Unverified Commit 0d0150db authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

bf16A_Int8B with fastgelu/bias (#1264)

* changed the copy function to v7r2

* adding multi_abd

* in-progress

* add post-load oob check

* debugging

* adjust instances

* add run_lds

* add elemntwise_op

* replace multi_abd_device with v3

* clean up

* clean

* clean

* Added LDSType

* profiling

* adjust oobcheck

* add missing file

* refactor

* clean

* add examples
parent b4032629
......@@ -10,4 +10,7 @@ if(GPU_TARGETS MATCHES "gfx9" AND ((DTYPES MATCHES "int8" AND DTYPES MATCHES "bf
add_executable(client_gemm_bf16_i8_bf16 gemm_xdl_bf16_i8.cpp)
target_link_libraries(client_gemm_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
add_executable(client_gemm_multiply_bf16_i8_bf16 gemm_xdl_multiply_bf16_i8.cpp)
target_link_libraries(client_gemm_multiply_bf16_i8_bf16 PRIVATE composable_kernel::device_gemm_operations)
endif()
......@@ -38,19 +38,19 @@ using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Col;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
......@@ -36,7 +36,7 @@ using D0DataType = BF16;
using DsDataType = ck::Tuple<D0DataType>;
using EDataType = BF16;
using A0Layout = Col;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
......@@ -45,12 +45,12 @@ using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
......@@ -37,19 +37,19 @@ using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Col;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......@@ -74,12 +74,12 @@ struct SimpleDeviceMem
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 64;
ck::index_t N = 1024;
ck::index_t K = 512;
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideB = K;
ck::index_t StrideE = N;
if(argc == 1)
......
......@@ -37,19 +37,19 @@ using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Col;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = FastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <iomanip>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_multi_abd.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType>;
using AccDataType = F32;
using CShuffleDataType = BF16;
using DsDataType = ck::Tuple<B1DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<B1Layout>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = Multiply;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
// clang-format on
int main(int argc, char* argv[])
{
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 7)
{
M = std::stoi(argv[1]);
N = std::stoi(argv[2]);
K = std::stoi(argv[3]);
StrideA = std::stoi(argv[4]);
StrideB = std::stoi(argv[5]);
StrideE = std::stoi(argv[6]);
}
else
{
printf("arg1 to 7: M, N, K, StrideA, StrideB, StrideE\n");
exit(0);
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, Row>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
SimpleDeviceMem a0_device_buf(sizeof(A0DataType) *
f_matrix_space_size(M, K, StrideA, A0Layout{}));
SimpleDeviceMem b0_device_buf(sizeof(B0DataType) *
f_matrix_space_size(K, N, StrideB, B0Layout{}));
SimpleDeviceMem b1_device_buf(sizeof(B1DataType) * f_matrix_space_size(K, N, 0, B1Layout{}));
SimpleDeviceMem e_device_buf(sizeof(EDataType) * f_matrix_space_size(M, N, StrideE, ELayout{}));
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 1;
constexpr ck::index_t NumDTensor = 1;
using DeviceOp = ck::tensor_operation::device::DeviceGemmMultipleABD<AsLayout,
BsLayout,
DsLayout,
Row,
AsDataType,
BsDataType,
DsDataType,
BF16,
AElementOp,
BElementOp,
CDEElementOp>;
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{b1_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB},
std::array<ck::index_t, NumDTensor>{0},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
......@@ -38,19 +38,19 @@ using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Col;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
......@@ -36,7 +36,7 @@ using D0DataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using A0Layout = Col;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
......@@ -45,12 +45,12 @@ using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = FastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
......@@ -52,12 +52,12 @@ using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using DsLayout = ck::Tuple<Row>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
......
add_example_executable(example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp)
add_example_executable(example_gemm_multi_ABD_xdl_bf16_i8 gemm_multi_ABD_xdl_bf16_i8.cpp)
\ No newline at end of file
add_example_executable(example_gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8 gemm_multi_ABD_xdl_bias_fastgelu_bf16_i8.cpp)
add_example_executable(example_gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8 gemm_multi_ABD_xdl_multiply_bias_fastgelu_bf16_i8.cpp)
add_example_executable(example_gemm_multi_ABD_xdl_fastgelu_bf16_i8 gemm_multi_ABD_xdl_fastgelu_bf16_i8.cpp)
......@@ -18,9 +18,12 @@
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
......@@ -41,22 +44,22 @@ using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Col;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<D0Layout>;
using ELayout = Row;
using Scales = ck::tensor_operation::element_wise::Scales;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddFastGelu = ck::tensor_operation::element_wise::AddFastGelu;
using AElementOp = PassThrough;
using BElementOp = Scales;
using BElementOp = Multiply;
using CDEElementOp = AddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
......@@ -64,9 +67,9 @@ using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 128, 16, 128, 32, 8, 8, 16, 16, 1, 4, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 1, 1, 1, 1, S<1, 16, 1, 8>, 1>;
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
......@@ -74,13 +77,13 @@ int main(int argc, char* argv[])
bool time_kernel = false;
// GEMM shape
ck::index_t M = 64;
ck::index_t N = 1024;
ck::index_t K = 512;
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = K;
ck::index_t StrideD = N;
ck::index_t StrideB = N;
ck::index_t StrideD = 0;
ck::index_t StrideE = N;
if(argc == 1)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType, B1DataType>;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = BF16;
using DsDataType = ck::Tuple<>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout, B1Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using Multiply = ck::tensor_operation::element_wise::Multiply;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AElementOp = PassThrough;
using BElementOp = Multiply;
using CDEElementOp = FastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideD = 0;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 2;
constexpr ck::index_t NumDTensor = 0;
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer(),
b1_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB, 0},
std::array<ck::index_t, NumDTensor>{},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<A0DataType> a_m_k({M, K});
Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
for(int n = 0; n < N; ++n)
{
for(int k = 0; k < K; ++k)
{
b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
}
}
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B1DataType,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a0_m_k, b_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/blkgemmpipe_scheduler.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using I8 = int8_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using A0DataType = BF16;
using AsDataType = ck::Tuple<A0DataType>;
using B0DataType = I8;
using B1DataType = BF16;
using BsDataType = ck::Tuple<B0DataType>;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = BF16;
using DsDataType = ck::Tuple<B1DataType, D0DataType>;
using EDataType = BF16;
using A0Layout = Row;
using AsLayout = ck::Tuple<A0Layout>;
using B0Layout = Row;
using B1Layout = B0Layout;
using BsLayout = ck::Tuple<B0Layout>;
using D0Layout = Row;
using DsLayout = ck::Tuple<B1Layout, D0Layout>;
using ELayout = Row;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using MultiplyAddFastGelu = ck::tensor_operation::element_wise::MultiplyAddFastGelu;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = MultiplyAddFastGelu;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleABD_Xdl_CShuffle
// clang-format off
///######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
///######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
///######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
///######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< AsLayout, BsLayout, DsLayout, ELayout, AsDataType, BsDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 128, 128, 64, 8, 4, 32, 32, 2, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 0, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 8, 4, 0, 1, 1, S<1, 32, 1, 8>, 8, ck::BlockGemmPipelineScheduler::Intrawave, ck::BlockGemmPipelineVersion::v4>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 4096;
ck::index_t N = 768;
ck::index_t K = 6144;
ck::index_t StrideA = K;
ck::index_t StrideB = N;
ck::index_t StrideD = 0;
ck::index_t StrideE = N;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD = std::stoi(argv[9]);
StrideE = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
Tensor<A0DataType> a0_m_k(f_host_tensor_descriptor(M, K, StrideA, A0Layout{}));
Tensor<B0DataType> b0_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
Tensor<B1DataType> b1_k_n(f_host_tensor_descriptor(K, N, 0, B1Layout{}));
Tensor<D0DataType> d_m_n(f_host_tensor_descriptor(M, N, StrideD, D0Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a0_m_k: " << a0_m_k.mDesc << std::endl;
std::cout << "b0_k_n: " << b0_k_n.mDesc << std::endl;
std::cout << "b1_k_n: " << b1_k_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a0_m_k.GenerateTensorValue(GeneratorTensor_2<A0DataType>{-5, 5});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_2<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
break;
default:
a0_m_k.GenerateTensorValue(GeneratorTensor_3<A0DataType>{0.0, 1.0});
b0_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_k_n.GenerateTensorValue(GeneratorTensor_3<B1DataType>{0, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
}
DeviceMem a0_device_buf(sizeof(A0DataType) * a0_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_k_n.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(D0DataType) * d_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a0_device_buf.ToDevice(a0_m_k.mData.data());
b0_device_buf.ToDevice(b0_k_n.mData.data());
b1_device_buf.ToDevice(b1_k_n.mData.data());
d_device_buf.ToDevice(d_m_n.mData.data());
e_device_buf.ToDevice(e_m_n_device_result.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
constexpr ck::index_t NumATensor = 1;
constexpr ck::index_t NumBTensor = 1;
constexpr ck::index_t NumDTensor = 2;
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(std::array<const void*, NumATensor>{a0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumBTensor>{b0_device_buf.GetDeviceBuffer()},
std::array<const void*, NumDTensor>{b1_device_buf.GetDeviceBuffer(),
d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
M,
N,
K,
std::array<ck::index_t, NumATensor>{StrideA},
std::array<ck::index_t, NumBTensor>{StrideB},
std::array<ck::index_t, NumDTensor>{0, StrideD},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(A0DataType) * M * K + sizeof(B0DataType) * K * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_m_n({M, N});
Tensor<A0DataType> a_m_k({M, K});
Tensor<B1DataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, B0Layout{}));
#if 0
for(int n = 0; n < N; ++n)
{
for(int k = 0; k < K; ++k)
{
b_element_op(b_k_n(k, n), b0_k_n(k, n), b1_k_n(k, n));
}
}
#endif
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<A0DataType,
B0DataType,
CShuffleDataType,
AccDataType,
PassThrough,
PassThrough,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a0_m_k, b0_k_n, c_m_n, PassThrough{}, PassThrough{}, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), b1_k_n(0, n), d_m_n(m, n));
}
}
e_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result, e_m_n_host_result) ? 0 : 1;
}
return 0;
}
......@@ -41,7 +41,8 @@ template <typename ThreadGroup,
index_t SrcScalarPerVector,
index_t DstScalarPerVector,
typename ThreadTransferSrcResetCoordinateAfterRunFlags,
typename ThreadTransferDstResetCoordinateAfterRunFlags>
typename ThreadTransferDstResetCoordinateAfterRunFlags,
index_t NumThreadScratch = 1>
struct ThreadGroupTensorSliceTransfer_v7r2
{
static constexpr index_t nDim =
......@@ -100,7 +101,7 @@ struct ThreadGroupTensorSliceTransfer_v7r2
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
const auto thread_cluster_idx = thread_cluster_desc_.CalculateBottomIndex(
make_multi_index(get_thread_local_1d_id()));
make_multi_index(ThreadGroup::GetThreadId()));
const auto thread_data_idx_begin = thread_cluster_idx * thread_slice_lengths;
......@@ -117,29 +118,33 @@ struct ThreadGroupTensorSliceTransfer_v7r2
}
}
template <typename SrcBuffers>
__device__ void RunRead(const SrcDescs& src_descs, const SrcBuffers& src_bufs)
template <typename SrcBuffers, index_t ThreadScratchId = 0>
__device__ void RunRead(const SrcDescs& src_descs,
const SrcBuffers& src_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunRead(src_descs, src_bufs);
threadwise_transfer_.RunRead(src_descs, src_bufs, thread_scratch_id);
}
}
template <typename T>
using is_tuple = decltype(std::declval<T&>().IsTuple());
template <typename DstBuffers>
__device__ void RunWrite(const DstDescs& dst_descs, DstBuffers dst_bufs)
template <typename DstBuffers, index_t ThreadScratchId = 0>
__device__ void RunWrite(const DstDescs& dst_descs,
DstBuffers dst_bufs,
Number<ThreadScratchId> thread_scratch_id = Number<ThreadScratchId>{})
{
if(ThreadGroup::GetNumOfThread() == thread_cluster_desc_.GetElementSize() or
ThreadGroup::GetThreadId() < thread_cluster_desc_.GetElementSize())
{
if constexpr(is_detected<is_tuple, decltype(dst_bufs)>::value)
threadwise_transfer_.RunWrite(dst_descs, dst_bufs);
threadwise_transfer_.RunWrite(dst_descs, dst_bufs, thread_scratch_id);
else
threadwise_transfer_.RunWrite(dst_descs, tie(dst_bufs));
threadwise_transfer_.RunWrite(dst_descs, tie(dst_bufs), thread_scratch_id);
}
}
......@@ -206,7 +211,8 @@ struct ThreadGroupTensorSliceTransfer_v7r2
SrcScalarPerVector,
DstScalarPerVector,
ThreadTransferSrcResetCoordinateAfterRunFlags,
ThreadTransferDstResetCoordinateAfterRunFlags>;
ThreadTransferDstResetCoordinateAfterRunFlags,
NumThreadScratch>;
ThreadwiseTransfer threadwise_transfer_;
};
......
......@@ -10,110 +10,30 @@
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_v2.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v3_multi_abd.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemm,
typename AsPointer,
typename BsPointer,
typename DsPointer,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AsGridDesc_AK0_M_AK1,
typename BsGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_multiple_abd_xdl_cshuffle(
AsPointer p_as_grid,
BsPointer p_bs_grid,
DsPointer p_ds_grid,
EDataType* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const AsGridDesc_AK0_M_AK1 as_grid_desc_ak0_m_ak1,
const BsGridDesc_BK0_N_BK1 bs_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx94__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_as_grid,
p_bs_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
as_grid_desc_ak0_m_ak1,
bs_grid_desc_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
#else
ignore = p_as_grid;
ignore = p_bs_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = as_grid_desc_ak0_m_ak1;
ignore = bs_grid_desc_bk0_n_bk1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
#endif
}
} // namespace ck
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_abd.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// GEMM:
// input : A[M, K]
// input : B[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template <typename AsLayout,
typename BsLayout,
typename DsLayout,
typename ELayout,
typename CLayout,
typename AsDataType,
typename BsDataType,
typename AccDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename CDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename CElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
......@@ -132,59 +52,56 @@ template <typename AsLayout,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
index_t ABlockLdsExtraM,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
index_t BBlockLdsExtraN,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1>
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
BlockGemmPipelineScheduler BlkGemmPipeSched = BlockGemmPipelineScheduler::Intrawave,
BlockGemmPipelineVersion BlkGemmPipelineVer = BlockGemmPipelineVersion::v1,
typename ComputeTypeA = CDataType,
typename ComputeTypeB = ComputeTypeA>
struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayout,
BsLayout,
DsLayout,
ELayout,
CLayout,
AsDataType,
BsDataType,
DsDataType,
EDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
CElementwiseOperation>
{
using DeviceOp = DeviceGemmMultipleABD_Xdl_CShuffle;
static constexpr index_t NumATensor = AsDataType::Size();
static constexpr index_t NumBTensor = BsDataType::Size();
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
using ComputeDataType = EDataType;
using ALayout = remove_cvref_t<tuple_element_t<0, AsLayout>>;
using BLayout = remove_cvref_t<tuple_element_t<0, BsLayout>>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleABD_xdl_cshuffle<
using GridwiseGemm = GridwiseGemm_xdl_cshuffle_v3<
ALayout,
BLayout,
CLayout,
AsDataType,
BsDataType,
ComputeDataType,
AccDataType,
GemmAccDataType,
CShuffleDataType,
DsDataType,
EDataType,
CDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
NumGemmKPrefetchStage,
CElementwiseOperation,
GemmSpec,
BlockSize,
MPerBlock,
NPerBlock,
......@@ -213,360 +130,476 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched,
PipelineVer>;
// desc for problem definition
using AsGridDesc_M_K =
remove_cvref_t<decltype(GridwiseGemm::template MakeAsGridDescriptor_M_K<AsLayout, GemmSpec>(
{}, {}, {}))>;
using BsGridDesc_N_K =
remove_cvref_t<decltype(GridwiseGemm::template MakeBsGridDescriptor_N_K<BsLayout, GemmSpec>(
{}, {}, {}))>;
using DsGridDesc_M_N =
remove_cvref_t<decltype(GridwiseGemm::template MakeDsGridDescriptor_M_N<DsLayout, GemmSpec>(
{}, {}, {}))>;
using EGridDesc_M_N =
decltype(GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(1, 1, 1));
// desc for blockwise copy
using AsGridDesc_AK0_M_AK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultAsGridDescriptor_AK0_M_AK1(
AsGridDesc_M_K{}))>;
using BsGridDesc_BK0_N_BK1 =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBsGridDescriptor_BK0_N_BK1(
BsGridDesc_N_K{}))>;
using DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<
decltype(GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
DsGridDesc_M_N{}))>;
using EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
remove_cvref_t<decltype(GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
EGridDesc_M_N{}))>;
// block-to-e-tile map
using Block2ETileMap =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBlock2ETileMap(EGridDesc_M_N{}))>;
// Argument
struct Argument : public BaseArgument
{
Argument(std::array<const void*, NumATensor> p_as_grid,
std::array<const void*, NumBTensor> p_bs_grid,
std::array<const void*, NumDTensor> p_ds_grid,
void* p_e_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
std::array<index_t, NumATensor> StrideAs,
std::array<index_t, NumBTensor> StrideBs,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_as_grid_{},
p_bs_grid_{},
p_ds_grid_{},
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
as_grid_desc_m_k_{},
bs_grid_desc_n_k_{},
ds_grid_desc_m_n_{},
e_grid_desc_m_n_{GridwiseGemm::template MakeEGridDescriptor_M_N<ELayout, GemmSpec>(
MRaw, NRaw, StrideE)},
as_grid_desc_ak0_m_ak1_{},
bs_grid_desc_bk0_n_bk1_{},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op},
MRaw_{MRaw},
NRaw_{NRaw},
KRaw_{KRaw}
{
// populate pointer, desc for As
static_for<0, NumATensor, 1>{}([&](auto i) {
using ALayout = remove_cvref_t<tuple_element_t<i.value, AsLayout>>;
using ADataType = remove_cvref_t<tuple_element_t<i.value, AsDataType>>;
// A pointer
p_as_grid_(i) = static_cast<const ADataType*>(p_as_grid[i]);
// A desc
as_grid_desc_m_k_(i) =
GridwiseGemm::template MakeAGridDescriptor_M_K<ALayout, GemmSpec>(
MRaw, KRaw, StrideAs[i]);
});
// populate pointer, desc for Bs
static_for<0, NumBTensor, 1>{}([&](auto i) {
using BLayout = remove_cvref_t<tuple_element_t<i.value, BsLayout>>;
using BDataType = remove_cvref_t<tuple_element_t<i.value, BsDataType>>;
// B pointer
p_bs_grid_(i) = static_cast<const BDataType*>(p_bs_grid[i]);
// B desc
bs_grid_desc_n_k_(i) =
GridwiseGemm::template MakeBGridDescriptor_N_K<BLayout, GemmSpec>(
NRaw, KRaw, StrideBs[i]);
});
// populate pointer, desc for Ds
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
// D pointer
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
// D desc
ds_grid_desc_m_n_(i) =
GridwiseGemm::template MakeEGridDescriptor_M_N<DLayout, GemmSpec>(
MRaw, NRaw, StrideDs[i]);
});
// populate desc for Ds/E
if(GridwiseGemm::CheckValidity(as_grid_desc_m_k_,
bs_grid_desc_n_k_,
ds_grid_desc_m_n_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
as_grid_desc_ak0_m_ak1_ =
GridwiseGemm::MakeDefaultAsGridDescriptor_AK0_M_AK1(as_grid_desc_m_k_);
bs_grid_desc_bk0_n_bk1_ =
GridwiseGemm::MakeDefaultBsGridDescriptor_BK0_N_BK1(bs_grid_desc_n_k_);
ds_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
ds_grid_desc_m_n_);
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
}
}
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
BlkGemmPipeSched,
BlkGemmPipelineVer,
ComputeTypeA,
ComputeTypeB>;
// private:
// pointers
typename GridwiseGemm::AsGridPointer p_as_grid_;
typename GridwiseGemm::BsGridPointer p_bs_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
// tensor descriptors for problem definiton
AsGridDesc_M_K as_grid_desc_m_k_;
BsGridDesc_N_K bs_grid_desc_n_k_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AsGridDesc_AK0_M_AK1 as_grid_desc_ak0_m_ak1_;
BsGridDesc_BK0_N_BK1 bs_grid_desc_bk0_n_bk1_;
DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_;
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock e_grid_desc_mblock_mperblock_nblock_nperblock_;
// block-to-e-tile map
Block2ETileMap block_2_etile_map_;
// element-wise op
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
// for checking vector load/store
index_t MRaw_;
index_t NRaw_;
index_t KRaw_;
};
using Argument = typename GridwiseGemm::Argument;
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!GridwiseGemm::CheckValidity(arg.as_grid_desc_m_k_,
arg.bs_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
if(stream_config.log_level_ > 0)
{
arg.Print();
}
if(!GridwiseGemm::CheckValidity(arg))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_gemm_multiple_abd_xdl_cshuffle<
GridwiseGemm,
typename GridwiseGemm::AsGridPointer,
typename GridwiseGemm::BsGridPointer,
typename GridwiseGemm::DsGridPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AsGridDesc_AK0_M_AK1,
DeviceOp::BsGridDesc_BK0_N_BK1,
DeviceOp::DsGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
DeviceOp::EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock,
DeviceOp::Block2ETileMap,
has_main_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_as_grid_,
arg.p_bs_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.as_grid_desc_ak0_m_ak1_,
arg.bs_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_);
};
index_t gdx, gdy, gdz;
std::tie(gdx, gdy, gdz) = GridwiseGemm::CalculateGridSize(arg.M, arg.N, arg.KBatch);
const auto K = arg.as_grid_desc_m_k_[I0].GetLength(I1);
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
return launch_kernel(integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{});
}
}
index_t k_grain = arg.KBatch * KPerBlock;
index_t K_split = (arg.K + k_grain - 1) / k_grain * KPerBlock;
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
const bool has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K_split);
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
const auto Run = [&](const auto& kernel) {
if(arg.KBatch > 1)
hipGetErrorString(hipMemsetAsync(arg.p_c_grid,
0,
arg.M * arg.N * sizeof(CDataType),
stream_config.stream_id_));
// check vector load/store
{
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
ave_time = launch_and_time_kernel(
stream_config, kernel, dim3(gdx, gdy, gdz), dim3(BlockSize), 0, arg);
};
bool all_valid = true;
constexpr index_t minimum_occupancy =
BlkGemmPipeSched == BlockGemmPipelineScheduler::Intrawave ? 1 : 2;
static_for<0, NumATensor, 1>{}([&](auto i) {
using ALayout = remove_cvref_t<tuple_element_t<i.value, AsLayout>>;
// check vector load of A
if constexpr(is_same_v<ALayout, Row> && ABlockTransferSrcVectorDim == 2)
if(has_main_k_block_loop)
{
// Tail number always full
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1 ||
BlkGemmPipelineVer == BlockGemmPipelineVersion::v3)
{
if(arg.KRaw_ % ABlockTransferSrcScalarPerVector != 0)
#if 0
if(arg.KBatch > 1)
{
all_valid = false;
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
}
else if constexpr(is_same_v<ALayout, Col> && ABlockTransferSrcVectorDim == 1)
{
// FIXME: not rigorous
if(arg.MRaw_ % ABlockTransferSrcScalarPerVector != 0)
else
#endif
{
all_valid = false;
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
else
// Tail number could be One to Seven
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v2)
{
if(ABlockTransferSrcScalarPerVector != 1)
#if 0
if(arg.KBatch > 1)
{
all_valid = false;
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
});
static_for<0, NumBTensor, 1>{}([&](auto i) {
using BLayout = remove_cvref_t<tuple_element_t<i.value, BsLayout>>;
// check vector laod of B
if constexpr(is_same_v<BLayout, Col> && BBlockTransferSrcVectorDim == 2)
{
if(arg.KRaw_ % BBlockTransferSrcScalarPerVector != 0)
else
#endif
{
all_valid = false;
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::One)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::One>;
Run(kernel);
}
else if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Full)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Full>;
Run(kernel);
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 2)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Two)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Two>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 3)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Three)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Three>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 4)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Four)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Four>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 5)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Five)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Five>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 6)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Six)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Six>;
Run(kernel);
}
}
if constexpr(GridwiseGemm::BlockwiseGemmPipe::PrefetchStages > 7)
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) ==
TailNumber::Seven)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Seven>;
Run(kernel);
}
}
}
}
else if constexpr(is_same_v<BLayout, Row> && BBlockTransferSrcVectorDim == 1)
// Tail number could be Odd or Even
else if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v4)
{
// FIXME: not rigorous
if(arg.NRaw_ % BBlockTransferSrcScalarPerVector != 0)
#if 0
if(arg.KBatch > 1)
{
all_valid = false;
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdl_cshuffle_v3_2lds<
GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3_2lds<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
else
{
if(BBlockTransferSrcScalarPerVector != 1)
#if 0
if(arg.KBatch > 1)
{
all_valid = false;
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
else
#endif
{
if(GridwiseGemm::CalculateKBlockLoopTailNum(K_split) == TailNumber::Odd)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Odd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
true,
InMemoryDataOperationEnum::Set,
minimum_occupancy,
TailNumber::Even>;
Run(kernel);
}
}
}
});
// check vector load of Ds
// only support RowMajor for now
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
if constexpr(!is_same_v<DLayout, Row>)
{
all_valid = false;
}
});
// check vector store of E
// only support RowMajor for now
if constexpr(is_same_v<ELayout, Row>)
{
if(arg.NRaw_ % CDEBlockTransferScalarPerVector_NPerBlock != 0)
{
all_valid = false;
}
}
else
{
all_valid = false;
// Tail number always 1
if constexpr(BlkGemmPipelineVer == BlockGemmPipelineVersion::v1)
{
#if 0
if(arg.KBatch > 1)
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::AtomicAdd,
minimum_occupancy>;
Run(kernel);
}
else
#endif
{
const auto kernel =
kernel_gemm_xdl_cshuffle_v3<GridwiseGemm,
false,
InMemoryDataOperationEnum::Set,
minimum_occupancy>;
Run(kernel);
}
}
}
if(!all_valid)
{
return false;
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if(!ck::is_xdl_supported())
{
return false;
}
return GridwiseGemm::CheckValidity(arg.as_grid_desc_m_k_,
arg.bs_grid_desc_n_k_,
arg.ds_grid_desc_m_n_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
if((arg.K % AK1 != 0 || arg.K % BK1 != 0) && !(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding ||
GemmSpec == GemmSpecialization::KPadding))
{
return false;
}
return GridwiseGemm::CheckValidity(arg);
}
// polymorphic
......@@ -588,8 +621,27 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
CElementwiseOperation c_element_op)
{
static_for<0, NumATensor, 1>{}([&](auto i) {
using ALayout_ = remove_cvref_t<tuple_element_t<i.value, AsLayout>>;
static_assert(is_same<ALayout_, ALayout>::value, "");
});
static_for<0, NumBTensor, 1>{}([&](auto i) {
using BLayout_ = remove_cvref_t<tuple_element_t<i.value, BsLayout>>;
static_assert(is_same<BLayout_, BLayout>::value, "");
});
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DLayout_ = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
static_assert(is_same<DLayout_, CLayout>::value, "");
});
return Argument{p_as,
p_bs,
p_ds,
......@@ -601,29 +653,29 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
StrideBs,
StrideDs,
StrideE,
1,
a_element_op,
b_element_op,
cde_element_op};
c_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::array<const void*, NumATensor> p_as,
std::array<const void*, NumBTensor> p_bs,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
std::array<ck::index_t, NumATensor> StrideAs,
std::array<ck::index_t, NumBTensor> StrideBs,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
std::unique_ptr<BaseArgument> MakeArgumentPointer(std::array<const void*, NumATensor> p_as,
std::array<const void*, NumBTensor> p_bs,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
std::array<ck::index_t, NumATensor> StrideAs,
std::array<ck::index_t, NumBTensor> StrideBs,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op) override
{
return std::make_unique<Argument>(p_as,
p_bs,
......@@ -636,9 +688,10 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
StrideBs,
StrideDs,
StrideE,
1,
a_element_op,
b_element_op,
cde_element_op);
c_element_op);
}
// polymorphic
......@@ -652,35 +705,41 @@ struct DeviceGemmMultipleABD_Xdl_CShuffle : public DeviceGemmMultipleABD<AsLayou
{
auto str = std::stringstream();
std::map<LoopScheduler, std::string> LoopSchedToString{
{LoopScheduler::Default, "Default"}, {LoopScheduler::Interwave, "Interwave"}};
std::map<BlockGemmPipelineScheduler, std::string> BlkGemmPipelineSchedulerToString{
{BlockGemmPipelineScheduler::Intrawave, "Intrawave"},
{BlockGemmPipelineScheduler::Interwave, "Interwave"}};
std::map<PipelineVersion, std::string> PipelineVersionToString{{PipelineVersion::v1, "v1"},
{PipelineVersion::v2, "v2"}};
std::map<BlockGemmPipelineVersion, std::string> BlkGemmPipelineVersionToString{
{BlockGemmPipelineVersion::v1, "v1"},
{BlockGemmPipelineVersion::v2, "v2"},
{BlockGemmPipelineVersion::v3, "v3"},
{BlockGemmPipelineVersion::v4, "v4"},
{BlockGemmPipelineVersion::v5, "v5"}};
// clang-format off
str << "DeviceGemmMultipleABD_Xdl_CShuffle"
str << "DeviceGemmXdlUniversal"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec)
<< getGemmSpecializationString(GemmSpec) << ", "
<< std::string(ALayout::name)[0]
<< std::string(BLayout::name)[0]
<< std::string(CLayout::name)[0]
<< ">"
<< " LoopScheduler: "
<< LoopSchedToString[LoopSched] << ", "
<< "PipelineVersion: "
<< PipelineVersionToString[PipelineVer];
<< " BlkSize: "
<< BlockSize << ", "
<< "BlkTile: "
<< MPerBlock<<"x"<<NPerBlock<<"x"<<KPerBlock << ", "
<< "WaveTile: "
<< MPerXDL<<"x"<<NPerXDL << ", "
<< "WaveMap: "
<< MXdlPerWave<<"x" << NXdlPerWave<<", "
<< "VmemReadVec: "
<< ABlockTransferSrcScalarPerVector<<"x"<<BBlockTransferSrcScalarPerVector<<", "
<< "BlkGemmPipelineScheduler: "
<< BlkGemmPipelineSchedulerToString[BlkGemmPipeSched] << ", "
<< "BlkGemmPipelineVersion: "
<< BlkGemmPipelineVersionToString[BlkGemmPipelineVer] << ", "
<< "BlkGemmPipelinePrefetchStages: "
<< GridwiseGemm::BlockwiseGemmPipe::PrefetchStages;
// clang-format on
return str.str();
......
......@@ -92,15 +92,6 @@ struct Add
};
};
struct Scales
{
template <typename Y, typename X0, typename X1>
__host__ __device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const
{
y = ck::type_convert<Y>(ck::type_convert<float>(x0) * ck::type_convert<float>(x1));
}
};
struct Max
{
template <typename Y, typename X0, typename X1>
......@@ -188,6 +179,16 @@ struct Multiply
y = ck::type_convert<bhalf_t>(y_tmp);
}
template <>
__host__ __device__ constexpr void
operator()<bhalf_t>(bhalf_t& y, const int8_t& x0, const bhalf_t& x1) const
{
const float x1_tmp = ck::type_convert<float>(x0);
const float x2_tmp = ck::type_convert<float>(x1);
const float y_tmp = x1_tmp * x2_tmp;
y = ck::type_convert<bhalf_t>(y_tmp);
}
template <>
__host__ __device__ constexpr void
operator()<bhalf_t>(bhalf_t& y, const float& x0, const bhalf_t& x1) const
......@@ -521,6 +522,71 @@ struct AddFastGelu
}
};
// E = MultiplyFastGelu(C + D)
struct MultiplyFastGelu
{
template <typename E, typename C, typename D>
__host__ __device__ constexpr void operator()(E& e, const C& c, const D& d) const;
template <>
__host__ __device__ constexpr void
operator()<float, float, float>(float& e, const float& c, const float& d) const
{
const float x = c * d;
FastGelu{}.template operator()<float, float>(e, x);
}
template <>
__host__ __device__ constexpr void
operator()<half_t, half_t, half_t>(half_t& e, const half_t& c, const half_t& d) const
{
const half_t x = c * d;
ck::tensor_operation::element_wise::FastGelu{}.template operator()<half_t, half_t>(e, x);
}
template <>
__host__ __device__ constexpr void
operator()<half_t, float, half_t>(half_t& e, const float& c, const half_t& d) const
{
const float x0_f = c * d;
float x1_f = 0;
ck::tensor_operation::element_wise::FastGelu{}.template operator()<float, float>(x1_f,
x0_f);
e = type_convert<half_t>(x1_f);
}
template <>
__host__ __device__ constexpr void
operator()<bhalf_t, bhalf_t, bhalf_t>(bhalf_t& e, const bhalf_t& c, const bhalf_t& d) const
{
const float x0_f = type_convert<float>(c) * type_convert<float>(d);
float x1_f = 0;
FastGelu{}.template operator()<float, float>(x1_f, x0_f);
e = type_convert<bhalf_t>(x1_f);
}
template <>
__host__ __device__ constexpr void
operator()<bhalf_t, float, bhalf_t>(bhalf_t& e, const float& c, const bhalf_t& d) const
{
const float x0_f = c * type_convert<float>(d);
float x1_f = 0;
FastGelu{}.template operator()<float, float>(x1_f, x0_f);
e = type_convert<bhalf_t>(x1_f);
}
};
// E = Silu(C + D)
struct AddSilu
{
......
......@@ -221,6 +221,15 @@ struct MultiplyAdd
e = y;
}
template <>
__host__ __device__ void operator()<bhalf_t, float, bhalf_t, bhalf_t>(bhalf_t& e,
const float& c,
const bhalf_t& d0,
const bhalf_t& d1) const
{
const bhalf_t y = type_convert<bhalf_t>(c) * d0 + d1;
e = y;
}
template <>
__host__ __device__ void operator()<float, float, half_t, half_t>(float& e,
const float& c,
const half_t& d0,
......@@ -240,6 +249,26 @@ struct MultiplyAdd
}
};
struct MultiplyAddFastGelu
{
template <typename E, typename C, typename D0, typename D1>
__host__ __device__ constexpr void
operator()(E& e, const C& c, const D0& d0, const D1& d1) const;
template <>
__host__ __device__ constexpr void operator()<ck::bhalf_t, float, ck::bhalf_t, ck::bhalf_t>(
ck::bhalf_t& e, const float& c, const ck::bhalf_t& d0, const ck::bhalf_t& d1) const
{
const float x0_f = c * ck::type_convert<float>(d0) + ck::type_convert<float>(d1);
float x1_f = 0;
FastGelu{}.template operator()<float, float>(x1_f, x0_f);
e = ck::type_convert<ck::bhalf_t>(x1_f);
}
};
// E = FastGelu(C + D0 + D1)
struct AddAddFastGelu
{
......
......@@ -504,6 +504,16 @@ struct FastGelu
y = type_convert<half_t>(y_f);
}
template <>
__host__ void operator()<bhalf_t, float>(bhalf_t& y, const float& x) const
{
float y_f;
this->operator()<float, float>(y_f, x);
y = type_convert<bhalf_t>(y_f);
}
template <>
__device__ void operator()<bhalf_t, float>(bhalf_t& y, const float& x) const
{
......
......@@ -594,11 +594,6 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
generate_tuple([&](auto) { return make_multi_index(0, m_block_data_idx_on_grid, 0); },
Number<NumATensor>{});
#if 0
static_assert(ABlockTransferSrcScalarPerVector == ABlockTransferDstScalarPerVector_AK1,
"Src and Dst ScalarPerVector must be the same");
#endif
auto a_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
AsDataType,
......@@ -616,7 +611,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
uniform_sequence_gen_t<NumATensor, false>,
uniform_sequence_gen_t<NumATensor, AThreadTransferSrcResetCoordinateAfterRun>,
Sequence<true>>{as_grid_desc_ak0_m_ak1,
idx_as_block_begin,
tie(a_block_desc_ak0_m_ak1),
......@@ -627,11 +622,6 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
generate_tuple([&](auto) { return make_multi_index(0, n_block_data_idx_on_grid, 0); },
Number<NumBTensor>{});
#if 0
static_assert(BBlockTransferSrcScalarPerVector == BBlockTransferDstScalarPerVector_BK1,
"Src and Dst ScalarPerVector must be the same");
#endif
auto b_blockwise_copy = ThreadGroupTensorSliceTransfer_v7r2<
ThisThreadBlock,
BsDataType,
......@@ -649,7 +639,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
uniform_sequence_gen_t<NumBTensor, false>,
uniform_sequence_gen_t<NumBTensor, BThreadTransferSrcResetCoordinateAfterRun>,
Sequence<true>>{bs_grid_desc_bk0_n_bk1,
idx_bs_block_begin,
tie(b_block_desc_bk0_n_bk1),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment