
{
valid
=
false
;
}
}
else
{
// E and D must have the same shape
for
(
index_t
d
=
0
;
d
<
NDimSpatial
+
3
;
d
++
)
{
if
(
arg
.
ds_g_n_k_wos_lengths_
[
i
][
d
]
!=
arg
.
e_g_n_k_wos_lengths_
[
d
])
{
valid
=
false
;
}
}
}
}
}
else
else
{
{
...
...
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment