Unverified Commit 19c5d6e6 authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

Gemm alpha beta profiler (fp32 & fp16) (#91)



* [What] Refactor verification of gemm alpha_beta, move to reference operation
[Why] Sync with other verification

* Profile mk_nk for gemm bias 2d

* Support bias 2d with mn * kn in profiler

* Support bias 2d with km*kn and km*nk in profiler

* Support fp32 bias 2d in profiler

* format

* format
Co-authored-by: default avatarrocking <chunylai@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent 2778e997
...@@ -13,7 +13,7 @@ include_directories(BEFORE ...@@ -13,7 +13,7 @@ include_directories(BEFORE
) )
# device_gemm_instance # device_gemm_instance
set(DEVICE_GEMM_INSTANCE_SOURCE set(DEVICE_GEMM_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp;
...@@ -30,23 +30,35 @@ set(DEVICE_GEMM_INSTANCE_SOURCE ...@@ -30,23 +30,35 @@ set(DEVICE_GEMM_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instance.cpp;
) )
# device_gemm_bias_2d_instance
set(DEVICE_GEMM_BIAS_2D_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instance.cpp;
)
# device_gemm_bias_relu_instance # device_gemm_bias_relu_instance
set(DEVICE_GEMM_BIAS_RELU_INSTANCE_SOURCE set(DEVICE_GEMM_BIAS_RELU_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_kn_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_nk_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_kn_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_nk_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_f16_f16_f16_km_nk_mn_instance.cpp;
) )
# device_gemm_bias_relu_add_instance # device_gemm_bias_relu_add_instance
set(DEVICE_GEMM_BIAS_RELU_ADD_INSTANCE_SOURCE set(DEVICE_GEMM_BIAS_RELU_ADD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_kn_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_nk_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_mk_nk_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_kn_mn_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_gemm_xdl_c_shuffle_bias_relu_add_f16_f16_f16_km_nk_mn_instance.cpp;
) )
set(DEVICE_BATCHED_GEMM_INSTANCE_SOURCE set(DEVICE_BATCHED_GEMM_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instance.cpp;
...@@ -56,39 +68,41 @@ set(DEVICE_BATCHED_GEMM_INSTANCE_SOURCE ...@@ -56,39 +68,41 @@ set(DEVICE_BATCHED_GEMM_INSTANCE_SOURCE
) )
# device_conv2d_fwd_instance # device_conv2d_fwd_instance
set(DEVICE_CONV2D_FWD_INSTANCE_SOURCE set(DEVICE_CONV2D_FWD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instance.cpp;
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instance.cpp;
) )
# device_conv2d_fwd_bias_relu_instance # device_conv2d_fwd_bias_relu_instance
set(DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE set(DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_nhwc_kyxc_nhwk_f16_instance.cpp;
) )
# device_conv2d_fwd_bias_relu_add_instance # device_conv2d_fwd_bias_relu_add_instance
set(DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE set(DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_add_nhwc_kyxc_nhwk_f16_instance.cpp;
) )
# device_conv2d_fwd_bias_relu_atomic_add_instance # device_conv2d_fwd_bias_relu_atomic_add_instance
set(DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE set(DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE
${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp; ${PROJECT_SOURCE_DIR}/device_operation/src/device_conv2d_fwd_xdl_c_shuffle_bias_relu_atomic_add_nhwc_kyxc_nhwk_f16_instance.cpp;
) )
add_library(device_gemm_instance SHARED ${DEVICE_GEMM_INSTANCE_SOURCE}) add_library(device_gemm_instance SHARED ${DEVICE_GEMM_INSTANCE_SOURCE})
add_library(device_gemm_bias_relu_instance SHARED ${DEVICE_GEMM_BIAS_RELU_INSTANCE_SOURCE}) add_library(device_gemm_bias_2d_instance SHARED ${DEVICE_GEMM_BIAS_2D_INSTANCE_SOURCE})
add_library(device_gemm_bias_relu_add_instance SHARED ${DEVICE_GEMM_BIAS_RELU_ADD_INSTANCE_SOURCE}) add_library(device_gemm_bias_relu_instance SHARED ${DEVICE_GEMM_BIAS_RELU_INSTANCE_SOURCE})
add_library(device_gemm_bias_relu_add_instance SHARED ${DEVICE_GEMM_BIAS_RELU_ADD_INSTANCE_SOURCE})
add_library(device_batched_gemm_instance SHARED ${DEVICE_BATCHED_GEMM_INSTANCE_SOURCE}) add_library(device_batched_gemm_instance SHARED ${DEVICE_BATCHED_GEMM_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_instance SHARED ${DEVICE_CONV2D_FWD_INSTANCE_SOURCE}) add_library(device_conv2d_fwd_instance SHARED ${DEVICE_CONV2D_FWD_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_bias_relu_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE}) add_library(device_conv2d_fwd_bias_relu_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_bias_relu_add_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE}) add_library(device_conv2d_fwd_bias_relu_add_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_ADD_INSTANCE_SOURCE})
add_library(device_conv2d_fwd_bias_relu_atomic_add_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE}) add_library(device_conv2d_fwd_bias_relu_atomic_add_instance SHARED ${DEVICE_CONV2D_FWD_BIAS_RELU_ATOMIC_ADD_INSTANCE_SOURCE})
target_include_directories(device_gemm_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(device_gemm_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_gemm_bias_2d_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_gemm_bias_relu_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(device_gemm_bias_relu_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_gemm_bias_relu_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(device_gemm_bias_relu_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_include_directories(device_batched_gemm_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(device_batched_gemm_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
...@@ -98,6 +112,7 @@ target_include_directories(device_conv2d_fwd_bias_relu_add_instance SYSTEM PUBLI ...@@ -98,6 +112,7 @@ target_include_directories(device_conv2d_fwd_bias_relu_add_instance SYSTEM PUBLI
target_include_directories(device_conv2d_fwd_bias_relu_atomic_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(device_conv2d_fwd_bias_relu_atomic_add_instance SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
target_compile_features(device_gemm_instance PUBLIC) target_compile_features(device_gemm_instance PUBLIC)
target_compile_features(device_gemm_bias_2d_instance PUBLIC)
target_compile_features(device_gemm_bias_relu_instance PUBLIC) target_compile_features(device_gemm_bias_relu_instance PUBLIC)
target_compile_features(device_gemm_bias_relu_add_instance PUBLIC) target_compile_features(device_gemm_bias_relu_add_instance PUBLIC)
target_compile_features(device_batched_gemm_instance PUBLIC) target_compile_features(device_batched_gemm_instance PUBLIC)
...@@ -107,6 +122,7 @@ target_compile_features(device_conv2d_fwd_bias_relu_add_instance PUBLIC) ...@@ -107,6 +122,7 @@ target_compile_features(device_conv2d_fwd_bias_relu_add_instance PUBLIC)
target_compile_features(device_conv2d_fwd_bias_relu_atomic_add_instance PUBLIC) target_compile_features(device_conv2d_fwd_bias_relu_atomic_add_instance PUBLIC)
set_target_properties(device_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_gemm_bias_2d_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_gemm_bias_relu_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_gemm_bias_relu_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_gemm_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_gemm_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_batched_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_batched_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
...@@ -115,11 +131,12 @@ set_target_properties(device_conv2d_fwd_bias_relu_instance PROPERTIES POSITION_I ...@@ -115,11 +131,12 @@ set_target_properties(device_conv2d_fwd_bias_relu_instance PROPERTIES POSITION_I
set_target_properties(device_conv2d_fwd_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_conv2d_fwd_bias_relu_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_conv2d_fwd_bias_relu_atomic_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(device_conv2d_fwd_bias_relu_atomic_add_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
install(TARGETS device_gemm_instance LIBRARY DESTINATION lib) install(TARGETS device_gemm_instance LIBRARY DESTINATION lib)
install(TARGETS device_gemm_bias_relu_instance LIBRARY DESTINATION lib) install(TARGETS device_gemm_bias_2d_instance LIBRARY DESTINATION lib)
install(TARGETS device_gemm_bias_relu_add_instance LIBRARY DESTINATION lib) install(TARGETS device_gemm_bias_relu_instance LIBRARY DESTINATION lib)
install(TARGETS device_gemm_bias_relu_add_instance LIBRARY DESTINATION lib)
install(TARGETS device_batched_gemm_instance LIBRARY DESTINATION lib) install(TARGETS device_batched_gemm_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_instance LIBRARY DESTINATION lib) install(TARGETS device_conv2d_fwd_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_bias_relu_instance LIBRARY DESTINATION lib) install(TARGETS device_conv2d_fwd_bias_relu_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_bias_relu_add_instance LIBRARY DESTINATION lib) install(TARGETS device_conv2d_fwd_bias_relu_add_instance LIBRARY DESTINATION lib)
install(TARGETS device_conv2d_fwd_bias_relu_atomic_add_instance LIBRARY DESTINATION lib) install(TARGETS device_conv2d_fwd_bias_relu_atomic_add_instance LIBRARY DESTINATION lib)
...@@ -490,7 +490,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d ...@@ -490,7 +490,7 @@ struct DeviceGemmXdl_C_Shuffle_Bias_2d
auto str = std::stringstream(); auto str = std::stringstream();
// clang-format off // clang-format off
str << "DeviceGemmXdl" str << "DeviceGemmXdl_C_Shuffle_Bias_2d"
<< "<" << "<"
<< BlockSize << ", " << BlockSize << ", "
<< MPerBlock << ", " << MPerBlock << ", "
......
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F16, F16, F16, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 8>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Col, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 4, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Row, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
#include <stdlib.h>
#include "config.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AlphaBetaAdd = ck::tensor_operation::element_wise::AlphaBetaAdd;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
using device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances = std::tuple<
// clang-format off
//#############################|AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#############################| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
//#############################| | | | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
//#############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 32, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 8>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 4>,
DeviceGemmXdl_C_Shuffle_Bias_2d< F32, F32, F32, F32, Row, Col, Row, PassThrough, PassThrough, AlphaBetaAdd, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, true, 1, 1, S<1, 1, 16, 1, 1, 4>, 4>
// clang-format on
>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmBiasPtr<PassThrough, PassThrough, AlphaBetaAdd>>& instances)
{
add_device_operation_instances(
instances, device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances{});
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include "device_base.hpp" #include "device_base.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp" #include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp" #include "element_wise_operation.hpp"
#include "reference_gemm_bias_2d.hpp"
template <ck::index_t... Is> template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
...@@ -72,43 +73,14 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle ...@@ -72,43 +73,14 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl 8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on // clang-format on
template <typename AType, using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemmBias2D<ADataType,
typename BType, BDataType,
typename CType, CDataType,
typename C0Type, CDataType,
typename AElementwiseOperation, AccDataType,
typename BElementwiseOperation, AElementOp,
typename CElementwiseOperation> BElementOp,
static void host_verify(const Tensor<AType>& a_m_k, CElementOp>;
const Tensor<BType>& b_k_n,
const Tensor<C0Type>& c0_k_n,
Tensor<CType>& c_m_n,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op)
{
auto f_mk_kn_mn = [&](auto m, auto n) {
const int K = a_m_k.mDesc.GetLengths()[1];
AccDataType v = 0;
AccDataType a = 0;
AccDataType b = 0;
for(int k = 0; k < K; ++k)
{
a_element_op(a, a_m_k(m, k));
b_element_op(b, b_k_n(k, n));
v += a * b;
}
CType y = static_cast<CType>(v);
c_element_op(c_m_n(m, n), y, c0_k_n(m, n));
};
make_ParallelTensorFunctor(f_mk_kn_mn,
c_m_n.mDesc.GetLengths()[0],
c_m_n.mDesc.GetLengths()[1])(std::thread::hardware_concurrency());
}
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
...@@ -259,13 +231,18 @@ int main(int argc, char* argv[]) ...@@ -259,13 +231,18 @@ int main(int argc, char* argv[])
if(do_verification) if(do_verification)
{ {
host_verify(a_m_k, auto ref_gemm = ReferenceGemmInstance{};
b_k_n, auto ref_invoker = ref_gemm.MakeInvoker();
c0_m_n,
c_m_n_host_result, auto ref_argument = ref_gemm.MakeArgument(a_m_k,
AElementOp{}, b_k_n,
BElementOp{}, c0_m_n,
CElementOp{alpha, beta}); c_m_n_host_result,
AElementOp{},
BElementOp{},
CElementOp{alpha, beta});
ref_invoker.Run(ref_argument);
check_error(c_m_n_host_result, c_m_n_device_result); check_error(c_m_n_host_result, c_m_n_device_result);
} }
......
...@@ -14,9 +14,10 @@ include_directories(BEFORE ...@@ -14,9 +14,10 @@ include_directories(BEFORE
) )
# ck_profiler # ck_profiler
set(PROFILER_SOURCE set(PROFILER_SOURCE
src/profiler.cpp src/profiler.cpp
src/profile_gemm.cpp src/profile_gemm.cpp
src/profile_gemm_bias_2d.cpp
src/profile_gemm_bias_relu.cpp src/profile_gemm_bias_relu.cpp
src/profile_gemm_bias_relu_add.cpp src/profile_gemm_bias_relu_add.cpp
src/profile_conv_fwd.cpp src/profile_conv_fwd.cpp
...@@ -30,6 +31,7 @@ add_executable(ckProfiler ${PROFILER_SOURCE}) ...@@ -30,6 +31,7 @@ add_executable(ckProfiler ${PROFILER_SOURCE})
target_link_libraries(ckProfiler PRIVATE host_tensor) target_link_libraries(ckProfiler PRIVATE host_tensor)
target_link_libraries(ckProfiler PRIVATE device_gemm_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_2d_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_add_instance) target_link_libraries(ckProfiler PRIVATE device_gemm_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_instance) target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_instance)
......
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm_bias_2d.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmAlphaBetaPtr = ck::tensor_operation::device::DeviceGemmBiasPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AlphaBetaAdd>;
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmAlphaBetaPtr>&);
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
template <typename ADataType,
typename BDataType,
typename C0DataType,
typename CDataType,
typename AccDataType,
typename ALayout,
typename BLayout,
typename CLayout>
void profile_gemm_bias_2d_impl(int do_verification,
int init_method,
bool do_log,
int nrepeat,
int M,
int N,
int K,
int StrideA,
int StrideB,
int StrideC,
float alpha,
float beta)
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<C0DataType> c0_m_n(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c0_m_n: " << c0_m_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::size_t num_thread = std::thread::hardware_concurrency();
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
c0_m_n.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5}, num_thread);
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
c0_m_n.GenerateTensorValue(GeneratorTensor_3<C0DataType>{-0.5, 0.5}, num_thread);
}
// set zero to c_device_buf
c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::AlphaBetaAdd;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto c_element_op = CElementOp{alpha, beta};
if(do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemmBias2D<ADataType,
BDataType,
C0DataType,
CDataType,
AccDataType,
AElementOp,
BElementOp,
CElementOp>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c0_m_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
ref_invoker.Run(ref_argument);
}
DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c0_device_buf(sizeof(C0DataType) * c0_m_n.mDesc.GetElementSpace());
DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data());
c0_device_buf.ToDevice(c0_m_n.mData.data());
c_device_buf.ToDevice(c_m_n_device_result.mData.data());
// add device GEMM instances
std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmAlphaBetaPtr>
gemm_ptrs;
if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
}
}
else if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
}
}
if(gemm_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device GEMM instance found");
}
std::string best_gemm_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device GEMM instances
for(auto& gemm_ptr : gemm_ptrs)
{
auto argument_ptr =
gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<C0DataType*>(c0_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
a_element_op,
b_element_op,
c_element_op);
auto invoker_ptr = gemm_ptr->MakeInvokerPointer();
if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string gemm_name = gemm_ptr->GetTypeString();
float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm_name << std::endl;
if(tflops > best_tflops)
{
best_gemm_name = gemm_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_m_n_device_result.mData.data());
check_error(c_m_n_host_result, c_m_n_device_result);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c0 : ", c0_m_n.mData, ",") << std::endl;
LogRangeAsType<float>(std::cout << "c_host : ", c_m_n_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << "does not support this GEMM problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}
} // namespace profiler
} // namespace ck
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "profile_gemm_bias_2d_impl.hpp"
enum GemmMatrixLayout
{
MK_KN_MN, // 0
MK_NK_MN, // 1
KM_KN_MN, // 2
KM_NK_MN, // 3
MK_KN_NM, // 4
MK_NK_NM, // 5
KM_KN_NM, // 6
KM_NK_NM, // 7
};
enum GemmDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
};
int profile_gemm_bias_2d(int argc, char* argv[])
{
if(!(argc == 16 || argc == 17))
{
printf("arg1: tensor operation (gemm: GEMM+Bias)\n");
printf("arg2: data type (0: fp32; 1: fp16)\n");
printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
printf(" 1: A[m, k] * B[n, k] = C[m, n];\n");
printf(" 2: A[k, m] * B[k, n] = C[m, n];\n");
printf(" 3: A[k, m] * B[n, k] = C[m, n])\n");
printf("arg4: verification (0: no; 1: yes)\n");
printf("arg5: initialization (0: no init; 1: integer value; 2: decimal value)\n");
printf("arg8: print tensor value (0: no; 1: yes)\n");
printf("arg7: run kernel # of times (>1)\n");
printf("arg8 to 13: M, N, K, StrideA, StrideB, StrideC\n");
printf("arg14: alpha\n");
printf("arg15: beta\n");
printf("arg16: split k into mulitiple batch\n");
exit(1);
}
const int data_type = static_cast<GemmDataType>(std::stoi(argv[2]));
const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const int nrepeat = std::stoi(argv[7]);
const int M = std::stoi(argv[8]);
const int N = std::stoi(argv[9]);
const int K = std::stoi(argv[10]);
const int StrideA = std::stoi(argv[11]);
const int StrideB = std::stoi(argv[12]);
const int StrideC = std::stoi(argv[13]);
const float alpha = std::stof(argv[14]);
const float beta = std::stof(argv[15]);
int KBatch = 1;
if(argc == 17)
KBatch = std::stoi(argv[16]);
if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<float,
float,
float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<float,
float,
float,
float,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<float,
float,
float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else if(data_type == GemmDataType::F32_F32_F32 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<float,
float,
float,
float,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_KN_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::MK_NK_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_KN_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else if(data_type == GemmDataType::F16_F16_F16 && layout == GemmMatrixLayout::KM_NK_MN)
{
ck::profiler::profile_gemm_bias_2d_impl<ck::half_t,
ck::half_t,
ck::half_t,
ck::half_t,
float,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::ColumnMajor,
ck::tensor_layout::gemm::RowMajor>(
do_verification,
init_method,
do_log,
nrepeat,
M,
N,
K,
(StrideA < 0) ? K : StrideA,
(StrideB < 0) ? N : StrideB,
(StrideC < 0) ? N : StrideC,
alpha,
beta);
}
else
{
throw std::runtime_error("wrong! this data_type & layout is not implemented");
}
return 1;
}
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
int profile_gemm(int, char*[]); int profile_gemm(int, char*[]);
int profile_batched_gemm(int, char*[]); int profile_batched_gemm(int, char*[]);
int profile_gemm_bias_2d(int, char*[]);
int profile_gemm_bias_relu(int, char*[]); int profile_gemm_bias_relu(int, char*[]);
int profile_gemm_bias_relu_add(int, char*[]); int profile_gemm_bias_relu_add(int, char*[]);
int profile_conv_fwd(int, char*[]); int profile_conv_fwd(int, char*[]);
...@@ -20,6 +21,10 @@ int main(int argc, char* argv[]) ...@@ -20,6 +21,10 @@ int main(int argc, char* argv[])
{ {
return profile_gemm(argc, argv); return profile_gemm(argc, argv);
} }
else if(strcmp(argv[1], "gemm_bias_2d") == 0)
{
return profile_gemm_bias_2d(argc, argv);
}
else if(strcmp(argv[1], "gemm_bias_relu") == 0) else if(strcmp(argv[1], "gemm_bias_relu") == 0)
{ {
return profile_gemm_bias_relu(argc, argv); return profile_gemm_bias_relu(argc, argv);
...@@ -52,6 +57,7 @@ int main(int argc, char* argv[]) ...@@ -52,6 +57,7 @@ int main(int argc, char* argv[])
{ {
// clang-format off // clang-format off
printf("arg1: tensor operation (gemm: GEMM\n" printf("arg1: tensor operation (gemm: GEMM\n"
" gemm_bias_2d: GEMM+Bias(2D)\n"
" gemm_bias_relu: GEMM+Bias+ReLU\n" " gemm_bias_relu: GEMM+Bias+ReLU\n"
" gemm_bias_relu_add: GEMM+Bias+ReLU+Add\n" " gemm_bias_relu_add: GEMM+Bias+ReLU+Add\n"
" conv_fwd: ForwardConvolution\n" " conv_fwd: ForwardConvolution\n"
......
#ifndef REFERENCE_GEMM_BIAS_BIAS_2D_HPP
#define REFERENCE_GEMM_BIAS_BIAS_2D_HPP
#include <iostream>
#include <sstream>
#include "device_base.hpp"
#include "host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename ADataType,
typename BDataType,
typename C0DataType,
typename CDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
struct ReferenceGemmBias2D : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<ADataType>& a_m_k,
const Tensor<BDataType>& b_k_n,
const Tensor<C0DataType>& c0_m_n,
Tensor<CDataType>& c_m_n,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
: a_m_k_{a_m_k},
b_k_n_{b_k_n},
c0_m_n_{c0_m_n},
c_m_n_{c_m_n},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op}
{
}
const Tensor<ADataType>& a_m_k_;
const Tensor<BDataType>& b_k_n_;
const Tensor<CDataType>& c0_m_n_;
Tensor<CDataType>& c_m_n_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceGemmBias2D::Argument;
float Run(const Argument& arg)
{
auto f_mk_kn_mn = [&](auto m, auto n) {
const int K = arg.a_m_k_.mDesc.GetLengths()[1];
AccDataType a = 0;
AccDataType b = 0;
AccDataType acc = 0;
for(int k = 0; k < K; ++k)
{
arg.a_element_op_(a, arg.a_m_k_(m, k));
arg.b_element_op_(b, arg.b_k_n_(k, n));
acc += a * b;
}
CDataType cast_acc = static_cast<CDataType>(acc);
arg.c_element_op_(arg.c_m_n_(m, n), cast_acc, arg.c0_m_n_(m, n));
};
make_ParallelTensorFunctor(
f_mk_kn_mn, arg.c_m_n_.mDesc.GetLengths()[0], arg.c_m_n_.mDesc.GetLengths()[1])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const device::BaseArgument* p_arg, int) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(const Tensor<ADataType>& a_m_k,
const Tensor<BDataType>& b_k_n,
const Tensor<C0DataType>& c0_m_n,
Tensor<CDataType>& c_m_n,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op)
{
return Argument{a_m_k, b_k_n, c0_m_n, c_m_n, a_element_op, b_element_op, c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceGemmBias2D"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment