Unverified Commit 28f68a5a authored by rocking's avatar rocking Committed by GitHub
Browse files

layernorm & groupnorm bwd gamma beta (#1133)

* Add layernorm bwd gamma beta external api

* Add groupnorm external api

* Add layernorm bwd gamma beta profiler

* Add groupnorm bwd gamma beta ckProfiler

* Add layernorm & groupnorm bwd gamma beta test

* Fix groupnorm bwd gamma beta profiler bug

* Layernorm bwd weight client example

* Groupnorm bwd weight client example

* clang format

* Remove useless header

* Let inv_std be positive

* Rename to num_bytes and move this calculation outside the loop
parent 180e5720
add_executable(client_layernorm2d_bwd_data layernorm2d_bwd_data.cpp)
target_link_libraries(client_layernorm2d_bwd_data PRIVATE composable_kernel::device_other_operations)
add_executable(client_layernorm2d_bwd_gamma_beta layernorm2d_bwd_gamma_beta.cpp)
target_link_libraries(client_layernorm2d_bwd_gamma_beta PRIVATE composable_kernel::device_other_operations)
add_executable(client_layernorm2d_fwd layernorm2d_fwd.cpp)
target_link_libraries(client_layernorm2d_fwd PRIVATE composable_kernel::device_other_operations)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm_bwd_gamma_beta.hpp"
using DYDataType = float;
using XDataType = float;
using GammaDataType = float;
using MeanInvStdDataType = float;
using DGammaDataType = float;
using DBetaDataType = float;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
ck::index_t M = 1024;
ck::index_t N = 1024;
SimpleDeviceMem dy_dev(sizeof(DYDataType) * M * N);
SimpleDeviceMem x_dev(sizeof(XDataType) * M * N);
SimpleDeviceMem mean_dev(sizeof(MeanInvStdDataType) * M);
SimpleDeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * M);
SimpleDeviceMem dgamma_dev(sizeof(DGammaDataType) * N);
SimpleDeviceMem dbeta_dev(sizeof(DBetaDataType) * N);
using DeviceOp =
ck::tensor_operation::device::DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::size_t num_bytes = sizeof(DYDataType) * M * N + sizeof(XDataType) * M * N +
sizeof(MeanInvStdDataType) * M * 2 + sizeof(DGammaDataType) * N +
sizeof(DBetaDataType) * N;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // inLengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N}, // outLengths
{1}, // dgammaStrides
{1}, // dbetaStrides
{0}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
if(found)
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // inLengths
{N, 1}, // dyStrides
{N, 1}, // xStrides
{1, 0}, // meanStrides
{1, 0}, // invStdStrides
{N}, // outLengths
{1}, // dgammaStrides
{1}, // dbetaStrides
{0}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
add_executable(client_groupnorm_bwd_data groupnorm_bwd_data.cpp)
target_link_libraries(client_groupnorm_bwd_data PRIVATE composable_kernel::device_other_operations)
add_executable(client_groupnorm_bwd_gamma_beta groupnorm_bwd_gamma_beta.cpp)
target_link_libraries(client_groupnorm_bwd_gamma_beta PRIVATE composable_kernel::device_other_operations)
add_executable(client_groupnorm_swish_fwd groupnorm_swish_fwd.cpp)
target_link_libraries(client_groupnorm_swish_fwd PRIVATE composable_kernel::device_other_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp"
#include "ck/library/tensor_operation_instance/gpu/groupnorm_bwd_gamma_beta.hpp"
using DYDataType = float;
using XDataType = float;
using GammaDataType = float;
using MeanInvStdDataType = float;
using DGammaDataType = float;
using DBetaDataType = float;
constexpr int Rank = 5;
constexpr int NumReduceDim = 3;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
ck::index_t N = 32;
ck::index_t H = 16;
ck::index_t W = 16;
ck::index_t G = 64;
ck::index_t C = 128;
std::size_t length = N * H * W * G * C;
std::vector<ck::index_t> strideDy = {H * W * G * C, W * G * C, G * C, C, 1};
std::vector<ck::index_t> strideX = strideDy;
std::vector<ck::index_t> strideMeanInvStd = {G, 0, 0, 1, 0};
std::vector<ck::index_t> strideDGammaBeta = {C, 1};
SimpleDeviceMem dy_dev(sizeof(DYDataType) * length);
SimpleDeviceMem x_dev(sizeof(XDataType) * length);
SimpleDeviceMem mean_dev(sizeof(MeanInvStdDataType) * N * G);
SimpleDeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * N * G);
SimpleDeviceMem dgamma_dev(sizeof(DGammaDataType) * G * C);
SimpleDeviceMem dbeta_dev(sizeof(DBetaDataType) * G * C);
using DeviceOp =
ck::tensor_operation::device::DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::size_t num_bytes = sizeof(DYDataType) * length + sizeof(XDataType) * length +
sizeof(GammaDataType) * G * C + sizeof(MeanInvStdDataType) * N * G * 2 +
sizeof(DGammaDataType) * G * C + sizeof(DBetaDataType) * G * C;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C},
strideDy,
strideX,
strideMeanInvStd,
strideMeanInvStd,
{G, C},
strideDGammaBeta,
strideDGammaBeta,
{0, 1, 2}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float gb_per_sec = num_bytes / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
// run the best intance
if(found)
{
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({N, H, W, G, C},
strideDy,
strideX,
strideMeanInvStd,
strideMeanInvStd,
{G, C},
strideDGammaBeta,
strideDGammaBeta,
{0, 1, 2}, // reduceDims
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
size_t workspace_sz = op_ptr->GetWorkSpaceSize(argument_ptr.get());
SimpleDeviceMem workspace(workspace_sz);
op_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace.GetDeviceBuffer());
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP32
// FP32
void add_device_groupnorm_bwd_gamma_beta_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationBwdGammaBeta<F32, F32, F32, F32, F32, 5, 3>>>&);
#endif
template <typename DYDataType,
typename XDataType,
typename MeanInvStdDataType,
typename DGammaDataType,
typename DBetaDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
5,
3>>
{
using DeviceOp = DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
5,
3>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<DYDataType, F32> && is_same_v<XDataType, F32> &&
is_same_v<MeanInvStdDataType, F32> && is_same_v<DGammaDataType, F32> &&
is_same_v<DBetaDataType, F32>)
{
add_device_groupnorm_bwd_gamma_beta_f32_instances(op_ptrs);
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization_bwd_gamma_beta.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
#ifdef CK_ENABLE_FP16
// FP16
void add_device_layernorm2d_bwd_gamma_beta_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationBwdGammaBeta<F16, F16, F16, F16, F16, 2, 1>>>&);
#endif
#ifdef CK_ENABLE_FP32
// FP32
void add_device_layernorm2d_bwd_gamma_beta_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationBwdGammaBeta<F32, F32, F32, F32, F32, 2, 1>>>&);
#endif
template <typename DYDataType,
typename XDataType,
typename MeanInvStdDataType,
typename DGammaDataType,
typename DBetaDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
#ifdef CK_ENABLE_FP16
if constexpr(is_same_v<DYDataType, F16> && is_same_v<XDataType, F16> &&
is_same_v<MeanInvStdDataType, F16> && is_same_v<DGammaDataType, F16> &&
is_same_v<DBetaDataType, F16>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
add_device_layernorm2d_bwd_gamma_beta_f16_instances(op_ptrs);
}
}
#endif
#ifdef CK_ENABLE_FP32
if constexpr(is_same_v<DYDataType, F32> && is_same_v<XDataType, F32> &&
is_same_v<MeanInvStdDataType, F32> && is_same_v<DGammaDataType, F32> &&
is_same_v<DBetaDataType, F32>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
{
add_device_layernorm2d_bwd_gamma_beta_f32_instances(op_ptrs);
}
}
#endif
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_layernorm2d_bwd_gamma_beta_rank_2_1_f16_instances(
void add_device_layernorm2d_bwd_gamma_beta_f16_instances(
std::vector<std::unique_ptr<DeviceNormalizationBwdGammaBeta<F16, F16, F16, F16, F16, 2, 1>>>&
instances)
{
......
......@@ -8,7 +8,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
void add_device_layernorm2d_bwd_gamma_beta_rank_2_1_f32_instances(
void add_device_layernorm2d_bwd_gamma_beta_f32_instances(
std::vector<std::unique_ptr<DeviceNormalizationBwdGammaBeta<F32, F32, F32, F32, F32, 2, 1>>>&
instances)
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/groupnorm_bwd_gamma_beta.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp"
namespace ck {
namespace profiler {
template <typename DYDataType,
typename XDataType,
typename MeanInvStdDataType,
typename ComputeDataType,
typename DGammaDataType,
typename DBetaDataType>
bool profile_groupnorm_bwd_gamma_beta_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> length)
{
// we don't need GammaDataType and DXDataType here, just for reference class
using GammaDataType = DYDataType;
using DXDataType = DYDataType;
if(length.size() != 5)
return false;
index_t N = length[0];
index_t G = length[3];
index_t C = length[4];
std::vector<index_t> reduce_dim = {0, 1, 2};
std::vector<index_t> gamma_beta_length = {G, C};
Tensor<DYDataType> dy(length);
Tensor<XDataType> x(length);
Tensor<GammaDataType> gamma(gamma_beta_length); // dummy tensor, for reference
Tensor<MeanInvStdDataType> mean({N, G});
Tensor<MeanInvStdDataType> inv_std({N, G});
Tensor<DGammaDataType> dgamma(gamma_beta_length);
Tensor<DBetaDataType> dbeta(gamma_beta_length);
Tensor<DXDataType> host_dx(length); // dummy tensor, for reference
Tensor<DGammaDataType> host_dgamma(gamma_beta_length);
Tensor<DBetaDataType> host_dbeta(gamma_beta_length);
std::vector<index_t> strideDy =
std::vector<ck::index_t>{dy.mDesc.GetStrides().begin(), dy.mDesc.GetStrides().end()};
std::vector<index_t> strideX =
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()};
std::vector<index_t> strideDGamma{dgamma.mDesc.GetStrides().begin(),
dgamma.mDesc.GetStrides().end()};
std::vector<index_t> strideDBeta{dbeta.mDesc.GetStrides().begin(),
dbeta.mDesc.GetStrides().end()};
std::vector<index_t> strideMeanInvStd = {G, 0, 0, 1, 0};
switch(init_method)
{
case 0:
dy.GenerateTensorValue(GeneratorTensor_1<DYDataType>{});
x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
mean.GenerateTensorValue(GeneratorTensor_1<MeanInvStdDataType>{});
inv_std.GenerateTensorValue(GeneratorTensor_1<MeanInvStdDataType>{});
dgamma.GenerateTensorValue(GeneratorTensor_1<DGammaDataType>{});
dbeta.GenerateTensorValue(GeneratorTensor_1<DBetaDataType>{});
break;
case 1:
dy.GenerateTensorValue(GeneratorTensor_2<DYDataType>{-5, 5});
x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
mean.GenerateTensorValue(GeneratorTensor_2<MeanInvStdDataType>{-5, 5});
inv_std.GenerateTensorValue(GeneratorTensor_2<MeanInvStdDataType>{0, 5});
dgamma.GenerateTensorValue(GeneratorTensor_2<DGammaDataType>{-5, 5});
dbeta.GenerateTensorValue(GeneratorTensor_2<DBetaDataType>{-5, 5});
break;
default:
dy.GenerateTensorValue(GeneratorTensor_3<DYDataType>{0, 1});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
mean.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{-0.5, 0.5});
inv_std.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0, 0.5});
dgamma.GenerateTensorValue(GeneratorTensor_3<DGammaDataType>{-0.5, 0.5});
dbeta.GenerateTensorValue(GeneratorTensor_3<DBetaDataType>{-0.5, 0.5});
}
DeviceMem dy_dev(sizeof(DYDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem mean_dev(sizeof(MeanInvStdDataType) * mean.mDesc.GetElementSpaceSize());
DeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * inv_std.mDesc.GetElementSpaceSize());
DeviceMem dgamma_dev(sizeof(DGammaDataType) * dgamma.mDesc.GetElementSpaceSize());
DeviceMem dbeta_dev(sizeof(DBetaDataType) * dbeta.mDesc.GetElementSpaceSize());
dy_dev.ToDevice(dy.mData.data());
x_dev.ToDevice(x.mData.data());
mean_dev.ToDevice(mean.mData.data());
inv_std_dev.ToDevice(inv_std.mData.data());
// add device normalization instances
using DeviceOp =
ck::tensor_operation::device::DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
5,
3>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance =
ck::tensor_operation::host::ReferenceGroupnormBwd<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
DXDataType,
ComputeDataType>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(dy, x, gamma, mean, inv_std, host_dgamma, host_dbeta, host_dx, length);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
std::size_t num_bytes = dy.mDesc.GetElementSize() * sizeof(DYDataType) +
x.mDesc.GetElementSize() * sizeof(XDataType) +
mean.mDesc.GetElementSize() * sizeof(MeanInvStdDataType) +
inv_std.mDesc.GetElementSize() * sizeof(MeanInvStdDataType) +
dgamma.mDesc.GetElementSize() * sizeof(DGammaDataType) +
dbeta.mDesc.GetElementSize() * sizeof(DBetaDataType);
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(length,
strideDy,
strideX,
strideMeanInvStd,
strideMeanInvStd,
gamma_beta_length,
strideDGamma,
strideDBeta,
reduce_dim,
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", length, ", ") << std::endl;
}
continue;
}
size_t workspace_sz = inst_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
inst_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
dgamma_dev.FromDevice(dgamma.mData.data());
dbeta_dev.FromDevice(dbeta.mData.data());
bool pass =
ck::utils::check_err(dgamma, host_dgamma, "Error: Incorrect dgamma", 1e-3, 1e-3);
pass &= ck::utils::check_err(dbeta, host_dbeta, "Error: Incorrect dbeta", 1e-3, 1e-3);
if(do_log)
{
LogRangeAsType<float>(std::cout << "dy : ", dy.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "host_dgamma : ", host_dgamma.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "dgamma : ", dgamma.mData, ",") << std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", length, ",") << ", ";
LogRange(std::cout << "reduce dims ", reduce_dim, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s,"
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iomanip>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm_bwd_gamma_beta.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp"
namespace ck {
namespace profiler {
template <typename DYDataType,
typename XDataType,
typename MeanInvStdDataType,
typename ComputeDataType,
typename DGammaDataType,
typename DBetaDataType,
index_t Rank>
bool profile_layernorm_bwd_gamma_beta_impl(int do_verification,
int init_method,
bool do_log,
bool time_kernel,
std::vector<index_t> length)
{
// we don't need GammaDataType and DXDataType here, just for reference class
using GammaDataType = DYDataType;
using DXDataType = DYDataType;
if(length.size() != Rank || Rank < 2)
return false;
// Assume normalize dimension for first dimension
// Layernorm 2D, input = [M, K], reduce on M axis
// Layernorm 4D, input = [N, H, W, C], redice on N axis
constexpr int NumReduceDim = Rank - 1;
std::vector<index_t> reduce_dim = {0};
std::vector<index_t> invarient_length{length.begin() + 1, length.end()};
Tensor<DYDataType> dy(length);
Tensor<XDataType> x(length);
Tensor<GammaDataType> gamma(invarient_length); // dummy tensor, for reference
Tensor<MeanInvStdDataType> mean({length[0]});
Tensor<MeanInvStdDataType> inv_std({length[0]});
Tensor<DGammaDataType> dgamma(invarient_length);
Tensor<DBetaDataType> dbeta(invarient_length);
Tensor<DXDataType> host_dx(length); // dummy tensor, for reference
Tensor<DGammaDataType> host_dgamma(invarient_length);
Tensor<DBetaDataType> host_dbeta(invarient_length);
std::vector<index_t> strideDy =
std::vector<ck::index_t>{dy.mDesc.GetStrides().begin(), dy.mDesc.GetStrides().end()};
std::vector<index_t> strideX = strideDy;
std::vector<index_t> strideDGamma{dgamma.mDesc.GetStrides().begin(),
dgamma.mDesc.GetStrides().end()};
std::vector<index_t> strideDBeta{dbeta.mDesc.GetStrides().begin(),
dbeta.mDesc.GetStrides().end()};
std::vector<index_t> strideMeanInvStd{Rank, 0};
strideMeanInvStd[0] = 1;
switch(init_method)
{
case 0:
dy.GenerateTensorValue(GeneratorTensor_1<DYDataType>{});
x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
mean.GenerateTensorValue(GeneratorTensor_1<MeanInvStdDataType>{});
inv_std.GenerateTensorValue(GeneratorTensor_1<MeanInvStdDataType>{});
dgamma.GenerateTensorValue(GeneratorTensor_1<DGammaDataType>{});
dbeta.GenerateTensorValue(GeneratorTensor_1<DBetaDataType>{});
break;
case 1:
dy.GenerateTensorValue(GeneratorTensor_2<DYDataType>{-5, 5});
x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
mean.GenerateTensorValue(GeneratorTensor_2<MeanInvStdDataType>{-5, 5});
inv_std.GenerateTensorValue(GeneratorTensor_2<MeanInvStdDataType>{0, 5});
dgamma.GenerateTensorValue(GeneratorTensor_2<DGammaDataType>{-5, 5});
dbeta.GenerateTensorValue(GeneratorTensor_2<DBetaDataType>{-5, 5});
break;
default:
dy.GenerateTensorValue(GeneratorTensor_3<DYDataType>{0, 1});
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
mean.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{-0.5, 0.5});
inv_std.GenerateTensorValue(GeneratorTensor_3<MeanInvStdDataType>{0, 0.5});
dgamma.GenerateTensorValue(GeneratorTensor_3<DGammaDataType>{-0.5, 0.5});
dbeta.GenerateTensorValue(GeneratorTensor_3<DBetaDataType>{-0.5, 0.5});
}
DeviceMem dy_dev(sizeof(DYDataType) * dy.mDesc.GetElementSpaceSize());
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem mean_dev(sizeof(MeanInvStdDataType) * mean.mDesc.GetElementSpaceSize());
DeviceMem inv_std_dev(sizeof(MeanInvStdDataType) * inv_std.mDesc.GetElementSpaceSize());
DeviceMem dgamma_dev(sizeof(DGammaDataType) * dgamma.mDesc.GetElementSpaceSize());
DeviceMem dbeta_dev(sizeof(DBetaDataType) * dbeta.mDesc.GetElementSpaceSize());
dy_dev.ToDevice(dy.mData.data());
x_dev.ToDevice(x.mData.data());
mean_dev.ToDevice(mean.mData.data());
inv_std_dev.ToDevice(inv_std.mData.data());
// add device normalization instances
using DeviceOp =
ck::tensor_operation::device::DeviceNormalizationBwdGammaBeta<DYDataType,
XDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
Rank,
NumReduceDim>;
// get device op instances
const auto instance_ptrs =
ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
std::string best_instance_name;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
if(do_verification)
{
using ReferenceInstance =
ck::tensor_operation::host::ReferenceLayernormBwd<DYDataType,
XDataType,
GammaDataType,
MeanInvStdDataType,
DGammaDataType,
DBetaDataType,
DXDataType,
ComputeDataType>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(dy, x, gamma, mean, inv_std, host_dgamma, host_dbeta, host_dx, length);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
}
std::size_t num_bytes = dy.mDesc.GetElementSize() * sizeof(DYDataType) +
x.mDesc.GetElementSize() * sizeof(XDataType) +
mean.mDesc.GetElementSize() * sizeof(MeanInvStdDataType) +
inv_std.mDesc.GetElementSize() * sizeof(MeanInvStdDataType) +
dgamma.mDesc.GetElementSize() * sizeof(DGammaDataType) +
dbeta.mDesc.GetElementSize() * sizeof(DBetaDataType);
int num_kernel = 0;
for(auto& inst_ptr : instance_ptrs)
{
auto argument_ptr = inst_ptr->MakeArgumentPointer(length,
strideDy,
strideX,
strideMeanInvStd,
strideMeanInvStd,
invarient_length,
strideDGamma,
strideDBeta,
reduce_dim,
dy_dev.GetDeviceBuffer(),
x_dev.GetDeviceBuffer(),
mean_dev.GetDeviceBuffer(),
inv_std_dev.GetDeviceBuffer(),
dgamma_dev.GetDeviceBuffer(),
dbeta_dev.GetDeviceBuffer());
if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
{
++num_kernel;
}
else
{
if(time_kernel)
{
std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
LogRange(std::cout << "input lengths = ", length, ", ") << std::endl;
}
continue;
}
size_t workspace_sz = inst_ptr->GetWorkSpaceSize(argument_ptr.get());
DeviceMem workspace_dev(workspace_sz);
inst_ptr->SetWorkSpacePointer(argument_ptr.get(), workspace_dev.GetDeviceBuffer());
auto invoker_ptr = inst_ptr->MakeInvokerPointer();
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
float gb_per_sec = num_bytes / 1.E6 / avg_time;
if(time_kernel)
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
<< inst_ptr->GetTypeString() << std::endl;
if(avg_time < best_avg_time)
{
best_instance_name = inst_ptr->GetTypeString();
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
dgamma_dev.FromDevice(dgamma.mData.data());
dbeta_dev.FromDevice(dbeta.mData.data());
bool pass =
ck::utils::check_err(dgamma, host_dgamma, "Error: Incorrect dgamma", 1e-3, 1e-3);
pass &= ck::utils::check_err(dbeta, host_dbeta, "Error: Incorrect dbeta", 1e-3, 1e-3);
if(do_log)
{
LogRangeAsType<float>(std::cout << "dy : ", dy.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "host_dgamma : ", host_dgamma.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "dgamma : ", dgamma.mData, ",") << std::endl;
}
if(!pass)
{
std::cout << inst_ptr->GetTypeString() << " failed verification: ";
LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
return false;
}
else
{
if(time_kernel)
std::cout << "pass" << std::endl;
}
}
}
if(time_kernel)
{
LogRange(std::cout << "length = ", length, ",") << ", ";
LogRange(std::cout << "reduce dims ", reduce_dim, ",") << std::endl;
std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s,"
<< best_instance_name << std::endl;
}
if(num_kernel == 0)
{
std::cout << "Error: No kernel is applicable" << std::endl;
return false;
}
return true;
}
} // namespace profiler
} // namespace ck
......@@ -19,6 +19,8 @@ set(PROFILER_SOURCES
profile_groupnorm_bwd_data.cpp
profile_groupnorm_fwd.cpp
profile_layernorm_bwd_data.cpp
profile_layernorm_bwd_gamma_beta.cpp
profile_groupnorm_bwd_gamma_beta.cpp
profile_layernorm_fwd.cpp
profile_max_pool3d_fwd.cpp
profile_avg_pool3d_bwd.cpp
......@@ -82,6 +84,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_fwd_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_data_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_bwd_gamma_beta_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_groupnorm_bwd_gamma_beta_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct groupnormBwdGammaBetaArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_groupnorm_bwd_gamma_beta()
{
// eg: ckProfiler groupnorm_bwd_gamma_beta 1 0 2 0 1 --length 1 16 16 32 40
std::cout << "arg1: data type (0: fp16; 1: fp32)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: tensor extents (e.g, --length 1 16 16 32 40) \n"
<< std::endl;
}
int profile_groupnorm_bwd_gamma_beta(int argc, char* argv[])
{
if(argc <= 2)
{
print_help_groupnorm_bwd_gamma_beta();
return 0;
}
groupnormBwdGammaBetaArgParser arg_parser;
// short unnamed options
const ck::DataTypeEnum data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
const bool do_verification = std::stoi(argv[3]);
const int init_method = std::stoi(argv[4]);
const bool do_log = std::stoi(argv[5]);
const bool time_kernel = std::stoi(argv[6]);
// parse the long options
arg_parser(argc, argv);
const std::vector<index_t> length = arg_parser.long_opts["length"];
using F32 = float;
if(length.size() == 5)
{
if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_groupnorm_bwd_gamma_beta_impl<F32, F32, F32, F32, F32, F32>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else
{
throw std::runtime_error("length should be 5");
}
return 0;
}
REGISTER_PROFILER_OPERATION("groupnorm_bwd_gamma_beta",
"Group Normalization",
profile_groupnorm_bwd_gamma_beta);
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include <unordered_map>
#include "profiler/data_type_enum.hpp"
#include "profiler/profile_layernorm_bwd_gamma_beta_impl.hpp"
#include "profiler_operation_registry.hpp"
using ck::index_t;
struct layernormBwdGammaBetaArgParser
{
std::unordered_map<std::string, std::vector<int>> long_opts = {{"length", {}}};
bool parse_opt(int argc, char* argv[], const std::string& key, int i)
{
if(std::string("--") + key == argv[i])
{
int pos = i;
while(++i < argc && argv[i][0] != '-') {}
int end = i;
for(int j = pos + 1; j < end; j++)
{
long_opts[key].push_back(std::stoi(argv[j]));
}
return true;
}
return false;
}
void operator()(int argc, char* argv[])
{
for(auto& kv : long_opts)
{
for(int i = 1; i < argc; i++)
{
if(parse_opt(argc, argv, kv.first, i))
break;
}
}
}
};
void print_help_layernorm_bwd_gamma_beta()
{
// eg: ckProfiler layernorm_bwd_gamma_beta 0 0 2 0 1 --length 1502 4096
std::cout << "arg1: data type (0: fp16; 1: fp32)\n"
<< "arg2: verification (0: no; 1: yes)\n"
<< "arg3: initialization (0: no init; 1: integer value; 2: decimal value)\n"
<< "arg4: print tensor value (0: no; 1: yes)\n"
<< "arg5: time kernel (0=no, 1=yes)\n"
<< "--length: tensor extents (e.g, --length 1024 1024) \n"
<< std::endl;
}
int profile_layernorm_bwd_gamma_beta(int argc, char* argv[])
{
if(argc <= 2)
{
print_help_layernorm_bwd_gamma_beta();
return 0;
}
layernormBwdGammaBetaArgParser arg_parser;
// short unnamed options
const ck::DataTypeEnum data_type = static_cast<ck::DataTypeEnum>(std::stoi(argv[2]));
const bool do_verification = std::stoi(argv[3]);
const int init_method = std::stoi(argv[4]);
const bool do_log = std::stoi(argv[5]);
const bool time_kernel = std::stoi(argv[6]);
// parse the long options
arg_parser(argc, argv);
const std::vector<index_t> length = arg_parser.long_opts["length"];
using F16 = ck::half_t;
using F32 = float;
if(length.size() == 2)
{
constexpr int rank = 2;
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_bwd_gamma_beta_impl<F16, F16, F16, F32, F16, F16, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_bwd_gamma_beta_impl<F32, F32, F32, F32, F32, F32, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
{
throw std::runtime_error("not implemented yet");
}
}
else
{
throw std::runtime_error("not implemented yet");
}
return 0;
}
REGISTER_PROFILER_OPERATION("layernorm_bwd_gamma_beta",
"Layer Normalization",
profile_layernorm_bwd_gamma_beta);
......@@ -140,6 +140,7 @@ add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax)
add_subdirectory(normalization_fwd)
add_subdirectory(normalization_bwd_data)
add_subdirectory(normalization_bwd_gamma_beta)
add_subdirectory(data_type)
add_subdirectory(elementwise_normalization)
add_subdirectory(batchnorm)
......
add_custom_target(test_normalization_bwd_gamma_beta)
add_gtest_executable(test_layernorm2d_bwd_gamma_beta_fp32 test_layernorm2d_bwd_gamma_beta_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_layernorm2d_bwd_gamma_beta_fp32 PRIVATE utility device_normalization_bwd_gamma_beta_instance)
add_dependencies(test_normalization_bwd_gamma_beta test_layernorm2d_bwd_gamma_beta_fp32)
endif()
add_gtest_executable(test_groupnorm_bwd_gamma_beta_fp32 test_groupnorm_bwd_gamma_beta_fp32.cpp)
if(result EQUAL 0)
target_link_libraries(test_groupnorm_bwd_gamma_beta_fp32 PRIVATE utility device_normalization_bwd_gamma_beta_instance)
add_dependencies(test_normalization_bwd_gamma_beta test_groupnorm_bwd_gamma_beta_fp32)
endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_groupnorm_bwd_gamma_beta_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using ck::index_t;
template <typename Tuple>
class TestgroupnormBwdGammaBeta : public ::testing::Test
{
protected:
using DYDataType = std::tuple_element_t<0, Tuple>;
using XDataType = std::tuple_element_t<1, Tuple>;
using MeanInvStdDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using DGammaDataType = std::tuple_element_t<4, Tuple>;
using DBetaDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
// Bwd data: [N, H, W, G, C], reduce H, W, C
std::vector<std::vector<ck::index_t>> lengths = {{1, 1, 1, 1, 1},
{1, 2, 3, 4, 5},
{256, 9, 9, 9, 9},
{1, 64, 64, 32, 10},
{1, 32, 32, 32, 20},
{1, 16, 16, 32, 40}};
for(auto length : lengths)
{
bool success = ck::profiler::profile_groupnorm_bwd_gamma_beta_impl<DYDataType,
XDataType,
MeanInvStdDataType,
ComputeDataType,
DGammaDataType,
DBetaDataType>(
true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
};
using KernelTypes = ::testing::Types<
// DYDataType XDataType, MeanInvStdDataType, ComputeDataType, DGammaDataType, DBetaDataType>
std::tuple<F32, F32, F32, F32, F32, F32>>;
TYPED_TEST_SUITE(TestgroupnormBwdGammaBeta, KernelTypes);
TYPED_TEST(TestgroupnormBwdGammaBeta, Test_FP32) { this->Run(); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_layernorm_bwd_gamma_beta_impl.hpp"
using F16 = ck::half_t;
using F32 = float;
using ck::index_t;
template <typename Tuple>
class TestLayernorm2dBwdGammaBeta : public ::testing::Test
{
protected:
using DYDataType = std::tuple_element_t<0, Tuple>;
using XDataType = std::tuple_element_t<1, Tuple>;
using MeanInvStdDataType = std::tuple_element_t<2, Tuple>;
using ComputeDataType = std::tuple_element_t<3, Tuple>;
using DGammaDataType = std::tuple_element_t<4, Tuple>;
using DBetaDataType = std::tuple_element_t<5, Tuple>;
void Run()
{
// Bwd data: [N, D], reduce D
std::vector<std::vector<ck::index_t>> lengths = {
{4, 256}, {8, 511}, {9, 1032}, {4, 2048}, {1, 8192}, {4000, 2000}};
for(auto length : lengths)
{
bool success = ck::profiler::profile_layernorm_bwd_gamma_beta_impl<DYDataType,
XDataType,
MeanInvStdDataType,
ComputeDataType,
DGammaDataType,
DBetaDataType,
2>(
true, 2, false, false, length);
EXPECT_TRUE(success);
}
}
};
using KernelTypes = ::testing::Types<
// DYDataType XDataType, MeanInvStdDataType, ComputeDataType, DGammaDataType, DBetaDataType>
std::tuple<F32, F32, F32, F32, F32, F32>>;
TYPED_TEST_SUITE(TestLayernorm2dBwdGammaBeta, KernelTypes);
TYPED_TEST(TestLayernorm2dBwdGammaBeta, Test_FP32) { this->Run(); }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment