Commit 1f6b546e authored by Po Yen Chen's avatar Po Yen Chen
Browse files

Sync fmha fwd splitkv codegen logics

parent 7cd4e574
......@@ -12,9 +12,9 @@ from typing import List, Optional, Tuple, Union
from codegen.cmake_config import *
from codegen.cpp_symbol_map import *
import codegen.ops.fmha_fwd
from codegen.ops.fmha_fwd import (
FmhaFwdTileSize,
FmhaFwdApiTrait,
FMHA_FWD_KERNEL_HEADER,
FMHA_FWD_API_PER_DTYPE,
FMHA_FWD_API_PER_HDIM_CASE,
......@@ -48,7 +48,7 @@ using fmha_dtype_{F_idx} = {F_dtype};
using fmha_mask_{F_idx} = {F_mask};
namespace {{
template <bool kHasUnevenSplits>
template <bool kIsMultipleSplits, bool kHasUnevenSplits = kIsMultipleSplits>
struct kernel_runner {{
using fmha_block_tile = ck_tile::sequence<{F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}>;
......@@ -68,7 +68,7 @@ using fmha_trait = ck_tile::TileFmhaFwdSplitKVTraits<{F_spad},
{F_lse},
{F_squant},
{F_pagedkv},
kHasUnevenSplits,
kIsMultipleSplits && kHasUnevenSplits,
{F_occupancy}>;
using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
......@@ -81,7 +81,11 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::LSEDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::PDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
std::conditional_t<
kIsMultipleSplits,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::OaccDataType,
typename FmhaFwdTypeConfig<fmha_dtype_{F_idx}>::ODataType
>,
fmha_shape,
{F_mode},
fmha_mask_{F_idx},
......@@ -90,10 +94,17 @@ using fmha_pipeline_problem = ck_tile::BlockFmhaFwdSplitKVPipelineProblem<
using fmha_pipeline = {F_pipeline}<
fmha_pipeline_problem>;
/// FIXME: use {F_spad}/{F_dvpad} as kPadM/kPadN parameters after solving
/// store_tile_raw() data corruption issue
using fmha_epilogue =
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
{F_spad}, {F_dvpad}>>;
ck_tile::Default2DEpilogue<ck_tile::Default2DEpilogueProblem<
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
std::conditional_t<
kIsMultipleSplits,
typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType,
typename FmhaFwdTypeConfig<{F_dtype}>::ODataType
>,
false, false>>;
using fmha_kernel =
ck_tile::FmhaFwdSplitKVKernel<fmha_pipeline, fmha_epilogue>;
......@@ -118,25 +129,30 @@ using trait_{F_idx} = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F
template<>
void fmha_fwd_splitkv_oneshot_<trait_{F_idx}>(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if constexpr({F_mode} == false) {{ // batch mode
// we don't check every seqlen_k values for kvcache
if (a.seqlen_k_ptr != nullptr) {{
kernel_runner<true>::run(s, a);
// make sure F_bn0 is divisible by F_bk1
}} else if (a.seqlen_k % (a.num_splits * {F_bn0}) == 0) {{
kernel_runner<false>::run(s, a);
}} else {{
kernel_runner<true>::run(s, a);
if (1 < a.num_splits) {{
constexpr bool kIsMultipleSplits = true;
if constexpr({F_mode} == false) {{ // batch mode
// we don't check every seqlen_k values for kvcache
if (a.seqlen_k_ptr != nullptr) {{
kernel_runner<kIsMultipleSplits, /*kHasUnevenSplits=*/true>::run(s, a);
// make sure F_bn0 is divisible by F_bk1
}} else if (a.seqlen_k % (a.num_splits * {F_bn0}) == 0) {{
kernel_runner<kIsMultipleSplits, /*kHasUnevenSplits=*/false>::run(s, a);
}} else {{
kernel_runner<kIsMultipleSplits, /*kHasUnevenSplits=*/true>::run(s, a);
}}
}} else {{ // group mode
kernel_runner<kIsMultipleSplits, /*kHasUnevenSplits=*/true>::run(s, a);
}}
}} else {{
kernel_runner<true>::run(s, a);
kernel_runner</*kIsMultipleSplits=*/false>::run(s, a);
}}
}}
template<>
std::string fmha_fwd_splitkv_get_name_<trait_{F_idx}>()
{{
using k_ = kernel_runner<true>::fmha_kernel; /// FIXME: choose real kernel type
using k_ = kernel_runner<true, true>::fmha_kernel; /// FIXME: choose real kernel type
return k_::GetName();
}}
"""
......@@ -220,19 +236,32 @@ FMHA_FWD_SPLITKV_API_FILENAME="fmha_fwd_splitkv_api.cpp"
FMHA_FWD_SPLITKV_API="""
#include <iostream>
template<typename fmha_fwd_splitkv_traits_, typename fmha_fwd_splitkv_combine_traits_>
template<typename fmha_fwd_splitkv_traits_, typename fmha_fwd_splitkv_combine_traits_ = void>
float fmha_fwd_splitkv_(const ck_tile::stream_config& s, fmha_fwd_splitkv_args a)
{{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< ", " << fmha_fwd_splitkv_combine_get_name_<fmha_fwd_splitkv_combine_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_combine_oneshot_<fmha_fwd_splitkv_combine_traits_>(s_, a); }}
);
// fmha_fwd_splitkv_combine_traits_=void, launch splitkv kernel only
if constexpr (std::is_same_v<fmha_fwd_splitkv_combine_traits_, void>) {{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }}
);
// launch both splitkv & combine kernels
}} else {{
if(s.log_level_ > 0)
std::cout
<< ", " << fmha_fwd_splitkv_get_name_<fmha_fwd_splitkv_traits_>()
<< ", " << fmha_fwd_splitkv_combine_get_name_<fmha_fwd_splitkv_combine_traits_>()
<< std::flush;
return ck_tile::launch_kernel(s,
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_oneshot_<fmha_fwd_splitkv_traits_>(s_, a); }},
[=](const ck_tile::stream_config& s_){{ fmha_fwd_splitkv_combine_oneshot_<fmha_fwd_splitkv_combine_traits_>(s_, a); }}
);
}}
}}
float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const ck_tile::stream_config& s){{
......@@ -244,28 +273,45 @@ float fmha_fwd_splitkv(fmha_fwd_splitkv_traits t, fmha_fwd_splitkv_args a, const
FMHA_FWD_SPLITKV_API_INNER_DISPATCH=""" {F_if}((t.is_group_mode == {F_mode}) && (t.is_v_rowmajor == {F_vlayout}) && ({F_mask_check}) && (t.bias_type == {F_bias_check}) && (t.do_fp8_static_quant == {F_squant}) &&
((a.block_table_ptr != nullptr) == {F_pagedkv}) && ({F_scheck}) && ({F_skcheck}) && ({F_dcheck}) && ({F_dvcheck})) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
// get combine kernel tile sizes
using OaccDataType = typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType;
constexpr ck_tile::index_t kM0 = ck_tile::BlockFmhaSplitKVCombinePipelineTileSizes<OaccDataType, /*F_bn1=*/32>::kM0;
// make sure we can reuse the padding flags in combine kernels
static_assert({F_bm0} % kM0 == 0);
static_assert({F_bn1} % 32 == 0);
if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, FmhaFwdFp8>) {{
return -1;
if (1 < a.num_splits) {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
// get combine kernel tile sizes
using OaccDataType = typename FmhaFwdTypeConfig<{F_dtype}>::OaccDataType;
constexpr ck_tile::index_t kM0 = ck_tile::BlockFmhaSplitKVCombinePipelineTileSizes<OaccDataType, /*F_bn1=*/32>::kM0;
// make sure we can reuse the padding flags in combine kernels
static_assert({F_bm0} % kM0 == 0);
static_assert({F_bn1} % 32 == 0);
if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, FmhaFwdFp8>) {{
return -1;
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, /*F_bn1=*/32, true, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, /*F_bn1=*/32, true, {F_squant}, {F_spad}, {F_dvpad}>;
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, /*F_bn1=*/32, false, {F_squant}, {F_spad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
}}
}} else {{
using traits2_ = fmha_fwd_splitkv_combine_traits_<{F_hdim}, {F_dtype}, {F_mode}, /*F_bn1=*/32, false, {F_squant}, {F_spad}, {F_dvpad}>;
if (t.has_lse) {{
if constexpr (std::is_same_v<{F_dtype}, FmhaFwdFp8>) {{
return -1;
}} else {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, true, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_>(s, a);
}}
}} else {{
using traits_ = fmha_fwd_splitkv_traits_<{F_hdim}, {F_dtype}, {F_mode}, {F_bm0}, {F_bn0}, {F_bk0}, {F_bn1}, {F_bk1}, {F_bk0max}, {F_vlayout}, {F_pipeline_enum}, {F_mask}, {F_bias}, false, {F_squant}, {F_pagedkv}, {F_spad}, {F_skpad}, {F_dpad}, {F_dvpad}>;
return fmha_fwd_splitkv_<traits_, traits2_>(s, a);
return fmha_fwd_splitkv_<traits_>(s, a);
}}
}}
}}
"""
......@@ -605,7 +651,7 @@ def get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype : str) -> Optional[d
### '96' : FmhaFwdSplitKVCombineTileSize(32, -1),
'128' : FmhaFwdSplitKVCombineTileSize(32, -1),
'256' : FmhaFwdSplitKVCombineTileSize(32, -1),
}
}
elif dtype == 'fp8' or dtype == 'bf8':
return {
'64' : FmhaFwdSplitKVCombineTileSize(32, -1),
......@@ -629,26 +675,28 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
squant = 't' if dtype == 'fp8' else 'f'
pipelines = []
if dtype in ['fp16', 'bf16']:
for mask, bias, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"]):
for mask, bias, lse, pagedkv in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ["t", "f"], ["t", "f"]):
# TODO: use async pipeline when compiler is more stable
if hdim == 256 or hdim in [32, 64, 128]: ### [32, 64, 96, 128]:
# if True:
pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 'f', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 'f', 'f', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
else:
pipelines.append(Pipeline('qr_async', 'row', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'row', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask))
pipelines.append(Pipeline('qr_async', 'col', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask))
if receipt == 1:
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, 't', squant, pagedkv, mask)) # TODO: cover arbitraty hdim
pipelines.append(Pipeline('qr', 'col', 't', 'f', 't', 't', bias, 't', squant, pagedkv, mask)) # TODO: cover arbitraty hdim
pipelines.append(Pipeline('qr', 'row', 't', 't', 't', 't', bias, lse, squant, pagedkv, mask)) # TODO: cover arbitraty hdim
pipelines.append(Pipeline('qr', 'col', 't', 'f', 't', 't', bias, lse, squant, pagedkv, mask)) # TODO: cover arbitraty hdim
elif dtype in ['fp8', 'bf8']:
for mask, bias in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys()):
pipelines.append(Pipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, 't', squant, 'f', mask))
for mask, bias, lse in itertools.product(get_mask_map(mask_impl).keys(), BIAS_MAP.keys(), ['t', 'f']):
pipelines.append(Pipeline('qr', 'col', 'f', 'f', 'f', 'f', bias, lse, squant, 'f', mask))
elif dtype in ['fp8fp16', 'fp8bf16']:
# TODO
None
......@@ -660,18 +708,27 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
api_pool = FmhaFwdSplitKVApiPool(mask_impl)
for dtype in FWD_DTYPE_MAP.keys():
d = get_fmha_fwd_tile_dict_from_dtype(dtype)
if d == None:
prefill_tiles = codegen.ops.fmha_fwd.get_fmha_fwd_tile_dict_from_dtype(dtype)
decode_tiles = get_fmha_fwd_tile_dict_from_dtype(dtype)
if decode_tiles == None:
continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()):
tile = d[hdim_str]
# make sure if all the hdim str keys in decode_tiles are also available in prefill_tiles
assert all(tile in prefill_tiles.keys() for tile in decode_tiles.keys())
for hdim_str, mode in itertools.product(decode_tiles.keys(), MODE_MAP.keys()):
prefill_tile = prefill_tiles[hdim_str]
decode_tile = decode_tiles[hdim_str]
hdim = int(hdim_str)
for pipeline in get_pipelines(dtype, hdim):
if mode == "group":
if pipeline.F_spad != 't' or pipeline.F_skpad != 't':
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
is_prefill = (dtype in ['fp16', 'bf16'] and mode == "group" and pipeline.F_pagedkv == 't')
tile = prefill_tile if is_prefill else decode_tile
k = Kernel(F_idx=0,
F_hdim=hdim,
F_dtype=dtype,
......@@ -683,8 +740,11 @@ def get_fwd_splitkv_blobs(kernel_filter : Optional[str], receipt, mask_impl) ->
if not fnmatch.fnmatch(k.name, kernel_filter):
continue
if receipt == 2:
is_chunked_prefill = (mode == 'group' and pipeline.F_pagedkv == 't')
cond = dtype in ['fp16', 'bf16']
cond &= pipeline.F_vlayout == 'row'
# use vlayout=row for chunked prefill
cond = cond and ((pipeline.F_vlayout == 'row' and not is_chunked_prefill) or (pipeline.F_vlayout == 'col' and is_chunked_prefill))
cond &= pipeline.F_bias in ['no', 'alibi']
cond &= pipeline.F_squant == 'f'
if not cond:
......@@ -723,12 +783,11 @@ def get_fwd_splitkv_combine_blobs(kernel_filter : Optional[str], receipt) -> Lis
d = get_fmha_fwd_splitkv_combine_tile_dict_from_dtype(dtype)
if d == None:
continue
#for hdim_str, mode, mask, bias, lse in itertools.product(d.keys(), MODE_MAP.keys(), MASK_MAP.keys(), ["t", "f"], ["t", "f"]):
for hdim_str, mode in itertools.product(d.keys(), MODE_MAP.keys()):
tile = d[hdim_str]
hdim = int(hdim_str)
for pipeline in get_pipelines(dtype, hdim):
if mode == "group":
if mode == 'group':
if pipeline.F_spad != 't':
# in group mode, spad/skpad must be true, since we can't predict if seqlen of current batch need pad or not
continue
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment