Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
20ddaeba
Commit
20ddaeba
authored
Apr 22, 2024
by
Jun Liu
Browse files
Merge branch 'develop' into amd-develop
parents
c5f1cdf7
43879b89
Changes
369
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
504 additions
and
390 deletions
+504
-390
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+7
-0
example/01_gemm/common.hpp
example/01_gemm/common.hpp
+62
-0
example/01_gemm/gemm_xdl_fp16_fp8_v3.cpp
example/01_gemm/gemm_xdl_fp16_fp8_v3.cpp
+53
-0
example/01_gemm/gemm_xdl_fp16_v3.cpp
example/01_gemm/gemm_xdl_fp16_v3.cpp
+48
-0
example/01_gemm/gemm_xdl_fp8_v3.cpp
example/01_gemm/gemm_xdl_fp8_v3.cpp
+48
-0
example/01_gemm/run_gemm_example_v2.inc
example/01_gemm/run_gemm_example_v2.inc
+211
-0
example/09_convnd_fwd/CMakeLists.txt
example/09_convnd_fwd/CMakeLists.txt
+2
-1
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+7
-2
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+10
-5
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+10
-5
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+10
-5
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
..._weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
+4
-1
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
...d_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
+4
-1
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
...layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
+10
-5
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
+10
-5
example/34_batchnorm/batchnorm_infer_impl.hpp
example/34_batchnorm/batchnorm_infer_impl.hpp
+8
-3
example/44_elementwise_permute/CMakeLists.txt
example/44_elementwise_permute/CMakeLists.txt
+0
-5
example/44_elementwise_permute/elementwise_permute.cpp
example/44_elementwise_permute/elementwise_permute.cpp
+0
-121
example/44_elementwise_permute/elementwise_permute_3d.cpp
example/44_elementwise_permute/elementwise_permute_3d.cpp
+0
-118
example/44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
...44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
+0
-113
No files found.
example/01_gemm/CMakeLists.txt
View file @
20ddaeba
...
@@ -22,6 +22,13 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16)
...
@@ -22,6 +22,13 @@ add_example_dependencies(example_gemm_xdl example_gemm_xdl_fp16)
add_example_executable
(
example_gemm_xdl_fp16_v2 gemm_xdl_fp16_v2.cpp
)
add_example_executable
(
example_gemm_xdl_fp16_v2 gemm_xdl_fp16_v2.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_v2
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_v2
)
add_example_executable
(
example_gemm_xdl_fp16_v3 gemm_xdl_fp16_v3.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_v3
)
add_example_executable
(
example_gemm_xdl_fp8_v3 gemm_xdl_fp8_v3.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp8_v3
)
add_example_executable
(
example_gemm_xdl_fp16_fp8_v3 gemm_xdl_fp16_fp8_v3.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_fp8_v3
)
add_example_executable
(
example_gemm_xdl_wavelet_fp16 gemm_xdl_wavelet_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_wavelet_fp16 gemm_xdl_wavelet_fp16.cpp
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_wavelet_fp16
)
add_example_dependencies
(
example_gemm_xdl example_gemm_xdl_wavelet_fp16
)
...
...
example/01_gemm/common.hpp
View file @
20ddaeba
...
@@ -46,6 +46,19 @@ struct ProblemSizeStreamK final
...
@@ -46,6 +46,19 @@ struct ProblemSizeStreamK final
ck
::
index_t
NumSKBlocks
=
-
1
;
ck
::
index_t
NumSKBlocks
=
-
1
;
};
};
struct
ProblemSizeSplitK
final
{
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
KBatch
=
1
;
};
struct
ExecutionConfig
final
struct
ExecutionConfig
final
{
{
bool
do_verification
=
true
;
bool
do_verification
=
true
;
...
@@ -158,3 +171,52 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
...
@@ -158,3 +171,52 @@ bool parse_cmd_args<ProblemSizeStreamK>(int argc,
return
true
;
return
true
;
}
}
template
<
>
bool
parse_cmd_args
<
ProblemSizeSplitK
>
(
int
argc
,
char
*
argv
[],
ProblemSizeSplitK
&
problem_size
,
ExecutionConfig
&
config
)
{
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
>=
10
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
problem_size
.
M
=
std
::
stoi
(
argv
[
4
]);
problem_size
.
N
=
std
::
stoi
(
argv
[
5
]);
problem_size
.
K
=
std
::
stoi
(
argv
[
6
]);
problem_size
.
StrideA
=
std
::
stoi
(
argv
[
7
]);
problem_size
.
StrideB
=
std
::
stoi
(
argv
[
8
]);
problem_size
.
StrideC
=
std
::
stoi
(
argv
[
9
]);
if
(
argc
>=
11
)
{
problem_size
.
KBatch
=
std
::
stoi
(
argv
[
10
]);
}
}
else
{
std
::
cerr
<<
"arg1: verification (0=no, 1=yes)"
<<
std
::
endl
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)"
<<
std
::
endl
<<
"arg3: time kernel (0=no, 1=yes)"
<<
std
::
endl
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC"
<<
std
::
endl
<<
"arg10: KBatch"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
example/01_gemm/gemm_xdl_fp16_fp8_v3.cpp
0 → 100644
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using
ADataType
=
ck
::
f8_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
64
,
16
,
16
,
64
,
16
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
0
,
S
<
8
,
8
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
4
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
#include "run_gemm_example_v2.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/01_gemm/gemm_xdl_fp16_v3.cpp
0 → 100644
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
224
,
256
,
64
,
8
,
2
,
16
,
16
,
7
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
0
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
8
,
2
,
0
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example_v2.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/01_gemm/gemm_xdl_fp8_v3.cpp
0 → 100644
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle_v3.hpp"
using
ADataType
=
ck
::
f8_t
;
using
BDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmV2Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm_Xdl_CShuffleV3
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
256
,
128
,
256
,
128
,
16
,
16
,
16
,
16
,
4
,
8
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
8
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
ck
::
BlockGemmPipelineScheduler
::
Intrawave
,
ck
::
BlockGemmPipelineVersion
::
v3
,
ck
::
f8_t
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example_v2.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_splitk_example
(
argc
,
argv
);
}
example/01_gemm/run_gemm_example_v2.inc
0 → 100644
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
template
<
typename
ProblemType
>
bool
run_gemm
(
const
ProblemType
&
problem_size
,
const
ExecutionConfig
&
config
)
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
static_assert
(
sizeof
(
ck
::
int4_t
)
==
sizeof
(
int8_t
));
#endif
using
namespace
ck
::
literals
;
auto
M
=
problem_size
.
M
;
auto
N
=
problem_size
.
N
;
auto
K
=
problem_size
.
K
;
auto
StrideA
=
problem_size
.
StrideA
;
auto
StrideB
=
problem_size
.
StrideB
;
auto
StrideC
=
problem_size
.
StrideC
;
auto
KBatch
=
problem_size
.
KBatch
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1_
uz
,
stride
});
}
};
auto
f_get_default_stride
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
stride
==
0
)
{
// give a chance if stride is zero, return a default packed stride
if
constexpr
(
std
::
is_same_v
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>
)
{
return
col
;
}
else
{
return
row
;
}
}
else
return
stride
;
};
StrideA
=
f_get_default_stride
(
M
,
K
,
StrideA
,
ALayout
{});
StrideB
=
f_get_default_stride
(
K
,
N
,
StrideB
,
BLayout
{});
StrideC
=
f_get_default_stride
(
M
,
N
,
StrideC
,
CLayout
{});
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
switch
(
config
.
init_method
)
{
case
0
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
case
3
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
BDataType
>
{
1
});
break
;
default
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
#if 0
printf
(
"B matrix:
\n
"
);
for
(
int
in
=
0
;
in
<
N
;
in
++
)
{
for
(
int
ik
=
0
;
ik
<
K
;
ik
++
)
{
printf
(
"%02x "
,
*
(
reinterpret_cast
<
uint8_t
*>
(
&
b_k_n
(
ik
,
in
))));
if
(
ik
%
8
==
7
)
printf
(
"|"
);
}
printf
(
"
\n
"
);
}
#endif
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
#ifdef BUILD_INT4_EXAMPLE
DeviceMem
a_m_k_device_buf
(
sizeof
(
KernelADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
KernelBDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
KernelCDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
const
Tensor
<
KernelADataType
>
a_m_k_converted
(
a_m_k
);
const
Tensor
<
KernelBDataType
>
b_k_n_converted
(
b_k_n
);
a_m_k_device_buf
.
ToDevice
(
a_m_k_converted
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n_converted
.
mData
.
data
());
#else
DeviceMem
a_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_m_k_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_k_n_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
#endif
DeviceMem
workspace
;
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmV2Instance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
float
ave_time
=
0
;
auto
argument
=
gemm
.
MakeArgument
(
#ifdef BUILD_INT4_EXAMPLE
static_cast
<
KernelADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelBDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
KernelCDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
#else
static_cast
<
ADataType
*>
(
a_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_device_buf
.
GetDeviceBuffer
()),
#endif
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
KBatch
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
true
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
,
1
});
#ifdef BUILD_INT4_EXAMPLE
Tensor
<
CDataType
>
c_m_n_device_result_converted
(
c_m_n_host_result
.
mDesc
);
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result_converted
.
mData
.
data
());
c_m_n_device_result
=
c_m_n_device_result_converted
.
CopyAsType
<
CDataType
>
();
return
ck
::
utils
::
check_err
(
c_m_n_device_result_converted
,
c_m_n_host_result
);
#else
c_m_n_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
,
c_m_n_host_result
);
#endif
}
if
(
config
.
time_kernel
)
{
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
2_
uz
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
return
pass
;
}
bool
run_gemm_splitk_example
(
int
argc
,
char
*
argv
[])
{
ProblemSizeSplitK
problem_size
;
ExecutionConfig
config
;
return
!
parse_cmd_args
(
argc
,
argv
,
problem_size
,
config
)
||
run_gemm
(
problem_size
,
config
);
}
example/09_convnd_fwd/CMakeLists.txt
View file @
20ddaeba
...
@@ -3,7 +3,8 @@ add_example_executable(example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp)
...
@@ -3,7 +3,8 @@ add_example_executable(example_convnd_fwd_xdl_fp16 convnd_fwd_xdl_fp16.cpp)
add_example_executable
(
example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_bf16 convnd_fwd_xdl_bf16.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_int8 convnd_fwd_xdl_int8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp8 convnd_fwd_xdl_fp8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp8 convnd_fwd_xdl_fp8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp
)
# FIXME: re-enable this exampe as test when SWDEV-335738 is fixed
add_example_executable_no_testing
(
example_convnd_fwd_xdl_fp64 convnd_fwd_xdl_fp64.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_bf8 convnd_fwd_xdl_bf8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_bf8 convnd_fwd_xdl_bf8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp16_comp_fp8 convnd_fwd_xdl_fp16_comp_fp8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp16_comp_fp8 convnd_fwd_xdl_fp16_comp_fp8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp8_bf8 convnd_fwd_xdl_fp8_bf8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_fp8_bf8 convnd_fwd_xdl_fp8_bf8.cpp
)
...
...
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -27,7 +27,12 @@ using DeviceElementwiseAddInstance =
...
@@ -27,7 +27,12 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
2
,
2
,
64
,
64
,
64
,
8
,
8
,
8
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
,
8
>
,
ck
::
Sequence
<
8
>>
;
ck
::
Sequence
<
8
>>
;
...
...
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
3
,
3
,
8
,
64
,
ck
::
Sequence
<
1
,
8
>
,
16
,
ck
::
Sequence
<
8
>>
;
16
,
2
,
2
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
1
,
2
>
,
ck
::
Sequence
<
2
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
void
host_broadcast3D_am_bmnk
(
HostTensorC
&
C
,
...
...
example/19_binary_elementwise/elementwise_add_1d.cpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -25,9 +25,14 @@ using DeviceElementwiseAddInstance =
...
@@ -25,9 +25,14 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
1
,
1
,
8
,
64
,
ck
::
Sequence
<
8
,
8
>
,
16
,
ck
::
Sequence
<
8
>>
;
16
,
2
,
2
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
2
,
2
>
,
ck
::
Sequence
<
2
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise1D
(
void
host_elementwise1D
(
...
...
example/19_binary_elementwise/elementwise_add_4d.cpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <cstdlib>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/check_err.hpp"
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
...
@@ -27,9 +27,14 @@ using DeviceElementwiseAddInstance =
ck
::
Tuple
<
CDataType
>
,
ck
::
Tuple
<
CDataType
>
,
Add
,
Add
,
4
,
4
,
8
,
64
,
ck
::
Sequence
<
8
,
8
>
,
2
,
ck
::
Sequence
<
8
>>
;
128
,
2
,
2
,
ck
::
Sequence
<
1
,
0
>
,
ck
::
Sequence
<
2
,
2
>
,
ck
::
Sequence
<
2
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
HostTensorC
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorC
&
C
,
void
host_elementwise4D
(
HostTensorC
&
C
,
...
...
example/20_grouped_conv_bwd_weight/grouped_conv_bwd_weight_xdl_fp16_comp_bf8_fp8.cpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "common.hpp"
...
@@ -78,6 +78,9 @@ using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWe
...
@@ -78,6 +78,9 @@ using HostConvBwdWeightInstance = ck::tensor_operation::host::ReferenceConvBwdWe
InElementOp
,
InElementOp
,
WeiElementOp
,
WeiElementOp
,
OutElementOp
,
OutElementOp
,
0
,
0
,
0
,
ComputeTypeA
,
ComputeTypeA
,
ComputeTypeB
>
;
ComputeTypeB
>
;
...
...
example/20_grouped_conv_bwd_weight/run_grouped_conv_bwd_weight_example.inc
View file @
20ddaeba
...
@@ -119,7 +119,10 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
...
@@ -119,7 +119,10 @@ bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
conv_param
.
input_right_pads_
,
conv_param
.
input_right_pads_
,
InElementOp
{},
InElementOp
{},
WeiElementOp
{},
WeiElementOp
{},
OutElementOp
{});
OutElementOp
{},
{},
{},
{});
ref_invoker
.
Run
(
ref_argument
);
ref_invoker
.
Run
(
ref_argument
);
...
...
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_naive_fp16.cpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
...
@@ -9,7 +9,7 @@
...
@@ -9,7 +9,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -103,9 +103,14 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseI
...
@@ -103,9 +103,14 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseI
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
NormalizeFunctor
,
2
,
2
,
8
,
// MPerthread
64
,
// BlockSize
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
16
,
// MPerBlock
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
16
,
// NPerBlock
2
,
// MPerthread
2
,
// NPerthread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
2
,
1
,
1
,
2
,
2
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
2
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
return
HostTensorDescriptor
({
len
},
{
stride
});
...
...
example/21_gemm_layernorm/gemm_layernorm_xdl_naive_fp16.cpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
...
@@ -9,7 +9,7 @@
...
@@ -9,7 +9,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_multiple_r_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/device_memory.hpp"
...
@@ -102,9 +102,14 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseI
...
@@ -102,9 +102,14 @@ using DeviceNormalizeInstance = ck::tensor_operation::device::DeviceElementwiseI
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
ck
::
Tuple
<
LayerNormOutDataType
>
,
// y
NormalizeFunctor
,
NormalizeFunctor
,
2
,
2
,
8
,
// MPerthread
64
,
// BlockSize
ck
::
Sequence
<
8
,
1
,
1
,
8
,
8
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
16
,
// MPerBlock
ck
::
Sequence
<
8
>>
;
// scalarPerVector: y(layerNorm_out)
16
,
// NPerBlock
2
,
// MPerthread
2
,
// NPerthread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
2
,
1
,
1
,
2
,
2
>
,
// scalarPerVector: x(gemm_out), mean, meansquare, gamma, beta
ck
::
Sequence
<
2
>>
;
// scalarPerVector: y(layerNorm_out)
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
auto
f_host_tensor_descriptor1d
=
[](
std
::
size_t
len
,
std
::
size_t
stride
)
{
return
HostTensorDescriptor
({
len
},
{
stride
});
return
HostTensorDescriptor
({
len
},
{
stride
});
...
...
example/34_batchnorm/batchnorm_infer_impl.hpp
View file @
20ddaeba
// SPDX-License-Identifier: MIT
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#pragma once
...
@@ -10,7 +10,7 @@
...
@@ -10,7 +10,7 @@
#include "ck/utility/sequence.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_
dynamic_vector_dims_
impl.hpp"
#include "batchnorm_common.hpp"
#include "batchnorm_common.hpp"
...
@@ -54,7 +54,12 @@ int bnorm_infer(
...
@@ -54,7 +54,12 @@ int bnorm_infer(
ck
::
Tuple
<
YDataType
>
,
// y
ck
::
Tuple
<
YDataType
>
,
// y
NormalizeInInfer
,
NormalizeInInfer
,
Rank
,
Rank
,
2
,
// MPerthread
64
,
// BlockSize
32
,
// MPerBlock
32
,
// NPerBlock
4
,
// MPerthread
4
,
// NPerthread
ck
::
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
ck
::
Sequence
<
1
,
1
,
1
,
1
,
1
>
,
// x, mean, variance, scale, bias
ck
::
Sequence
<
1
,
1
,
1
,
1
,
1
>
,
// x, mean, variance, scale, bias
ck
::
Sequence
<
1
>>
;
// scalarPerVector: y
ck
::
Sequence
<
1
>>
;
// scalarPerVector: y
...
...
example/44_elementwise_permute/CMakeLists.txt
View file @
20ddaeba
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_row elementwise_permute_4D_fp32_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_row elementwise_permute_4D_fp32_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_row elementwise_permute_4D_fp16_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_row elementwise_permute_4D_fp16_row.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp32_col elementwise_permute_4D_fp32_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_col elementwise_permute_4D_fp16_col.cpp
)
add_example_executable
(
example_elementwise_binary_4D_fp16 elementwise_binary_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_binary_4D_fp16 elementwise_binary_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_trinary_4D_fp16 elementwise_trinary_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_trinary_4D_fp16 elementwise_trinary_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute elementwise_permute.cpp
)
if
((
NOT GPU_TARGETS MATCHES
"gfx940"
)
AND
(
NOT GPU_TARGETS MATCHES
"gfx941"
)
AND
(
NOT GPU_TARGETS MATCHES
"gfx942"
))
add_example_executable
(
example_elementwise_permute_3d elementwise_permute_3d.cpp
)
endif
()
example/44_elementwise_permute/elementwise_permute.cpp
deleted
100644 → 0
View file @
c5f1cdf7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwiseImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
5
,
// NumDim
8
,
// MPerThread
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
std
::
vector
<
std
::
size_t
>
ncdhw
=
{
16
,
8
,
8
,
8
,
8
};
std
::
vector
<
std
::
size_t
>
ndhwc
=
{
16
,
8
,
8
,
8
,
8
};
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
;
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
static_cast
<
int
>
(
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]),
static_cast
<
int
>
(
ncdhw
[
3
]
*
ncdhw
[
4
]),
static_cast
<
int
>
(
ncdhw
[
4
]),
1
,
static_cast
<
int
>
(
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])};
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
static_cast
<
int
>
(
ndhwc
[
1
]
*
ndhwc
[
2
]
*
ndhwc
[
3
]
*
ndhwc
[
4
]),
static_cast
<
int
>
(
ndhwc
[
2
]
*
ndhwc
[
3
]
*
ndhwc
[
4
]),
static_cast
<
int
>
(
ndhwc
[
3
]
*
ndhwc
[
4
]),
static_cast
<
int
>
(
ndhwc
[
4
]),
1
};
ck
::
ranges
::
copy
(
ncdhw
,
ab_lengths
.
begin
());
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (ncdhw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (ndhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
])
+
sizeof
(
BDataType
)
*
(
ncdhw
[
0
]
*
ncdhw
[
1
]
*
ncdhw
[
2
]
*
ncdhw
[
3
]
*
ncdhw
[
4
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
PassThrough
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_3d.cpp
deleted
100644 → 0
View file @
c5f1cdf7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise3dImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// ElementwiseOp
2
,
// NumDim_m, {N, C}
2
,
// NumDim_n, {H, W}
1
,
// NumDim_k, {D}
4
,
// MPerThread
4
,
// NPerThread
4
,
// KPerThread
ck
::
Sequence
<
4
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
4
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
int
N
=
4
;
const
int
C
=
16
;
const
int
H
=
32
;
const
int
W
=
5
;
const
int
D
=
16
;
std
::
array
<
ck
::
index_t
,
5
>
ab_lengths
{
N
,
C
,
H
,
W
,
D
};
std
::
array
<
ck
::
index_t
,
5
>
a_strides
=
{
C
*
D
*
H
*
W
,
H
*
W
,
W
,
1
,
D
*
H
*
W
};
// N, C, D, H, W
std
::
array
<
ck
::
index_t
,
5
>
b_strides
=
{
C
*
H
*
W
*
D
,
H
*
W
*
D
,
W
*
D
,
D
,
1
};
// N, D, H, W, C
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (ncdhw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (ndhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
ab_lengths
[
0
]
*
ab_lengths
[
1
]
*
ab_lengths
[
2
]
*
ab_lengths
[
3
]
*
ab_lengths
[
4
];
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
+
sizeof
(
BDataType
))
*
(
ab_lengths
[
0
]
*
ab_lengths
[
1
]
*
ab_lengths
[
2
]
*
ab_lengths
[
3
]
*
ab_lengths
[
4
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
PassThrough
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
example/44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
deleted
100644 → 0
View file @
c5f1cdf7
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_2d_impl.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise2dImpl
<
ck
::
Tuple
<
ADataType
>
,
// InDataTypeTuple
ck
::
Tuple
<
BDataType
>
,
// OutDataTypeTuple
PassThrough
,
// Elementwise op
3
,
// NumDim_M
1
,
// NumDim_N
1
,
// MPerThread
1
,
// NPerThread
ck
::
Sequence
<
1
>
,
// InScalarPerVectorSeq
ck
::
Sequence
<
1
>>
;
// OutScalarPerVectorSeq
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
int
N
=
120
;
const
int
C
=
128
;
const
int
H
=
32
;
const
int
W
=
32
;
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
{
N
,
H
,
W
,
C
};
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
C
*
H
*
W
,
W
,
1
,
H
*
W
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
H
*
W
*
C
,
W
*
C
,
C
,
1
};
std
::
array
<
Tensor
<
ADataType
>
,
1
>
as
=
{
Tensor
<
ADataType
>
(
ab_lengths
,
a_strides
)};
Tensor
<
ADataType
>&
a
=
as
[
0
];
Tensor
<
BDataType
>
b
(
ab_lengths
,
b_strides
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
ab_lengths
[
0
]
*
ab_lengths
[
1
]
*
ab_lengths
[
2
]
*
ab_lengths
[
3
];
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
+
sizeof
(
BDataType
))
*
(
ab_lengths
[
0
]
*
ab_lengths
[
1
]
*
ab_lengths
[
2
]
*
ab_lengths
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
BDataType
>
host_b
(
ab_lengths
,
b_strides
);
using
ReferenceElementwiseInstance
=
ck
::
tensor_operation
::
host
::
ReferenceElementwise
<
1
,
ADataType
,
BDataType
,
PassThrough
>
;
auto
ref_elementwise
=
ReferenceElementwiseInstance
{};
auto
ref_invoker
=
ref_elementwise
.
MakeInvoker
();
auto
ref_argument
=
ref_elementwise
.
MakeArgument
(
as
,
host_b
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
Prev
1
2
3
4
5
6
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment