"tests/experimental/vscode:/vscode.git/clone" did not exist on "a77c56f09959d3dabe4107fd23a27c8875af92fb"
Unverified Commit 2e3183af authored by arai713's avatar arai713 Committed by GitHub
Browse files

Codegen hipRTC compilation (#1579)



* updating codegen build for MIOpen access: adding .cmake for codegen component

* updating CMake

* adding in header guards for some headers due to issues with hiprtc compilation in MIOpen

* some more header guards

* putting env file in header guard

* cleaning up some includes

* updated types file for hiprtc purposes

* fixed types file: bit-wise/memcpy issue

* updating multiple utility files to deal with standard header inclusion for hiprtc

* added some more header guards in the utility files, replacing some standard header functionality

* added some more header guards

* fixing some conflicts in utility files, another round of header guards

* fixing errors in data type file

* resolved conflict errors in a few utility files

* added header guards/replicated functionality in device files

* resolved issues with standard headers in device files: device_base and device_grouped_conv_fwd_multiple_abd

* resolved issues with standard headers in device files: device_base.hpp, device_grouped_conv_fwd_multiple_abd.hpp, device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp

* added header guards for gridwise gemm files: gridwise_gemm_multiple_abd_xdl_cshuffle.hpp and gridwise_gemm_multiple_d_xdl_cshuffle.hpp

* fixed issue with numerics header, removed from transform_conv_fwd_to_gemm and added to device_column_to_image_impl, device_grouped_conv_fwd_multiple_abd_xdl_cshuffle, device_grouped_conv_fwd_multiple_abd_xdl_cshuffle_v3, device_image_to_column_impl

* replaced standard header usage and added header guards in block to ctile map and gridwise_gemm_pipeline_selector

* resolved errors in device_gemm_xdl_splitk_c_shuffle files in regards to replacement of standard headers in previous commit

* added replicated functionality for standard header methods in utility files

* replaced standard header functionality in threadwise tensor slice transfer files and added header guards in element_wise_operation.hpp

* temp fix for namespace error in MIOpen

* remove standard header usage in codegen device op

* removed standard header usage in elementwise files, resolved namespace errors

* formatting fix

* changed codegen argument to ON for testing

* temporarily removing codegen compiler flag for testing purposes

* added codegen flag again, set default to ON

* set codegen flag default back to OFF

* replaced enable_if_t standard header usage in data_type.hpp

* added some debug prints to pinpoint issues in MIOpen

* added print outs to debug in MIOpen

* removed debug print outs from device op

* resolved stdexcept include error

* formatting fix

* adding includes to new fp8 file to resolve ck::enable_if_t errors

* made changes to amd_wave_read_first_lane

* updated functionality in type utility file

* fixed end of file issue

* resovled errors in type utility file, added functionality to array utility file

* fixed standard header usage replication in data_type file, resolves error with failing examples on navi3x

* formatting fix

* replaced standard header usage in amd_ck_fp8 file

* added include to random_gen file

* removed and replicated standard header usage from data_type and type_convert files for fp8 changes

* replicated standard unsigned integer types in random_gen

* resolved comments from review: put calls to reinterpret_cast for size_t in header guards

* updated/added copyright headers

* removed duplicate header

* fixed typo in header guard

* updated copyright headers

---------
Co-authored-by: default avatarIllia Silin <98187287+illsilin@users.noreply.github.com>
parent 2ab8bf4c
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -131,7 +131,7 @@ struct ThreadGroupTensorSliceTransfer_v7r2 ...@@ -131,7 +131,7 @@ struct ThreadGroupTensorSliceTransfer_v7r2
} }
template <typename T> template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple()); using is_tuple = decltype(ck::declval<T&>().IsTuple());
template <typename DstBuffers, index_t ThreadScratchId = 0> template <typename DstBuffers, index_t ThreadScratchId = 0>
__device__ void RunWrite(const DstDescs& dst_descs, __device__ void RunWrite(const DstDescs& dst_descs,
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#ifndef CK_CODE_GEN_RTC
#include <string> #include <string>
#endif
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -18,6 +20,7 @@ enum struct ConvolutionForwardSpecialization ...@@ -18,6 +20,7 @@ enum struct ConvolutionForwardSpecialization
Filter3x3, Filter3x3,
}; };
#ifndef CK_CODE_GEN_RTC
inline std::string getConvForwardSpecializationString(const ConvolutionForwardSpecialization& s) inline std::string getConvForwardSpecializationString(const ConvolutionForwardSpecialization& s)
{ {
switch(s) switch(s)
...@@ -30,6 +33,7 @@ inline std::string getConvForwardSpecializationString(const ConvolutionForwardSp ...@@ -30,6 +33,7 @@ inline std::string getConvForwardSpecializationString(const ConvolutionForwardSp
default: return "Unrecognized specialization!"; default: return "Unrecognized specialization!";
} }
} }
#endif
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#ifndef CK_CODE_GEN_RTC
#include <string> #include <string>
#include <sstream> #include <sstream>
#include <regex> #include <regex>
#include <optional> #include <optional>
#include "ck/stream_config.hpp" #include "ck/stream_config.hpp"
#endif
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
#ifndef CK_CODE_GEN_RTC
#define GET_OBJECT_NAME_IMLP \ #define GET_OBJECT_NAME_IMLP \
std::optional<std::string> GetObjectName() const override \ std::optional<std::string> GetObjectName() const override \
{ \ { \
...@@ -41,7 +43,9 @@ namespace device { ...@@ -41,7 +43,9 @@ namespace device {
} }
#define REGISTER_EXTRA_PRINTING_METHODS GET_OBJECT_NAME_IMLP GET_TEMPLATE_INFO_IMPL #define REGISTER_EXTRA_PRINTING_METHODS GET_OBJECT_NAME_IMLP GET_TEMPLATE_INFO_IMPL
#endif
#ifndef CK_CODE_GEN_RTC
struct BaseArgument struct BaseArgument
{ {
BaseArgument() = default; BaseArgument() = default;
...@@ -66,13 +70,14 @@ struct BaseInvoker ...@@ -66,13 +70,14 @@ struct BaseInvoker
virtual ~BaseInvoker() {} virtual ~BaseInvoker() {}
}; };
#endif
struct BaseOperator struct BaseOperator
{ {
BaseOperator() = default; BaseOperator() = default;
BaseOperator(const BaseOperator&) = default; BaseOperator(const BaseOperator&) = default;
BaseOperator& operator=(const BaseOperator&) = default; BaseOperator& operator=(const BaseOperator&) = default;
#ifndef CK_CODE_GEN_RTC
virtual bool IsSupportedArgument(const BaseArgument*) { return false; } virtual bool IsSupportedArgument(const BaseArgument*) { return false; }
virtual std::string GetTypeString() const { return ""; } virtual std::string GetTypeString() const { return ""; }
...@@ -100,7 +105,7 @@ struct BaseOperator ...@@ -100,7 +105,7 @@ struct BaseOperator
assert(p_arg); assert(p_arg);
p_arg->p_workspace_ = p_workspace; p_arg->p_workspace_ = p_workspace;
} }
#endif
virtual ~BaseOperator() {} virtual ~BaseOperator() {}
}; };
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2023-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#ifndef CK_CODE_GEN_RTC
#include <array> #include <array>
#endif
#include "ck/tensor_operation/gpu/device/device_base.hpp" #include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
...@@ -13,8 +15,13 @@ namespace ck { ...@@ -13,8 +15,13 @@ namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
#ifdef CK_CODE_GEN_RTC
template <typename T>
using is_tuple = decltype(ck::declval<T&>().IsTuple());
#else
template <typename T> template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple()); using is_tuple = decltype(std::declval<T&>().IsTuple());
#endif
/** /**
* \brief Grouped Convolution Forward * \brief Grouped Convolution Forward
...@@ -72,12 +79,18 @@ struct DeviceGroupedConvFwdMultipleABD : public BaseOperator ...@@ -72,12 +79,18 @@ struct DeviceGroupedConvFwdMultipleABD : public BaseOperator
static constexpr index_t NumDTensor = DsDataType::Size(); static constexpr index_t NumDTensor = DsDataType::Size();
static_assert(NumDTensor == DsLayout::Size(), "wrong! Inconsistent NumDTensor"); static_assert(NumDTensor == DsLayout::Size(), "wrong! Inconsistent NumDTensor");
#ifdef CK_CODE_GEN_RTC
using APointers = ck::conditional_t<isMultiA, ck::Array<const void*, NumATensor>&, const void*>;
using BPointers = ck::conditional_t<isMultiB, ck::Array<const void*, NumBTensor>&, const void*>;
#else
// If DataType is tuple, user has to pass std::array with pointers. // If DataType is tuple, user has to pass std::array with pointers.
using APointers = using APointers =
std::conditional_t<isMultiA, std::array<const void*, NumATensor>&, const void*>; ck::conditional_t<isMultiA, std::array<const void*, NumATensor>&, const void*>;
using BPointers = using BPointers =
std::conditional_t<isMultiB, std::array<const void*, NumBTensor>&, const void*>; ck::conditional_t<isMultiB, std::array<const void*, NumBTensor>&, const void*>;
#endif
#ifndef CK_CODE_GEN_RTC
/** /**
* \brief Make argument pointer for grouped conv fwd. * \brief Make argument pointer for grouped conv fwd.
...@@ -150,6 +163,7 @@ struct DeviceGroupedConvFwdMultipleABD : public BaseOperator ...@@ -150,6 +163,7 @@ struct DeviceGroupedConvFwdMultipleABD : public BaseOperator
const CDEElementwiseOperation& cde_element_op) = 0; const CDEElementwiseOperation& cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0; virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
#endif
}; };
} // namespace device } // namespace device
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -29,6 +29,7 @@ enum struct GemmSpecialization ...@@ -29,6 +29,7 @@ enum struct GemmSpecialization
MNKOPadding, MNKOPadding,
}; };
#ifndef CK_CODE_GEN_RTC
inline std::string getGemmSpecializationString(const GemmSpecialization& s) inline std::string getGemmSpecializationString(const GemmSpecialization& s)
{ {
switch(s) switch(s)
...@@ -52,6 +53,7 @@ inline std::string getGemmSpecializationString(const GemmSpecialization& s) ...@@ -52,6 +53,7 @@ inline std::string getGemmSpecializationString(const GemmSpecialization& s)
default: return "Unrecognized specialization!"; default: return "Unrecognized specialization!";
} }
} }
#endif
} // namespace device } // namespace device
} // namespace tensor_operation } // namespace tensor_operation
......
...@@ -3,11 +3,17 @@ ...@@ -3,11 +3,17 @@
#pragma once #pragma once
#ifndef CK_CODE_GEN_RTC
#include <functional> #include <functional>
#include <iostream> #include <iostream>
#include <iterator> #include <iterator>
#include <numeric> #include <numeric>
#include <sstream> #include <sstream>
#include <stdio.h>
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#endif
#include "ck/utility/common_header.hpp" #include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
...@@ -15,15 +21,12 @@ ...@@ -15,15 +21,12 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp" #include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp" #include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp" #include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp" #include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp" #include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_utils.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -259,8 +262,13 @@ __global__ void ...@@ -259,8 +262,13 @@ __global__ void
} // namespace } // namespace
#ifdef CK_CODE_GEN_RTC
template <typename T>
using is_tuple = decltype(ck::declval<T&>().IsTuple());
#else
template <typename T> template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple()); using is_tuple = decltype(std::declval<T&>().IsTuple());
#endif
// //
// @brief Device Convolution operation. // @brief Device Convolution operation.
...@@ -429,8 +437,8 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle ...@@ -429,8 +437,8 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
// If we are using multiAB and one of the template datatype parameters is not a tuple, convert // If we are using multiAB and one of the template datatype parameters is not a tuple, convert
// it to it // it to it
using GemmADataType = std::conditional_t<!isMultiA && isMultiB, Tuple<ADataType>, ADataType>; using GemmADataType = ck::conditional_t<!isMultiA && isMultiB, Tuple<ADataType>, ADataType>;
using GemmBDataType = std::conditional_t<!isMultiB && isMultiA, Tuple<BDataType>, BDataType>; using GemmBDataType = ck::conditional_t<!isMultiB && isMultiA, Tuple<BDataType>, BDataType>;
#define GridwiseGemmTemplateParameters \ #define GridwiseGemmTemplateParameters \
GemmADataType, GemmBDataType, ComputeDataType, AccDataType, CShuffleDataType, DsDataType, \ GemmADataType, GemmBDataType, ComputeDataType, AccDataType, CShuffleDataType, DsDataType, \
...@@ -449,15 +457,13 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle ...@@ -449,15 +457,13 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
CDEBlockTransferScalarPerVector_NPerBlock, LoopSched CDEBlockTransferScalarPerVector_NPerBlock, LoopSched
// Use appropriate gridwise gemm // Use appropriate gridwise gemm
using GridwiseGemm = using GridwiseGemm =
std::conditional_t<isMultiA || isMultiB, ck::conditional_t<isMultiA || isMultiB,
GridwiseGemmMultipleABD_xdl_cshuffle<GridwiseGemmTemplateParameters>, GridwiseGemmMultipleABD_xdl_cshuffle<GridwiseGemmTemplateParameters>,
GridwiseGemmMultipleD_xdl_cshuffle<GridwiseGemmTemplateParameters>>; GridwiseGemmMultipleD_xdl_cshuffle<GridwiseGemmTemplateParameters>>;
// If ADataTypes or BDataTypes is tuple, user has to pass ck::Array with pointers. // If ADataTypes or BDataTypes is tuple, user has to pass ck::Array with pointers.
using APointers = using APointers = ck::conditional_t<isMultiA, ck::Array<const void*, NumATensor>&, const void*>;
std::conditional_t<isMultiA, ck::Array<const void*, NumATensor>&, const void*>; using BPointers = ck::conditional_t<isMultiB, ck::Array<const void*, NumBTensor>&, const void*>;
using BPointers =
std::conditional_t<isMultiB, ck::Array<const void*, NumBTensor>&, const void*>;
// Use Tuple for the both cases for GridPointer to initialize it in Argument constructor (not // Use Tuple for the both cases for GridPointer to initialize it in Argument constructor (not
// in initializer list what is required for single const pointer). // in initializer list what is required for single const pointer).
using AGridPointer = remove_cvref_t< using AGridPointer = remove_cvref_t<
...@@ -812,7 +818,6 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle ...@@ -812,7 +818,6 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
static_for<0, NumDTensor, 1>{}([&](auto i) { static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>; using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
// FIXME: layout // FIXME: layout
if constexpr(is_same_v<DLayout, ctc::G_NW_K> || is_same_v<DLayout, ctc::G_NHW_K> || if constexpr(is_same_v<DLayout, ctc::G_NW_K> || is_same_v<DLayout, ctc::G_NHW_K> ||
is_same_v<DLayout, ctc::G_NDHW_K> || is_same_v<DLayout, ctc::GNWK> || is_same_v<DLayout, ctc::G_NDHW_K> || is_same_v<DLayout, ctc::GNWK> ||
...@@ -965,18 +970,18 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle ...@@ -965,18 +970,18 @@ struct CodegenDeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
const BElementwiseOperation& b_element_op, const BElementwiseOperation& b_element_op,
const CDEElementwiseOperation& cde_element_op) const CDEElementwiseOperation& cde_element_op)
{ {
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_i32; ck::Array<index_t, NDimSpatial + 3> a_g_n_c_wis_lengths_i32;
std::array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_i32; ck::Array<index_t, NDimSpatial + 3> a_g_n_c_wis_strides_i32;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_i32; ck::Array<index_t, NDimSpatial + 3> b_g_k_c_xs_lengths_i32;
std::array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_i32; ck::Array<index_t, NDimSpatial + 3> b_g_k_c_xs_strides_i32;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_lengths_i32; ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_lengths_i32;
std::array<std::array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_strides_i32; ck::Array<ck::Array<index_t, NDimSpatial + 3>, NumDTensor> ds_g_n_k_wos_strides_i32;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_i32; ck::Array<index_t, NDimSpatial + 3> e_g_n_k_wos_lengths_i32;
std::array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_i32; ck::Array<index_t, NDimSpatial + 3> e_g_n_k_wos_strides_i32;
std::array<index_t, NDimSpatial> conv_filter_strides_i32; ck::Array<index_t, NDimSpatial> conv_filter_strides_i32;
std::array<index_t, NDimSpatial> conv_filter_dilations_i32; ck::Array<index_t, NDimSpatial> conv_filter_dilations_i32;
std::array<index_t, NDimSpatial> input_left_pads_i32; ck::Array<index_t, NDimSpatial> input_left_pads_i32;
std::array<index_t, NDimSpatial> input_right_pads_i32; ck::Array<index_t, NDimSpatial> input_right_pads_i32;
array_convert(a_g_n_c_wis_lengths_i32, a_g_n_c_wis_lengths); array_convert(a_g_n_c_wis_lengths_i32, a_g_n_c_wis_lengths);
array_convert(a_g_n_c_wis_strides_i32, a_g_n_c_wis_strides); array_convert(a_g_n_c_wis_strides_i32, a_g_n_c_wis_strides);
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#pragma once #pragma once
#include "ck/library/utility/numeric.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_tensor_rearrange.hpp" #include "ck/tensor_operation/gpu/device/device_conv_tensor_rearrange.hpp"
......
...@@ -205,8 +205,8 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout, ...@@ -205,8 +205,8 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
const auto b2c_map = DefaultBlock2CTileMap{}; const auto b2c_map = DefaultBlock2CTileMap{};
index_t gdx, gdy, gdz; index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = b2c_map.CalculateGridSize(karg.M, karg.N, karg.k_batch); ck::tie(gdx, gdy, gdz) = b2c_map.CalculateGridSize(karg.M, karg.N, karg.k_batch);
const auto K0Padded = karg.K0Padded; const auto K0Padded = karg.K0Padded;
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0Padded); const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0Padded);
......
...@@ -183,8 +183,8 @@ struct DeviceGemmXdlSplitKCShuffle_LdsDirectLoad : public DeviceGemmSplitK<ALayo ...@@ -183,8 +183,8 @@ struct DeviceGemmXdlSplitKCShuffle_LdsDirectLoad : public DeviceGemmSplitK<ALayo
const auto b2c_map = DefaultBlock2CTileMap{}; const auto b2c_map = DefaultBlock2CTileMap{};
index_t gdx, gdy, gdz; index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = b2c_map.CalculateGridSize(karg.M, karg.N, karg.k_batch); ck::tie(gdx, gdy, gdz) = b2c_map.CalculateGridSize(karg.M, karg.N, karg.k_batch);
const auto K0Padded = karg.K0Padded; const auto K0Padded = karg.K0Padded;
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0Padded); const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0Padded);
......
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#include <numeric> #include <numeric>
#include <sstream> #include <sstream>
#include "ck/library/utility/numeric.hpp"
#include "ck/utility/common_header.hpp" #include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
...@@ -212,9 +213,13 @@ __global__ void ...@@ -212,9 +213,13 @@ __global__ void
} }
} // namespace } // namespace
#ifdef CK_CODE_GEN_RTC
template <typename T>
using is_tuple = decltype(ck::declval<T&>().IsTuple());
#else
template <typename T> template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple()); using is_tuple = decltype(std::declval<T&>().IsTuple());
#endif
// //
// @brief Device Convolution operation. // @brief Device Convolution operation.
......
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#include <numeric> #include <numeric>
#include <sstream> #include <sstream>
#include "ck/library/utility/numeric.hpp"
#include "ck/utility/common_header.hpp" #include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#pragma once #pragma once
#include "ck/library/utility/numeric.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp" #include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp" #include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_tensor_rearrange.hpp" #include "ck/tensor_operation/gpu/device/device_conv_tensor_rearrange.hpp"
......
...@@ -430,6 +430,7 @@ struct G_NDHW : public BaseTensorLayout ...@@ -430,6 +430,7 @@ struct G_NDHW : public BaseTensorLayout
} // namespace convolution } // namespace convolution
#ifndef CK_CODE_GEN_RTC
template < template <
typename Layout, typename Layout,
typename std::enable_if<std::is_base_of<BaseTensorLayout, Layout>::value, bool>::type = false> typename std::enable_if<std::is_base_of<BaseTensorLayout, Layout>::value, bool>::type = false>
...@@ -438,6 +439,7 @@ std::ostream& operator<<(std::ostream& os, const Layout&) ...@@ -438,6 +439,7 @@ std::ostream& operator<<(std::ostream& os, const Layout&)
os << Layout::name; os << Layout::name;
return os; return os;
} }
#endif
} // namespace tensor_layout } // namespace tensor_layout
} // namespace ck } // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -340,8 +340,8 @@ struct Bilinear ...@@ -340,8 +340,8 @@ struct Bilinear
}; };
template <> template <>
__host__ __device__ constexpr void operator()<std::int8_t, std::int32_t, std::int8_t>( __host__ __device__ constexpr void
std::int8_t& y, const std::int32_t& x0, const std::int8_t& x1) const operator()<int8_t, int32_t, int8_t>(int8_t& y, const int32_t& x0, const int8_t& x1) const
{ {
y = type_convert<int8_t>(alpha_ * type_convert<float>(x0) + y = type_convert<int8_t>(alpha_ * type_convert<float>(x0) +
beta_ * type_convert<float>(x1)); beta_ * type_convert<float>(x1));
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -533,7 +533,7 @@ struct NormalizeInInfer ...@@ -533,7 +533,7 @@ struct NormalizeInInfer
const T3& gamma, const T3& gamma,
const T4& beta) const const T4& beta) const
{ {
static_assert(std::is_same<T2, float>::value || std::is_same<T2, double>::value, static_assert(is_same<T2, float>::value || is_same<T2, double>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
using ck::type_convert; using ck::type_convert;
......
...@@ -252,7 +252,7 @@ struct PassThroughPack2 ...@@ -252,7 +252,7 @@ struct PassThroughPack2
template <typename Y, typename X> template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const; __host__ __device__ void operator()(Y& y, const X& x) const;
__host__ __device__ constexpr void operator()(ck::half2_t& y, const ck::f8x2_t& x) const __host__ __device__ constexpr void operator()(half2_t& y, const f8x2_t& x) const
{ {
auto t = type_convert<float2_t>(x); auto t = type_convert<float2_t>(x);
y = type_convert<half2_t>(t); y = type_convert<half2_t>(t);
...@@ -479,7 +479,7 @@ struct PassThrough ...@@ -479,7 +479,7 @@ struct PassThrough
template <> template <>
__host__ __device__ void operator()<bf8_t, half_t>(bf8_t& y, const half_t& x) const __host__ __device__ void operator()<bf8_t, half_t>(bf8_t& y, const half_t& x) const
{ {
y = ck::type_convert<bf8_t>(x); y = type_convert<bf8_t>(x);
} }
}; };
...@@ -552,21 +552,21 @@ struct Scale ...@@ -552,21 +552,21 @@ struct Scale
template <typename Y, typename X> template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const __host__ __device__ void operator()(Y& y, const X& x) const
{ {
y = ck::type_convert<Y>(ck::type_convert<float>(x) * scale_); y = type_convert<Y>(type_convert<float>(x) * scale_);
} }
template <> template <>
__host__ __device__ void operator()<half_t, half_t>(half_t& y, const half_t& x) const __host__ __device__ void operator()<half_t, half_t>(half_t& y, const half_t& x) const
{ {
y = ck::type_convert<half_t>(scale_) * x; y = type_convert<half_t>(scale_) * x;
}; };
template <> template <>
__host__ __device__ void operator()<bhalf_t, bhalf_t>(bhalf_t& y, const bhalf_t& x) const __host__ __device__ void operator()<bhalf_t, bhalf_t>(bhalf_t& y, const bhalf_t& x) const
{ {
const float x_tmp = ck::type_convert<float>(x); const float x_tmp = type_convert<float>(x);
const float y_tmp = scale_ * x_tmp; const float y_tmp = scale_ * x_tmp;
y = ck::type_convert<bhalf_t>(y_tmp); y = type_convert<bhalf_t>(y_tmp);
}; };
template <> template <>
...@@ -584,7 +584,7 @@ struct Scale ...@@ -584,7 +584,7 @@ struct Scale
template <> template <>
__host__ __device__ void operator()<int8_t, int8_t>(int8_t& y, const int8_t& x) const __host__ __device__ void operator()<int8_t, int8_t>(int8_t& y, const int8_t& x) const
{ {
y = ck::type_convert<int8_t>(scale_ * ck::type_convert<float>(x)); y = type_convert<int8_t>(scale_ * type_convert<float>(x));
}; };
float scale_; float scale_;
...@@ -600,7 +600,7 @@ struct ScaleAndResetNaNToMinusInfinity ...@@ -600,7 +600,7 @@ struct ScaleAndResetNaNToMinusInfinity
template <> template <>
__host__ __device__ void operator()<float, float>(float& y, const float& x) const __host__ __device__ void operator()<float, float>(float& y, const float& x) const
{ {
y = ck::math::isnan(x) ? -ck::NumericLimits<float>::Infinity() : scale_ * x; y = math::isnan(x) ? -NumericLimits<float>::Infinity() : scale_ * x;
}; };
float scale_; float scale_;
...@@ -671,12 +671,13 @@ struct UnaryAbs ...@@ -671,12 +671,13 @@ struct UnaryAbs
template <typename T> template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, half_t>::value || is_same<T, int32_t>::value || is_same<T, half_t>::value || is_same<T, int32_t>::value ||
is_same<T, int8_t>::value, is_same<T, int8_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::abs(x); y = math::abs(x);
}; };
template <> template <>
...@@ -694,7 +695,7 @@ struct UnarySqrt ...@@ -694,7 +695,7 @@ struct UnarySqrt
static_assert(is_same<T, float>::value || is_same<T, double>::value, static_assert(is_same<T, float>::value || is_same<T, double>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::sqrt(x); y = math::sqrt(x);
}; };
}; };
...@@ -713,9 +714,9 @@ struct Relu ...@@ -713,9 +714,9 @@ struct Relu
template <> template <>
__host__ __device__ void operator()(bhalf_t& y, const bhalf_t& x) const __host__ __device__ void operator()(bhalf_t& y, const bhalf_t& x) const
{ {
float x_f32 = ck::type_convert<float>(x); float x_f32 = type_convert<float>(x);
float y_f32 = x_f32 > 0 ? x_f32 : 0; float y_f32 = x_f32 > 0 ? x_f32 : 0;
y = ck::type_convert<bhalf_t>(y_f32); y = type_convert<bhalf_t>(y_f32);
} }
}; };
...@@ -731,7 +732,7 @@ struct FastGelu ...@@ -731,7 +732,7 @@ struct FastGelu
template <typename Y, typename X> template <typename Y, typename X>
__device__ void operator()(Y& y, const X& x) const; __device__ void operator()(Y& y, const X& x) const;
#ifndef CK_CODE_GEN_RTC
template <> template <>
__host__ void operator()<float, float>(float& y, const float& x) const __host__ void operator()<float, float>(float& y, const float& x) const
{ {
...@@ -742,6 +743,7 @@ struct FastGelu ...@@ -742,6 +743,7 @@ struct FastGelu
const float emu = exp(u); const float emu = exp(u);
y = x / (1.f + emu); y = x / (1.f + emu);
} }
#endif
// device code, use lower precision "__ocml_exp_f32" and "rcp" // device code, use lower precision "__ocml_exp_f32" and "rcp"
template <> template <>
...@@ -753,7 +755,7 @@ struct FastGelu ...@@ -753,7 +755,7 @@ struct FastGelu
const float u = x * (c1 * x * x + c2); const float u = x * (c1 * x * x + c2);
const float emu = __ocml_exp_f32(u); const float emu = __ocml_exp_f32(u);
y = x * ck::math::rcp(1.f + emu); y = x * math::rcp(1.f + emu);
} }
template <> template <>
...@@ -851,10 +853,9 @@ struct Gelu ...@@ -851,10 +853,9 @@ struct Gelu
} }
template <> template <>
__host__ __device__ void operator()<ck::half_t, ck::half_t>(ck::half_t& y, __host__ __device__ void operator()<half_t, half_t>(half_t& y, const half_t& x) const
const ck::half_t& x) const
{ {
y = ck::half_t(0.5) * x * (ck::half_t(1) + ck::half_t(erf(float(0.70710678118f * x)))); y = half_t(0.5) * x * (half_t(1) + half_t(erf(float(0.70710678118f * x))));
} }
}; };
...@@ -868,7 +869,7 @@ struct Sigmoid ...@@ -868,7 +869,7 @@ struct Sigmoid
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
constexpr T one = type_convert<T>(1); constexpr T one = type_convert<T>(1);
y = one / (one + ck::math::exp(-x)); y = one / (one + math::exp(-x));
}; };
}; };
...@@ -877,11 +878,11 @@ struct Silu ...@@ -877,11 +878,11 @@ struct Silu
template <typename T> template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same_v<T, float> || is_same_v<T, double> || is_same_v<T, ck::half_t> || static_assert(is_same_v<T, float> || is_same_v<T, double> || is_same_v<T, half_t> ||
is_same_v<T, int8_t> || is_same_v<T, int32_t>, is_same_v<T, int8_t> || is_same_v<T, int32_t>,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
constexpr T one = type_convert<T>(1); constexpr T one = type_convert<T>(1);
y = x * (one / (one + ck::math::exp(-x))); y = x * (one / (one + math::exp(-x)));
}; };
}; };
...@@ -895,7 +896,7 @@ struct TanH ...@@ -895,7 +896,7 @@ struct TanH
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::tanh(x); y = math::tanh(x);
}; };
}; };
...@@ -905,11 +906,11 @@ struct ACos ...@@ -905,11 +906,11 @@ struct ACos
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::acos(x); y = math::acos(x);
}; };
}; };
...@@ -919,11 +920,11 @@ struct Neg ...@@ -919,11 +920,11 @@ struct Neg
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::neg(x); y = math::neg(x);
}; };
}; };
...@@ -933,11 +934,11 @@ struct ATan ...@@ -933,11 +934,11 @@ struct ATan
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::atan(x); y = math::atan(x);
}; };
}; };
...@@ -947,11 +948,11 @@ struct Sin ...@@ -947,11 +948,11 @@ struct Sin
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::sin(x); y = math::sin(x);
}; };
}; };
...@@ -961,11 +962,11 @@ struct ASinH ...@@ -961,11 +962,11 @@ struct ASinH
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::asinh(x); y = math::asinh(x);
}; };
}; };
...@@ -975,11 +976,11 @@ struct Cos ...@@ -975,11 +976,11 @@ struct Cos
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::cos(x); y = cos(x);
}; };
}; };
...@@ -989,11 +990,11 @@ struct ACosH ...@@ -989,11 +990,11 @@ struct ACosH
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::acosh(x); y = math::acosh(x);
}; };
}; };
...@@ -1003,11 +1004,11 @@ struct Tan ...@@ -1003,11 +1004,11 @@ struct Tan
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::tan(x); y = math::tan(x);
}; };
}; };
...@@ -1017,11 +1018,11 @@ struct ATanH ...@@ -1017,11 +1018,11 @@ struct ATanH
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::atanh(x); y = math::atanh(x);
}; };
}; };
...@@ -1031,11 +1032,11 @@ struct SinH ...@@ -1031,11 +1032,11 @@ struct SinH
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::sinh(x); y = math::sinh(x);
}; };
}; };
...@@ -1045,11 +1046,11 @@ struct Ceil ...@@ -1045,11 +1046,11 @@ struct Ceil
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::ceil(x); y = math::ceil(x);
}; };
}; };
...@@ -1059,11 +1060,11 @@ struct Exp ...@@ -1059,11 +1060,11 @@ struct Exp
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::exp(x); y = math::exp(x);
}; };
}; };
...@@ -1073,11 +1074,11 @@ struct CosH ...@@ -1073,11 +1074,11 @@ struct CosH
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::cosh(x); y = math::cosh(x);
}; };
}; };
...@@ -1087,11 +1088,11 @@ struct Floor ...@@ -1087,11 +1088,11 @@ struct Floor
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::floor(x); y = math::floor(x);
}; };
}; };
...@@ -1101,11 +1102,11 @@ struct Log ...@@ -1101,11 +1102,11 @@ struct Log
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::log(x); y = math::log(x);
}; };
}; };
...@@ -1115,11 +1116,11 @@ struct ASin ...@@ -1115,11 +1116,11 @@ struct ASin
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::asin(x); y = math::asin(x);
}; };
}; };
...@@ -1129,11 +1130,11 @@ struct Rcp ...@@ -1129,11 +1130,11 @@ struct Rcp
__host__ __device__ void operator()(T& y, const T& x) const __host__ __device__ void operator()(T& y, const T& x) const
{ {
static_assert(is_same<T, float>::value || is_same<T, double>::value || static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value || is_same<T, int8_t>::value || is_same<T, half_t>::value || is_same<T, int8_t>::value ||
is_same<T, int32_t>::value, is_same<T, int32_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
y = ck::math::rcp(x); y = math::rcp(x);
}; };
}; };
...@@ -1153,7 +1154,7 @@ struct Swish ...@@ -1153,7 +1154,7 @@ struct Swish
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
float bx = -beta_ * type_convert<float>(x); float bx = -beta_ * type_convert<float>(x);
y = type_convert<Y>(x / (1.f + ck::math::exp(bx))); y = type_convert<Y>(x / (1.f + math::exp(bx)));
}; };
const float beta_; const float beta_;
...@@ -1172,7 +1173,7 @@ struct SoftRelu ...@@ -1172,7 +1173,7 @@ struct SoftRelu
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_); T casted_alpha = type_convert<T>(alpha_);
constexpr T one = type_convert<T>(1); constexpr T one = type_convert<T>(1);
y = ck::math::log(one + ck::math::exp(x * casted_alpha)) / casted_alpha; y = math::log(one + math::exp(x * casted_alpha)) / casted_alpha;
} }
const float alpha_; const float alpha_;
}; };
...@@ -1193,7 +1194,7 @@ struct Power ...@@ -1193,7 +1194,7 @@ struct Power
T casted_beta = type_convert<T>(beta_); T casted_beta = type_convert<T>(beta_);
T casted_gamma = type_convert<T>(gamma_); T casted_gamma = type_convert<T>(gamma_);
T shifted_scaled_x = casted_alpha + casted_beta * x; T shifted_scaled_x = casted_alpha + casted_beta * x;
y = ck::math::pow(shifted_scaled_x, casted_gamma); y = math::pow(shifted_scaled_x, casted_gamma);
} }
const float alpha_; const float alpha_;
const float beta_; const float beta_;
...@@ -1213,7 +1214,7 @@ struct ClippedRelu ...@@ -1213,7 +1214,7 @@ struct ClippedRelu
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_); T casted_alpha = type_convert<T>(alpha_);
T casted_beta = type_convert<T>(beta_); T casted_beta = type_convert<T>(beta_);
y = ck::math::min(casted_beta, ck::math::max(casted_alpha, x)); y = math::min(casted_beta, math::max(casted_alpha, x));
} }
const float alpha_; const float alpha_;
const float beta_; const float beta_;
...@@ -1248,7 +1249,7 @@ struct Elu ...@@ -1248,7 +1249,7 @@ struct Elu
is_same<T, int8_t>::value, is_same<T, int8_t>::value,
"Data type is not supported by this operation!"); "Data type is not supported by this operation!");
T casted_alpha = type_convert<T>(alpha_); T casted_alpha = type_convert<T>(alpha_);
y = x > 0 ? x : casted_alpha * ck::math::expm1(x); y = x > 0 ? x : casted_alpha * math::expm1(x);
} }
const float alpha_; const float alpha_;
}; };
...@@ -1350,10 +1351,10 @@ struct FastNumericArrayConverter ...@@ -1350,10 +1351,10 @@ struct FastNumericArrayConverter
}; };
template <> template <>
struct FastNumericArrayConverter<uint8_t, ck::half_t, 4> struct FastNumericArrayConverter<uint8_t, half_t, 4>
{ {
using InputArray = vector_type<uint8_t, 4>; using InputArray = vector_type<uint8_t, 4>;
using OutputArray = vector_type<ck::half_t, 4>; using OutputArray = vector_type<half_t, 4>;
__device__ static OutputArray convert(InputArray const& Input) __device__ static OutputArray convert(InputArray const& Input)
{ {
...@@ -1383,13 +1384,13 @@ struct FastNumericArrayConverter<uint8_t, ck::half_t, 4> ...@@ -1383,13 +1384,13 @@ struct FastNumericArrayConverter<uint8_t, ck::half_t, 4>
}; };
template <index_t N> template <index_t N>
struct FastNumericArrayConverter<uint8_t, ck::half_t, N> struct FastNumericArrayConverter<uint8_t, half_t, N>
{ {
static constexpr int VEC_WIDTH = 4; static constexpr int VEC_WIDTH = 4;
static_assert(!(N % VEC_WIDTH), "N must be multiple of 4."); static_assert(!(N % VEC_WIDTH), "N must be multiple of 4.");
using InputArray = vector_type<uint8_t, N>; using InputArray = vector_type<uint8_t, N>;
using OutputArray = vector_type<ck::half_t, N>; using OutputArray = vector_type<half_t, N>;
__device__ static OutputArray convert(InputArray const& Input) __device__ static OutputArray convert(InputArray const& Input)
{ {
...@@ -1398,7 +1399,7 @@ struct FastNumericArrayConverter<uint8_t, ck::half_t, N> ...@@ -1398,7 +1399,7 @@ struct FastNumericArrayConverter<uint8_t, ck::half_t, N>
OutputArray Output; OutputArray Output;
using Vec_InputArray = vector_type<uint8_t, 4>; using Vec_InputArray = vector_type<uint8_t, 4>;
using Vec_OutputArray = vector_type<ck::half_t, 4>; using Vec_OutputArray = vector_type<half_t, 4>;
Vec_OutputArray* half_4_ptr = reinterpret_cast<Vec_OutputArray*>(&Output); Vec_OutputArray* half_4_ptr = reinterpret_cast<Vec_OutputArray*>(&Output);
Vec_InputArray const* uint8_4_ptr = reinterpret_cast<Vec_InputArray const*>(&Input); Vec_InputArray const* uint8_4_ptr = reinterpret_cast<Vec_InputArray const*>(&Input);
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#include "ck/utility/math.hpp" #include "ck/utility/math.hpp"
#include "ck/utility/number.hpp" #include "ck/utility/number.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/tensor_description/tensor_adaptor.hpp" #include "ck/tensor_description/tensor_adaptor.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp" #include "ck/tensor_description/multi_index_transform_helper.hpp"
#ifndef CK_CODE_GEN_RTC
#include <limits> #include <limits>
#include <stdlib.h> #include <stdlib.h>
#endif
namespace ck { namespace ck {
...@@ -978,8 +981,7 @@ struct BlockToCTileMap_3DGrid_KSplit ...@@ -978,8 +981,7 @@ struct BlockToCTileMap_3DGrid_KSplit
// Create 3D grid // Create 3D grid
const auto M0 = math::integer_divide_ceil(M, MPerBlock); const auto M0 = math::integer_divide_ceil(M, MPerBlock);
const auto N0 = math::integer_divide_ceil(N, NPerBlock); const auto N0 = math::integer_divide_ceil(N, NPerBlock);
return make_tuple(N0, M0, k_split);
return std::make_tuple(N0, M0, k_split);
} }
template <typename TopIdx> template <typename TopIdx>
...@@ -1103,7 +1105,7 @@ struct BlockToCTileMap_GemmStreamK ...@@ -1103,7 +1105,7 @@ struct BlockToCTileMap_GemmStreamK
uint32_t dp_for_sk_iters = k_iters_per_tile.get(); uint32_t dp_for_sk_iters = k_iters_per_tile.get();
uint32_t best_sk_score = uint32_t best_sk_score =
std::numeric_limits<int>::max(); // we need to find the smallest sk iters NumericLimits<int32_t>::Max(); // we need to find the smallest sk iters
for(uint32_t tentative_sk_blocks = min_sk_tiles; tentative_sk_blocks < max_sk_tiles; for(uint32_t tentative_sk_blocks = min_sk_tiles; tentative_sk_blocks < max_sk_tiles;
tentative_sk_blocks++) tentative_sk_blocks++)
{ {
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -423,10 +423,17 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle ...@@ -423,10 +423,17 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
} }
template <typename AsLayout, GemmSpecialization GemmSpec> template <typename AsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto __host__ __device__ static auto MakeAsGridDescriptor_M_K(
MakeAsGridDescriptor_M_K(const std::array<index_t, NumATensor>& MRaws, #ifdef CK_CODE_GEN_RTC
const std::array<index_t, NumATensor>& KRaws, const ck::Array<index_t, NumATensor>& MRaws,
const std::array<index_t, NumATensor>& AsStride) const ck::Array<index_t, NumATensor>& KRaws,
const ck::Array<index_t, NumATensor>& AsStride
#else
const std::array<index_t, NumATensor>& MRaws,
const std::array<index_t, NumATensor>& KRaws,
const std::array<index_t, NumATensor>& AsStride
#endif
)
{ {
return generate_tuple( return generate_tuple(
[&](auto i) { [&](auto i) {
...@@ -462,10 +469,17 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle ...@@ -462,10 +469,17 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
} }
template <typename BsLayout, GemmSpecialization GemmSpec> template <typename BsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto __host__ __device__ static auto MakeBsGridDescriptor_N_K(
MakeBsGridDescriptor_N_K(const std::array<index_t, NumBTensor>& NRaws, #ifdef CK_CODE_GEN_RTC
const std::array<index_t, NumBTensor>& KRaws, const ck::Array<index_t, NumBTensor>& NRaws,
const std::array<index_t, NumBTensor>& BsStride) const ck::Array<index_t, NumBTensor>& KRaws,
const ck::Array<index_t, NumBTensor>& BsStride
#else
const std::array<index_t, NumBTensor>& NRaws,
const std::array<index_t, NumBTensor>& KRaws,
const std::array<index_t, NumBTensor>& BsStride
#endif
)
{ {
return generate_tuple( return generate_tuple(
[&](auto i) { [&](auto i) {
...@@ -500,10 +514,17 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle ...@@ -500,10 +514,17 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
} }
template <typename DsLayout, GemmSpecialization GemmSpec> template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto __host__ __device__ static auto MakeDsGridDescriptor_M_N(
MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws, #ifdef CK_CODE_GEN_RTC
const std::array<index_t, NumDTensor>& NRaws, const ck::Array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& DsStride) const ck::Array<index_t, NumDTensor>& NRaws,
const ck::Array<index_t, NumDTensor>& DsStride
#else
const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride
#endif
)
{ {
return generate_tuple( return generate_tuple(
[&](auto i) { [&](auto i) {
...@@ -969,9 +990,15 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle ...@@ -969,9 +990,15 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
const index_t M, const index_t M,
const index_t N, const index_t N,
const index_t K, const index_t K,
#ifdef CK_CODE_GEN_RTC
const ck::Array<index_t, NumATensor> StrideAs,
const ck::Array<index_t, NumBTensor> StrideBs,
const ck::Array<index_t, NumDTensor> StrideDs,
#else
const std::array<index_t, NumATensor> StrideAs, const std::array<index_t, NumATensor> StrideAs,
const std::array<index_t, NumBTensor> StrideBs, const std::array<index_t, NumBTensor> StrideBs,
const std::array<index_t, NumDTensor> StrideDs, const std::array<index_t, NumDTensor> StrideDs,
#endif
const index_t StrideE, const index_t StrideE,
const Block2ETileMap& block_2_etile_map) const Block2ETileMap& block_2_etile_map)
{ {
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
...@@ -473,11 +473,19 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -473,11 +473,19 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw); return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
} }
#ifdef CK_CODE_GEN_RTC
template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto
MakeDsGridDescriptor_M_N(const ck::Array<index_t, NumDTensor>& MRaws,
const ck::Array<index_t, NumDTensor>& NRaws,
const ck::Array<index_t, NumDTensor>& DsStride)
#else
template <typename DsLayout, GemmSpecialization GemmSpec> template <typename DsLayout, GemmSpecialization GemmSpec>
__host__ __device__ static auto __host__ __device__ static auto
MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws, MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws, const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride) const std::array<index_t, NumDTensor>& DsStride)
#endif
{ {
return generate_tuple( return generate_tuple(
[&](auto i) { [&](auto i) {
...@@ -941,7 +949,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle ...@@ -941,7 +949,11 @@ struct GridwiseGemmMultipleD_xdl_cshuffle
const index_t K, const index_t K,
const index_t StrideA, const index_t StrideA,
const index_t StrideB, const index_t StrideB,
#ifdef CK_CODE_GEN_RTC
const ck::Array<index_t, NumDTensor> StrideDs,
#else
const std::array<index_t, NumDTensor> StrideDs, const std::array<index_t, NumDTensor> StrideDs,
#endif
const index_t StrideE, const index_t StrideE,
const Block2ETileMap& block_2_etile_map) const Block2ETileMap& block_2_etile_map)
{ {
......
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once #pragma once
#ifndef CK_CODE_GEN_RTC
#include <iostream> #include <iostream>
#include <ostream> #include <ostream>
#endif
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp" #include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v2.hpp"
...@@ -53,12 +54,15 @@ constexpr auto GridwiseGemmPipeline_Selector() ...@@ -53,12 +54,15 @@ constexpr auto GridwiseGemmPipeline_Selector()
} }
else else
{ {
#ifndef CK_CODE_GEN_RTC
std::cerr << "GridwiseGemmPipeline configuration is not available" << std::endl; std::cerr << "GridwiseGemmPipeline configuration is not available" << std::endl;
#endif
} }
} }
} // namespace ck } // namespace ck
#ifndef CK_CODE_GEN_RTC
inline std::ostream& operator<<(std::ostream& os, const ck::PipelineVersion& p) inline std::ostream& operator<<(std::ostream& os, const ck::PipelineVersion& p)
{ {
switch(p) switch(p)
...@@ -71,3 +75,4 @@ inline std::ostream& operator<<(std::ostream& os, const ck::PipelineVersion& p) ...@@ -71,3 +75,4 @@ inline std::ostream& operator<<(std::ostream& os, const ck::PipelineVersion& p)
} }
return os; return os;
} }
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment