Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
289f15de
Commit
289f15de
authored
Dec 09, 2022
by
aska-0096
Browse files
Merge branch 'develop' of
https://github.com/ROCmSoftwarePlatform/composable_kernel
into wmma_gemm
parents
9bd44685
d58b7f51
Changes
371
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
729 additions
and
133 deletions
+729
-133
client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp
.../12_elementwise_normalization/elementwise_layernorm2d.cpp
+175
-0
client_example/13_batchnorm/CMakeLists.txt
client_example/13_batchnorm/CMakeLists.txt
+4
-0
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
+201
-0
client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp
client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp
+197
-0
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
+7
-5
example/01_gemm/run_gemm_example.inc
example/01_gemm/run_gemm_example.inc
+6
-9
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
+7
-7
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
+6
-5
example/04_gemm_add_add_fastgelu/run_gemm_add_add_fastgelu_example.inc
...mm_add_add_fastgelu/run_gemm_add_add_fastgelu_example.inc
+3
-3
example/09_convnd_fwd/CMakeLists.txt
example/09_convnd_fwd/CMakeLists.txt
+1
-0
example/09_convnd_fwd/convnd_fwd_common.hpp
example/09_convnd_fwd/convnd_fwd_common.hpp
+3
-2
example/09_convnd_fwd/convnd_fwd_dl_common.hpp
example/09_convnd_fwd/convnd_fwd_dl_common.hpp
+69
-43
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
+9
-8
example/09_convnd_fwd/convnd_fwd_dl_fp32.cpp
example/09_convnd_fwd/convnd_fwd_dl_fp32.cpp
+9
-8
example/09_convnd_fwd/convnd_fwd_dl_int8.cpp
example/09_convnd_fwd/convnd_fwd_dl_int8.cpp
+9
-8
example/09_convnd_fwd/run_convnd_fwd_dl_example.inc
example/09_convnd_fwd/run_convnd_fwd_dl_example.inc
+1
-0
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
+2
-10
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
...multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
+12
-18
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+1
-1
example/12_reduce/reduce_blockwise_impl.hpp
example/12_reduce/reduce_blockwise_impl.hpp
+7
-6
No files found.
client_example/12_elementwise_normalization/elementwise_layernorm2d.cpp
0 → 100644
View file @
289f15de
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/elementwise_normalization.hpp"
using
ADataType
=
ck
::
half_t
;
// Input 1
using
BDataType
=
ck
::
half_t
;
// Input 2
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
XElementwiseOperation
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
YElementwiseOperation
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
2
;
constexpr
int
NumReduceDim
=
1
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
bool
time_kernel
=
true
;
ck
::
index_t
M
=
48
*
256
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
Stride
=
N
;
auto
mn_size
=
(
M
-
1
)
*
Stride
+
N
;
SimpleDeviceMem
a_dev_buf
(
sizeof
(
ADataType
)
*
mn_size
);
SimpleDeviceMem
b_dev_buf
(
sizeof
(
BDataType
)
*
mn_size
);
SimpleDeviceMem
gamma_dev_buf
(
sizeof
(
GammaDataType
)
*
N
);
SimpleDeviceMem
beta_dev_buf
(
sizeof
(
BetaDataType
)
*
N
);
SimpleDeviceMem
y_dev_buf
(
sizeof
(
YDataType
)
*
mn_size
);
std
::
array
<
const
void
*
,
2
>
ab_input
=
{
a_dev_buf
.
GetDeviceBuffer
(),
b_dev_buf
.
GetDeviceBuffer
()};
std
::
vector
<
ck
::
index_t
>
abStride
=
{
Stride
,
1
};
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
abStrides
=
{
abStride
,
abStride
};
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseNormalization
<
ck
::
Tuple
<
ADataType
,
BDataType
>
,
GammaDataType
,
BetaDataType
,
AccDataType
,
YDataType
,
XElementwiseOperation
,
YElementwiseOperation
,
Rank
,
NumReduceDim
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
M
,
N
},
// lengths
abStrides
,
{
0
,
1
},
// gammaStrides
{
0
,
1
},
// betaStrides
{
Stride
,
1
},
// yStrides
{
1
},
// reduceDims
1e-4
,
ab_input
,
gamma_dev_buf
.
GetDeviceBuffer
(),
beta_dev_buf
.
GetDeviceBuffer
(),
y_dev_buf
.
GetDeviceBuffer
(),
XElementwiseOperation
{},
YElementwiseOperation
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
M
*
N
+
sizeof
(
BDataType
)
*
M
*
N
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
YDataType
)
*
M
*
N
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
({
M
,
N
},
// lengths
abStrides
,
{
1
},
// gammaStrides
{
1
},
// betaStrides
{
Stride
,
1
},
// yStrides
{
1
},
// reduceDims
1e-4
,
ab_input
,
gamma_dev_buf
.
GetDeviceBuffer
(),
beta_dev_buf
.
GetDeviceBuffer
(),
y_dev_buf
.
GetDeviceBuffer
(),
XElementwiseOperation
{},
YElementwiseOperation
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/13_batchnorm/CMakeLists.txt
0 → 100644
View file @
289f15de
add_executable
(
client_batchnorm_fwd_nhwc batchnorm_fwd_nhwc.cpp
)
add_executable
(
client_batchnorm_bwd_nhwc batchnorm_bwd_nhwc.cpp
)
target_link_libraries
(
client_batchnorm_fwd_nhwc PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_batchnorm_bwd_nhwc PRIVATE composable_kernel::device_operations
)
client_example/13_batchnorm/batchnorm_bwd_nhwc.cpp
0 → 100644
View file @
289f15de
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp"
using
XDataType
=
ck
::
half_t
;
using
DxDataType
=
float
;
using
DyDataType
=
float
;
using
AccDataType
=
float
;
using
ScaleDataType
=
ck
::
half_t
;
using
DscaleDbiasDataType
=
float
;
using
MeanVarDataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
4
;
constexpr
int
NumBatchNormReduceDim
=
3
;
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
Rank
>
xyLengths
{
16
,
8
,
128
,
256
};
std
::
array
<
ck
::
index_t
,
Rank
>
xyStrides
{
8
*
128
*
256
,
128
*
256
,
256
,
1
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarLengths
{
256
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarStrides
{
1
};
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
{
0
,
1
,
2
};
ck
::
index_t
numXYElement
=
std
::
accumulate
(
xyLengths
.
begin
(),
xyLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
ck
::
index_t
numScaleBiasMeanVarElement
=
std
::
accumulate
(
scaleBiasMeanVarLengths
.
begin
(),
scaleBiasMeanVarLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
SimpleDeviceMem
x
(
sizeof
(
XDataType
)
*
numXYElement
);
SimpleDeviceMem
dy
(
sizeof
(
DyDataType
)
*
numXYElement
);
SimpleDeviceMem
scale
(
sizeof
(
ScaleDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
mean
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
invVariance
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
dx
(
sizeof
(
DxDataType
)
*
numXYElement
);
SimpleDeviceMem
dscale
(
sizeof
(
DscaleDbiasDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
dbias
(
sizeof
(
DscaleDbiasDataType
)
*
numScaleBiasMeanVarElement
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
PassThrough
,
Rank
,
NumBatchNormReduceDim
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
dy
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
dx
.
GetDeviceBuffer
(),
dscale
.
GetDeviceBuffer
(),
dbias
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
numXYElement
*
(
sizeof
(
XDataType
)
+
sizeof
(
DyDataType
)
+
sizeof
(
DxDataType
))
+
numScaleBiasMeanVarElement
*
(
sizeof
(
ScaleDataType
)
+
sizeof
(
DscaleDbiasDataType
)
*
2
+
sizeof
(
MeanVarDataType
)
*
2
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
dy
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
dx
.
GetDeviceBuffer
(),
dscale
.
GetDeviceBuffer
(),
dbias
.
GetDeviceBuffer
());
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/13_batchnorm/batchnorm_fwd_nhwc.cpp
0 → 100644
View file @
289f15de
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batchnorm_forward.hpp"
using
XDataType
=
float
;
using
YDataType
=
float
;
using
AccDataType
=
float
;
using
ScaleDataType
=
AccDataType
;
using
BiasDataType
=
AccDataType
;
using
MeanVarDataType
=
AccDataType
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
4
;
constexpr
int
NumBatchNormReduceDim
=
3
;
const
double
epsilon
=
std
::
numeric_limits
<
float
>::
epsilon
();
const
double
averageFactor
=
0.1
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
std
::
array
<
ck
::
index_t
,
Rank
>
xyLengths
{
16
,
8
,
128
,
256
};
std
::
array
<
ck
::
index_t
,
Rank
>
xyStrides
{
8
*
128
*
256
,
128
*
256
,
256
,
1
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarLengths
{
256
};
std
::
array
<
ck
::
index_t
,
Rank
-
NumBatchNormReduceDim
>
scaleBiasMeanVarStrides
{
1
};
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
{
0
,
1
,
2
};
ck
::
index_t
numXYElement
=
std
::
accumulate
(
xyLengths
.
begin
(),
xyLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
ck
::
index_t
numScaleBiasMeanVarElement
=
std
::
accumulate
(
scaleBiasMeanVarLengths
.
begin
(),
scaleBiasMeanVarLengths
.
end
(),
1
,
std
::
multiplies
<
ck
::
index_t
>
());
SimpleDeviceMem
x
(
sizeof
(
XDataType
)
*
numXYElement
);
SimpleDeviceMem
y
(
sizeof
(
YDataType
)
*
numXYElement
);
SimpleDeviceMem
scale
(
sizeof
(
ScaleDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
bias
(
sizeof
(
BiasDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
mean
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
SimpleDeviceMem
invVariance
(
sizeof
(
MeanVarDataType
)
*
numScaleBiasMeanVarElement
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormFwd
<
XDataType
,
YDataType
,
AccDataType
,
ScaleDataType
,
BiasDataType
,
MeanVarDataType
,
PassThrough
,
Rank
,
NumBatchNormReduceDim
>
;
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
bias
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
y
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
averageFactor
,
nullptr
,
nullptr
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace
.
GetDeviceBuffer
());
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_bytes
=
numXYElement
*
(
sizeof
(
XDataType
)
+
sizeof
(
YDataType
))
+
numScaleBiasMeanVarElement
*
(
sizeof
(
ScaleDataType
)
+
sizeof
(
BiasDataType
)
+
sizeof
(
MeanVarDataType
)
+
sizeof
(
MeanVarDataType
));
float
gb_per_sec
=
num_bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
found
)
{
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
xyLengths
,
xyStrides
,
xyStrides
,
reduceDims
,
scaleBiasMeanVarLengths
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
scaleBiasMeanVarStrides
,
x
.
GetDeviceBuffer
(),
scale
.
GetDeviceBuffer
(),
bias
.
GetDeviceBuffer
(),
epsilon
,
PassThrough
{},
y
.
GetDeviceBuffer
(),
mean
.
GetDeviceBuffer
(),
invVariance
.
GetDeviceBuffer
(),
averageFactor
,
nullptr
,
nullptr
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
example/01_gemm/gemm_xdl_skip_b_lds_fp16.cpp
View file @
289f15de
...
@@ -6,6 +6,8 @@
...
@@ -6,6 +6,8 @@
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_skip_b_lds.hpp"
#include "ck/library/utility/literals.hpp"
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F32
=
float
;
...
@@ -135,15 +137,15 @@ int main(int argc, char* argv[])
...
@@ -135,15 +137,15 @@ int main(int argc, char* argv[])
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -240,7 +242,7 @@ int main(int argc, char* argv[])
...
@@ -240,7 +242,7 @@ int main(int argc, char* argv[])
show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl;
show_2d_matrix(std::cout << "c_host :", c_m_n_host_result) << std::endl;
}
}
#endif
#endif
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
}
}
return
0
;
return
0
;
...
...
example/01_gemm/run_gemm_example.inc
View file @
289f15de
...
@@ -32,15 +32,12 @@ bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
...
@@ -32,15 +32,12 @@ bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
{
case
0
:
break
;
case
0
:
break
;
case
1
:
case
1
:
// CONFIRMED
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
);
// ck::utils::FillMNID<ADataType>{}(a_m_k.begin(), a_m_k.end());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
);
// ck::utils::FillMNID<BDataType>{}(b_k_n.begin(), b_k_n.end());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
5.
f
,
5.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
5.
f
,
5.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
());
break
;
break
;
default
:
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
.
begin
(),
a_m_k
.
end
()
);
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
1.
f
,
1.
f
}(
a_m_k
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
.
begin
(),
b_k_n
.
end
()
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
1.
f
,
1.
f
}(
b_k_n
);
}
}
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
...
@@ -133,11 +130,11 @@ bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
...
@@ -133,11 +130,11 @@ bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
c_m_n_device_result
=
c_m_n_device_result_converted
.
CopyAsType
<
CDataType
>
();
c_m_n_device_result
=
c_m_n_device_result_converted
.
CopyAsType
<
CDataType
>
();
return
ck
::
utils
::
check_err
(
c_m_n_device_result_converted
.
mData
,
c_m_n_host_result
.
mData
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result_converted
,
c_m_n_host_result
);
#else
#else
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
);
return
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#endif
#endif
}
}
...
...
example/02_gemm_bilinear/gemm_bilinear_xdl_fp16.cpp
View file @
289f15de
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -177,15 +178,15 @@ int main(int argc, char* argv[])
...
@@ -177,15 +178,15 @@ int main(int argc, char* argv[])
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -271,8 +272,7 @@ int main(int argc, char* argv[])
...
@@ -271,8 +272,7 @@ int main(int argc, char* argv[])
if
(
do_verification
)
if
(
do_verification
)
{
{
Tensor
<
CShuffleDataType
>
c_m_n
(
HostTensorDescriptor
(
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
M
),
static_cast
<
std
::
size_t
>
(
N
)}));
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
BDataType
,
...
@@ -299,7 +299,7 @@ int main(int argc, char* argv[])
...
@@ -299,7 +299,7 @@ int main(int argc, char* argv[])
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/03_gemm_bias_relu/gemm_bias_relu_xdl_fp16.cpp
View file @
289f15de
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -155,15 +156,15 @@ int main(int argc, char* argv[])
...
@@ -155,15 +156,15 @@ int main(int argc, char* argv[])
auto
f_host_tensor_descriptor
=
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
}
};
};
...
@@ -275,7 +276,7 @@ int main(int argc, char* argv[])
...
@@ -275,7 +276,7 @@ int main(int argc, char* argv[])
}
}
}
}
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
)
?
0
:
1
;
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
}
return
0
;
return
0
;
...
...
example/04_gemm_add_add_fastgelu/run_gemm_add_add_fastgelu_example.inc
View file @
289f15de
...
@@ -124,7 +124,7 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
...
@@ -124,7 +124,7 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
if
(
config
.
do_verification
)
if
(
config
.
do_verification
)
{
{
Tensor
<
AccDataType
>
c_m_n
(
HostTensorDescriptor
{
M
,
N
});
Tensor
<
AccDataType
>
c_m_n
({
M
,
N
});
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
...
@@ -147,9 +147,9 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
...
@@ -147,9 +147,9 @@ bool run_gemm_add_add_fastgelu(const ProblemSize& problem_size, const ExecutionC
#ifdef BUILD_INT4_EXAMPLE
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
EDataType
>
e_m_n_device_result_converted
(
e_m_n_device_result
);
const
Tensor
<
EDataType
>
e_m_n_device_result_converted
(
e_m_n_device_result
);
return
ck
::
utils
::
check_err
(
e_m_n_device_result_converted
.
mData
,
e_m_n_host_result
.
mData
);
return
ck
::
utils
::
check_err
(
e_m_n_device_result_converted
,
e_m_n_host_result
);
#else
#else
return
ck
::
utils
::
check_err
(
e_m_n_device_result
.
mData
,
e_m_n_host_result
.
mData
);
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
);
#endif
#endif
}
}
...
...
example/09_convnd_fwd/CMakeLists.txt
View file @
289f15de
...
@@ -8,3 +8,4 @@ add_example_executable_no_testing(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp6
...
@@ -8,3 +8,4 @@ add_example_executable_no_testing(example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp6
add_example_executable
(
example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp16 convnd_fwd_dl_fp16.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_dl_fp32 convnd_fwd_dl_fp32.cpp
)
add_example_executable
(
example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_dl_int8 convnd_fwd_dl_int8.cpp
)
example/09_convnd_fwd/convnd_fwd_common.hpp
View file @
289f15de
...
@@ -10,6 +10,7 @@
...
@@ -10,6 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
@@ -84,7 +85,7 @@ bool run_grouped_conv_fwd(bool do_verification,
...
@@ -84,7 +85,7 @@ bool run_grouped_conv_fwd(bool do_verification,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
()
,
y
.
begin
());
};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
...
@@ -164,7 +165,7 @@ bool run_grouped_conv_fwd(bool do_verification,
...
@@ -164,7 +165,7 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
}
return
true
;
return
true
;
...
...
example/09_convnd_fwd/convnd_fwd_dl_common.hpp
View file @
289f15de
...
@@ -10,6 +10,7 @@
...
@@ -10,6 +10,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
@@ -29,6 +30,7 @@ void print_helper_msg()
...
@@ -29,6 +30,7 @@ void print_helper_msg()
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
InDataType
,
typename
WeiDataType
,
typename
WeiDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
WeiElementOp
,
...
@@ -45,8 +47,10 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -45,8 +47,10 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
const
WeiElementOp
&
wei_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
const
OutElementOp
&
out_element_op
)
{
{
using
DDataType
=
ck
::
remove_cvref_t
<
ck
::
tuple_element_t
<
0
,
DsDataType
>>
;
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
DDataType
>
bias
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
...
@@ -58,44 +62,53 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -58,44 +62,53 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
{
{
case
0
:
break
;
case
0
:
break
;
case
1
:
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
3
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
2
,
3
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
2
,
3
});
break
;
break
;
case
2
:
case
2
:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
bias
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
break
;
break
;
default:
default:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
wei
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
-
1
});
bias
.
GenerateTensorValue
(
GeneratorTensor_1
<
DDataType
>
{
1
});
}
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
DDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
c_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
c_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
()
,
y
.
begin
());
};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
c_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
d_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
c_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
d_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
...
@@ -104,25 +117,32 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -104,25 +117,32 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
// do Conv
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
auto
argument
=
conv
.
MakeArgument
(
wei_device_buf
.
GetDeviceBuffer
(),
in_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
a_g_n_c_wis_strides
,
out_device_buf
.
GetDeviceBuffer
(),
b_g_k_c_xs_lengths
,
a_g_n_c_wis_lengths
,
b_g_k_c_xs_strides
,
a_g_n_c_wis_strides
,
c_g_n_k_wos_lengths
,
b_g_k_c_xs_lengths
,
c_g_n_k_wos_strides
,
b_g_k_c_xs_strides
,
conv_filter_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d_g_n_k_wos_lengths
}},
conv_filter_dilations
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d_g_n_k_wos_strides
}},
input_left_pads
,
e_g_n_k_wos_lengths
,
input_right_pads
,
e_g_n_k_wos_strides
,
in_element_op
,
conv_filter_strides
,
wei_element_op
,
conv_filter_dilations
,
out_element_op
);
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does not "
"support this Conv problem"
<<
std
::
endl
;
return
true
;
return
true
;
}
}
...
@@ -138,28 +158,34 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
...
@@ -138,28 +158,34 @@ bool run_grouped_conv_fwd_dl(bool do_verification,
if
(
do_verification
)
if
(
do_verification
)
{
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
NDimSpatial
,
WeiDataType
,
InDataType
,
OutDataType
,
WeiDataType
,
InElementOp
,
OutDataType
,
WeiElementOp
,
InElementOp
,
OutElementOp
>
();
WeiElementOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
wei
,
auto
ref_argument
=
out_host
,
ref_conv
.
MakeArgument
(
in
,
conv_param
.
conv_filter_strides_
,
wei
,
conv_param
.
conv_filter_dilations_
,
out_host
,
conv_param
.
input_left_pads_
,
conv_param
.
conv_filter_strides_
,
conv_param
.
input_right_pads_
,
conv_param
.
conv_filter_dilations_
,
in_element_op
,
conv_param
.
input_left_pads_
,
wei_element_op
,
conv_param
.
input_right_pads_
,
out_element_op
);
in_element_op
,
wei_element_op
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
// cde_elementwise
out_host
.
ForEach
(
[
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
out_host
(
idx
),
bias
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
return
ck
::
utils
::
check_err
(
...
...
example/09_convnd_fwd/convnd_fwd_dl_fp16.cpp
View file @
289f15de
...
@@ -3,13 +3,14 @@
...
@@ -3,13 +3,14 @@
#include "convnd_fwd_dl_common.hpp"
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_
multiple_d_
nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
half_t
;
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
AccDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<
ck
::
half_t
>
;
using
OutDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
ConvSpec
=
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
// clang-format off
// clang-format off
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl
MultipleD
_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| NDim| InData| WeiData|
MultpleD|
OutData| AccData| InLayout| WeiLayout|
MultipleD|
OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| Spatial| Type| Type|
Type|
Type| Type| | |
Layout|
| Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | |
|
| | | |
|
| Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | |
|
| | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
<
NDimSpatial
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
2
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
8
,
1
,
1
,
2
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
2
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
2
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
#include "run_convnd_fwd_dl_example.inc"
...
...
example/09_convnd_fwd/convnd_fwd_dl_fp32.cpp
View file @
289f15de
...
@@ -3,13 +3,14 @@
...
@@ -3,13 +3,14 @@
#include "convnd_fwd_dl_common.hpp"
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_
multiple_d_
nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
float
;
using
InDataType
=
float
;
using
WeiDataType
=
float
;
using
WeiDataType
=
float
;
using
AccDataType
=
float
;
using
AccDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<
float
>
;
using
OutDataType
=
float
;
using
OutDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
ConvSpec
=
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
// clang-format off
// clang-format off
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl
MultipleD
_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| NDim| InData| WeiData|
MultpleD|
OutData| AccData| InLayout| WeiLayout|
MultipleD|
OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| Spatial| Type| Type|
Type|
Type| Type| | |
Layout|
| Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | |
|
| | | |
|
| Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | |
|
| | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
<
NDimSpatial
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
1
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
8
,
1
,
1
,
1
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
1
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
#include "run_convnd_fwd_dl_example.inc"
...
...
example/09_convnd_fwd/convnd_fwd_dl_int8.cpp
View file @
289f15de
...
@@ -3,13 +3,14 @@
...
@@ -3,13 +3,14 @@
#include "convnd_fwd_dl_common.hpp"
#include "convnd_fwd_dl_common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_
multiple_d_
nhwc_kyxc_nhwk.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
int8_t
;
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
AccDataType
=
int32_t
;
using
DsDataType
=
ck
::
Tuple
<
int8_t
>
;
using
OutDataType
=
int8_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
...
@@ -17,7 +18,7 @@ using S = ck::Sequence<Is...>;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
ConvSpec
=
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
...
@@ -26,12 +27,12 @@ static constexpr auto GemmPadingSpec = ck::tensor_operation::device::GemmSpecial
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
// clang-format off
// clang-format off
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdDl
MultipleD
_NHWC_KYXC_NHWK
// ######| NDim| InData| WeiData| OutData| AccData| InLayout| WeiLayout| OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| NDim| InData| WeiData|
MultpleD|
OutData| AccData| InLayout| WeiLayout|
MultipleD|
OutLayout| In| Wei| Out| Convolution| GEMM| Block| MPer| NPer| K0Per| K1| M1Per| N1Per| KPer| M11N11Thread| M11N11Thread| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| CThreadTransfer|
// ######| Spatial| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| Spatial| Type| Type|
Type|
Type| Type| | |
Layout|
| Elementwise| Elementwise| Elementwise| Forward| Spacialization| Size| Block| Block| Block| | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths| ThreadCluster| SrcAccess| SrcVectorTensor| SrcVectorTensor| DstVectorTensor| SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | |
|
| | | |
|
| Operation| Operation| Operation| Specialization| | | | | | | | | | | | K0_M0_M1_K1| K0_M0_M1_K1| ArrangeOrder| Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder| Lengths_K0_M0_M1_K1| K0_N0_N1_K1| K0_N0_N1_K1| ArrangeOrder| Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1| Order| | |
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ######| | | |
|
| | | |
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
<
NDimSpatial
,
InDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
AccDataType
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
OutLayout
>
,
OutLayout
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
GemmPadingSpec
,
256
,
128
,
128
,
16
,
4
,
4
,
4
,
1
,
S
<
8
,
2
>
,
S
<
8
,
2
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
8
,
1
,
1
,
4
>
,
S
<
2
,
1
,
128
,
1
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
4
,
1
,
1
,
4
>
,
S
<
1
,
2
,
0
,
3
>
,
S
<
1
,
1
,
1
,
4
>
,
S
<
0
,
1
,
2
,
3
,
4
,
5
>
,
5
,
4
>
;
// clang-format on
// clang-format on
#include "run_convnd_fwd_dl_example.inc"
#include "run_convnd_fwd_dl_example.inc"
...
...
example/09_convnd_fwd/run_convnd_fwd_dl_example.inc
View file @
289f15de
...
@@ -61,6 +61,7 @@ bool run_convnd_fwd_dl_example(int argc, char* argv[])
...
@@ -61,6 +61,7 @@ bool run_convnd_fwd_dl_example(int argc, char* argv[])
ndim_spatial_value
,
ndim_spatial_value
,
InDataType
,
InDataType
,
WeiDataType
,
WeiDataType
,
DsDataType
,
OutDataType
,
OutDataType
,
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
...
...
example/10_convnd_fwd_multiple_d_multiple_reduce/common.hpp
View file @
289f15de
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
...
@@ -140,9 +141,7 @@ make_r0_host_tensor_descriptor(const ck::utils::conv::ConvParam& problem_size)
...
@@ -140,9 +141,7 @@ make_r0_host_tensor_descriptor(const ck::utils::conv::ConvParam& problem_size)
{
{
std
::
vector
<
ck
::
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
std
::
vector
<
ck
::
index_t
>
dimensions
{
problem_size
.
G_
,
problem_size
.
N_
};
std
::
copy
(
begin
(
problem_size
.
output_spatial_lengths_
),
ck
::
ranges
::
copy
(
problem_size
.
output_spatial_lengths_
,
std
::
back_inserter
(
dimensions
));
end
(
problem_size
.
output_spatial_lengths_
),
std
::
back_inserter
(
dimensions
));
return
HostTensorDescriptor
(
dimensions
);
return
HostTensorDescriptor
(
dimensions
);
}
}
...
@@ -158,10 +157,3 @@ void unpack_host_tensor_descriptor(const HostTensorDescriptor& descriptor,
...
@@ -158,10 +157,3 @@ void unpack_host_tensor_descriptor(const HostTensorDescriptor& descriptor,
assert
(
size
(
descriptor
.
GetStrides
())
==
size
(
strides
));
assert
(
size
(
descriptor
.
GetStrides
())
==
size
(
strides
));
std
::
copy_n
(
begin
(
descriptor
.
GetStrides
()),
size
(
descriptor
.
GetStrides
()),
begin
(
strides
));
std
::
copy_n
(
begin
(
descriptor
.
GetStrides
()),
size
(
descriptor
.
GetStrides
()),
begin
(
strides
));
}
}
template
<
typename
Range
,
typename
OutputIterator
>
auto
copy
(
const
Range
&
range
,
OutputIterator
iter
)
->
decltype
(
std
::
copy
(
std
::
begin
(
range
),
std
::
end
(
range
),
iter
))
{
return
std
::
copy
(
std
::
begin
(
range
),
std
::
end
(
range
),
iter
);
}
example/10_convnd_fwd_multiple_d_multiple_reduce/run_convnd_fwd_max_example.inc
View file @
289f15de
...
@@ -77,15 +77,12 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
...
@@ -77,15 +77,12 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
{
{
case
0
:
break
;
case
0
:
break
;
case
1
:
case
1
:
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
.
begin
(),
ck
::
utils
::
FillUniformDistributionIntegerValue
<
ADataType
>
{
-
8
,
7
}(
conv_input
);
conv_input
.
end
());
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
8
,
7
}(
conv_weight
);
ck
::
utils
::
FillUniformDistributionIntegerValue
<
BDataType
>
{
-
8
,
7
}(
conv_weight
.
begin
(),
conv_weight
.
end
());
break
;
break
;
default
:
default
:
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
5
,
5
}(
conv_input
.
begin
(),
conv_input
.
end
());
ck
::
utils
::
FillUniformDistribution
<
ADataType
>
{
-
5
,
5
}(
conv_input
);
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
5
,
5
}(
conv_weight
.
begin
(),
ck
::
utils
::
FillUniformDistribution
<
BDataType
>
{
-
5
,
5
}(
conv_weight
);
conv_weight
.
end
());
}
}
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
conv_input_device_buf
(
sizeof
(
ADataType
)
*
conv_input
.
mDesc
.
GetElementSpaceSize
());
...
@@ -123,10 +120,10 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
...
@@ -123,10 +120,10 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_g_n_k_wos_desc
,
conv_output_g_n_k_wos_lengths
,
conv_output_g_n_k_wos_strides
);
conv_output_g_n_k_wos_desc
,
conv_output_g_n_k_wos_lengths
,
conv_output_g_n_k_wos_strides
);
unpack_host_tensor_descriptor
(
r0_desc
,
r0_lengths
,
r0_strides
);
unpack_host_tensor_descriptor
(
r0_desc
,
r0_lengths
,
r0_strides
);
copy
(
problem_size
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
ck
::
ranges
::
copy
(
problem_size
.
conv_filter_strides_
,
begin
(
conv_filter_strides
));
copy
(
problem_size
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
ck
::
ranges
::
copy
(
problem_size
.
conv_filter_dilations_
,
begin
(
conv_filter_dilations
));
copy
(
problem_size
.
input_left_pads_
,
begin
(
input_left_pads
));
ck
::
ranges
::
copy
(
problem_size
.
input_left_pads_
,
begin
(
input_left_pads
));
copy
(
problem_size
.
input_right_pads_
,
begin
(
input_right_pads
));
ck
::
ranges
::
copy
(
problem_size
.
input_right_pads_
,
begin
(
input_right_pads
));
// run Conv + Reduction on device
// run Conv + Reduction on device
auto
conv
=
DeviceInstance
<
NDimSpatial
>
{};
auto
conv
=
DeviceInstance
<
NDimSpatial
>
{};
...
@@ -276,16 +273,13 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
...
@@ -276,16 +273,13 @@ bool run_convnd_fwd_max(const ck::utils::conv::ConvParam& problem_size,
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
conv_output_device_buf
.
FromDevice
(
conv_output_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
r0_device_buf
.
FromDevice
(
r0_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
conv_output_device
.
mData
,
return
ck
::
utils
::
check_err
(
conv_output_device
,
conv_output_host
.
mData
,
conv_output_host
,
"Error: incorrect results! (Matrix E)"
,
"Error: incorrect results! (Matrix E)"
,
1
e
-
5
f
,
1
e
-
5
f
,
1
e
-
4
f
)
&&
1
e
-
4
f
)
&&
ck
::
utils
::
check_err
(
r0_device
.
mData
,
ck
::
utils
::
check_err
(
r0_host
.
mData
,
r0_device
,
r0_host
,
"Error: incorrect results! (Matrix R0)"
,
1
e
-
5
f
,
1
e
-
4
f
);
"Error: incorrect results! (Matrix R0)"
,
1
e
-
5
f
,
1
e
-
4
f
);
}
}
return
true
;
return
true
;
...
...
example/12_reduce/reduce_blockwise.cpp
View file @
289f15de
...
@@ -142,7 +142,7 @@ bool reduce_blockwise_test(bool do_verification,
...
@@ -142,7 +142,7 @@ bool reduce_blockwise_test(bool do_verification,
std
::
array
<
int
,
ShapeType
::
NumReduceDim_
>
arrReduceDims
;
std
::
array
<
int
,
ShapeType
::
NumReduceDim_
>
arrReduceDims
;
std
::
copy
(
reduceDims
.
begin
(),
reduceDims
.
end
()
,
arrReduceDims
.
begin
());
ck
::
ranges
::
copy
(
reduceDims
,
arrReduceDims
.
begin
());
result
=
reduce_blockwise_impl
<
InOutDataType
,
result
=
reduce_blockwise_impl
<
InOutDataType
,
AccDataType
,
AccDataType
,
...
...
example/12_reduce/reduce_blockwise_impl.hpp
View file @
289f15de
...
@@ -10,6 +10,7 @@
...
@@ -10,6 +10,7 @@
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
...
@@ -263,10 +264,10 @@ int reduce_blockwise_impl(bool do_verification,
...
@@ -263,10 +264,10 @@ int reduce_blockwise_impl(bool do_verification,
std
::
array
<
index_t
,
NumOutDim
>
arrOutLengths
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutLengths
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutStrides
;
std
::
array
<
index_t
,
NumOutDim
>
arrOutStrides
;
std
::
copy
(
inLengths
.
begin
(),
inLengths
.
end
()
,
arrInLengths
.
begin
());
ck
::
ranges
::
copy
(
inLengths
,
arrInLengths
.
begin
());
std
::
copy
(
inStrides
.
begin
(),
inStrides
.
end
()
,
arrInStrides
.
begin
());
ck
::
ranges
::
copy
(
inStrides
,
arrInStrides
.
begin
());
std
::
copy
(
outLengths
.
begin
(),
outLengths
.
end
()
,
arrOutLengths
.
begin
());
ck
::
ranges
::
copy
(
outLengths
,
arrOutLengths
.
begin
());
std
::
copy
(
outStrides
.
begin
(),
outStrides
.
end
()
,
arrOutStrides
.
begin
());
ck
::
ranges
::
copy
(
outStrides
,
arrOutStrides
.
begin
());
auto
reduce
=
DeviceReduceInstance
{};
auto
reduce
=
DeviceReduceInstance
{};
...
@@ -324,12 +325,12 @@ int reduce_blockwise_impl(bool do_verification,
...
@@ -324,12 +325,12 @@ int reduce_blockwise_impl(bool do_verification,
#endif
#endif
out_dev
.
FromDevice
(
out
.
mData
.
data
());
out_dev
.
FromDevice
(
out
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
.
mData
,
out_ref
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
out
,
out_ref
);
if
(
OutputIndex
)
if
(
OutputIndex
)
{
{
out_index_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
out_index_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices
.
mData
,
out_indices_ref
.
mData
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
out_indices
,
out_indices_ref
);
};
};
};
};
...
...
Prev
1
2
3
4
5
6
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment