Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
0aecd4cf
"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "9f91305f8500fa6575671e7e77641919a1bc6fbc"
Unverified
Commit
0aecd4cf
authored
Jun 13, 2024
by
Rostyslav Geyyer
Committed by
GitHub
Jun 13, 2024
Browse files
Merge branch 'develop' into lwpck-1815
parents
e681871b
37a347e3
Changes
25
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1205 additions
and
27 deletions
+1205
-27
client_example/24_grouped_conv_activation/CMakeLists.txt
client_example/24_grouped_conv_activation/CMakeLists.txt
+7
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/common.hpp
...onv_activation/grouped_convnd_fwd_convinvscale/common.hpp
+316
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
...d_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
+50
-0
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
...d_conv_activation/grouped_convnd_fwd_convscale/common.hpp
+3
-3
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
...ped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
+50
-0
docs/sphinx/requirements.in
docs/sphinx/requirements.in
+1
-1
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+1
-1
example/62_convnd_activ/CMakeLists.txt
example/62_convnd_activ/CMakeLists.txt
+1
-0
example/62_convnd_activ/convinvscale/CMakeLists.txt
example/62_convnd_activ/convinvscale/CMakeLists.txt
+10
-0
example/62_convnd_activ/convinvscale/convnd_fwd_convinvscale_common.hpp
...vnd_activ/convinvscale/convnd_fwd_convinvscale_common.hpp
+301
-0
example/62_convnd_activ/convinvscale/convnd_fwd_xdl_convinvscale_fp8.cpp
...nd_activ/convinvscale/convnd_fwd_xdl_convinvscale_fp8.cpp
+88
-0
example/62_convnd_activ/convinvscale/run_convnd_fwd_convinvscale_example.inc
...ctiv/convinvscale/run_convnd_fwd_convinvscale_example.inc
+104
-0
example/62_convnd_activ/convscale/CMakeLists.txt
example/62_convnd_activ/convscale/CMakeLists.txt
+2
-0
example/62_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8_bf8.cpp
...nvnd_activ/convscale/convnd_fwd_xdl_convscale_fp8_bf8.cpp
+88
-0
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
...k/tensor_operation/gpu/element/element_wise_operation.hpp
+0
-20
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+23
-0
include/ck_tile/core/arch/amd_buffer_addressing.hpp
include/ck_tile/core/arch/amd_buffer_addressing.hpp
+3
-2
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp
...fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp
+38
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
...or_operation_instance/gpu/grouped_convolution_forward.hpp
+11
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convinvscale.hpp
...instance/gpu/grouped_convolution_forward_convinvscale.hpp
+108
-0
No files found.
client_example/24_grouped_conv_activation/CMakeLists.txt
View file @
0aecd4cf
...
@@ -35,10 +35,17 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa
...
@@ -35,10 +35,17 @@ target_link_libraries(client_grouped_convnd_fwd_scaleadd_ab_int8 PRIVATE composa
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
add_executable
(
client_grouped_convnd_fwd_bilinear_residual_fp16
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
grouped_convnd_fwd_bilinear/grouped_conv_fwd_bilinear_residual_fp16.cpp
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_grouped_convnd_fwd_bilinear_residual_fp16 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convinvscale
add_executable
(
client_conv3d_fwd_convinvscale_fp8
grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convinvscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
# Fwd convscale
# Fwd convscale
add_executable
(
client_conv3d_fwd_convscale_fp8
add_executable
(
client_conv3d_fwd_convscale_fp8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
)
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8 PRIVATE composable_kernel::device_conv_operations
)
add_executable
(
client_conv3d_fwd_convscale_fp8_bf8
grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
)
target_link_libraries
(
client_conv3d_fwd_convscale_fp8_bf8 PRIVATE composable_kernel::device_conv_operations
)
# Bwd data bilinear
# Bwd data bilinear
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
add_executable
(
client_grouped_convnd_bwd_data_bilinear_residual_fp16
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
grouped_convnd_bwd_data_bilinear/grouped_conv_bwd_data_bilinear_residual_fp16.cpp
)
...
...
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/common.hpp
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convinvscale.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvInvscale
=
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetInputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
input_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
std
::
accumulate
(
std
::
begin
(
input_lengths
),
std
::
end
(
input_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetWeightByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
std
::
accumulate
(
std
::
begin
(
weights_lengths
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetOutputByte
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
std
::
accumulate
(
std
::
begin
(
output_lengths
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
ck
::
index_t
NumNonSpatialDim
=
3
,
typename
AComputeType
=
InDataType
,
typename
BComputeType
=
AComputeType
>
bool
run_grouped_conv_fwd_convinvscale
(
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_lengths
,
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_lengths
)
{
std
::
size_t
in_mem_size
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
in_lengths
);
std
::
size_t
wei_mem_size
=
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
wei_lengths
);
std
::
size_t
out_mem_size
=
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
out_lengths
);
SimpleDeviceMem
in
(
in_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
out_strides
;
in_strides
.
fill
(
0
);
wei_strides
.
fill
(
0
);
out_strides
.
fill
(
0
);
in_strides
.
back
()
=
1
;
wei_strides
.
back
()
=
1
;
out_strides
.
back
()
=
1
;
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std
::
rotate
(
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
2
),
rend
(
in_lengths
));
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
2
),
rend
(
in_strides
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
2
),
rend
(
out_lengths
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
2
),
rend
(
out_strides
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
;
conv_filter_strides
.
fill
(
1
);
conv_filter_dilations
.
fill
(
1
);
input_left_pads
.
fill
(
1
);
input_right_pads
.
fill
(
1
);
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
out_lengths
,
wei_lengths
,
ds_size
);
std
::
size_t
num_bytes
=
in_mem_size
+
wei_mem_size
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
out_mem_size
;
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
ConvInvscale
,
AComputeType
,
BComputeType
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvInvscale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
,
0
>
{},
out_lengths
,
out_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
ConvInvscale
{
scale_in
,
scale_wei
,
scale_out
});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convinvscale/conv3d_fwd_convinvscale_fp8.cpp
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convinvscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/common.hpp
View file @
0aecd4cf
...
@@ -115,9 +115,9 @@ bool run_grouped_conv_fwd_convscale(
...
@@ -115,9 +115,9 @@ bool run_grouped_conv_fwd_convscale(
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
wei
(
wei_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
SimpleDeviceMem
out
(
out_mem_size
);
float
scale_in
;
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
)
;
float
scale_wei
;
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
)
;
float
scale_out
;
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
)
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
in_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>
wei_strides
;
...
...
client_example/24_grouped_conv_activation/grouped_convnd_fwd_convscale/conv3d_fwd_convscale_fp8_bf8.cpp
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
CShuffleDataType
=
float
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
bf8_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKZYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWGK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
3
;
static
constexpr
ck
::
index_t
G
=
1
;
static
constexpr
ck
::
index_t
N
=
64
;
static
constexpr
ck
::
index_t
K
=
128
;
static
constexpr
ck
::
index_t
C
=
64
;
static
constexpr
ck
::
index_t
Z
=
3
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Di
=
28
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
3
;
static
constexpr
ck
::
index_t
Do
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
3
;
int
main
()
{
return
run_grouped_conv_fwd_convscale
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
,
3
,
AComputeDataType
,
BComputeDataType
>
(
{
N
,
Di
,
Hi
,
Wi
,
G
,
C
},
{
G
,
K
,
Z
,
Y
,
X
,
C
},
{
N
,
Do
,
Ho
,
Wo
,
G
,
K
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
docs/sphinx/requirements.in
View file @
0aecd4cf
rocm-docs-core==1.
3
.0
rocm-docs-core==1.
4
.0
sphinxcontrib-bibtex==2.6.2
sphinxcontrib-bibtex==2.6.2
docs/sphinx/requirements.txt
View file @
0aecd4cf
...
@@ -103,7 +103,7 @@ requests==2.31.0
...
@@ -103,7 +103,7 @@ requests==2.31.0
# via
# via
# pygithub
# pygithub
# sphinx
# sphinx
rocm-docs-core==1.
3
.0
rocm-docs-core==1.
4
.0
# via -r requirements.in
# via -r requirements.in
six==1.16.0
six==1.16.0
# via
# via
...
...
example/62_convnd_activ/CMakeLists.txt
View file @
0aecd4cf
add_subdirectory
(
binary
)
add_subdirectory
(
binary
)
add_subdirectory
(
convinvscale
)
add_subdirectory
(
convscale
)
add_subdirectory
(
convscale
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
multi_AB
)
add_subdirectory
(
unary
)
add_subdirectory
(
unary
)
...
...
example/62_convnd_activ/convinvscale/CMakeLists.txt
0 → 100644
View file @
0aecd4cf
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_convnd_activ_xdl_convinvscale
)
add_example_executable
(
example_convnd_fwd_xdl_convinvscale_fp8 convnd_fwd_xdl_convinvscale_fp8.cpp
)
add_example_dependencies
(
example_convnd_activ_xdl_convinvscale example_convnd_fwd_xdl_convinvscale_fp8
)
set
(
target 1
)
endif
()
endforeach
()
\ No newline at end of file
example/62_convnd_activ/convinvscale/convnd_fwd_convinvscale_common.hpp
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvInvscale
=
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
;
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_rtol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
1e-1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
1.5e-1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
typename
DataType
>
inline
__host__
__device__
constexpr
double
get_atol
()
{
if
constexpr
(
std
::
is_same_v
<
DataType
,
float
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
double
>
)
{
return
1e-6
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
half_t
>
)
{
return
1e-3
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bhalf_t
>
)
{
return
5e-2
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int32_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
int8_t
>
)
{
return
1e-1
;
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
f8_t
>
)
{
return
16.1
;
// 240 and 224 are acceptable
}
else
if
constexpr
(
std
::
is_same_v
<
DataType
,
ck
::
bf8_t
>
)
{
return
8192.1
;
// 57344 and 49152 are acceptable
}
else
{
return
1e-3
;
}
}
template
<
ck
::
index_t
NumDimSpatial
,
ck
::
index_t
NumNonSpatialDim
=
3
>
std
::
size_t
GetFlops
(
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
output_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
NumNonSpatialDim
>&
weights_lengths
,
const
std
::
size_t
&
ds_size
)
{
// G * N * C * <output spatial lengths product> * (2 * K * <filter spatial lengths product> +
// <number of scale factors>)
ck
::
index_t
G
=
weights_lengths
[
0
];
ck
::
index_t
N
=
output_lengths
[
1
];
ck
::
index_t
K
=
weights_lengths
[
1
];
ck
::
index_t
C
=
weights_lengths
[
2
];
return
G
*
N
*
C
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
output_lengths
),
NumNonSpatialDim
),
std
::
end
(
output_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
(
static_cast
<
std
::
size_t
>
(
2
)
*
K
*
std
::
accumulate
(
std
::
next
(
std
::
begin
(
weights_lengths
),
NumNonSpatialDim
),
std
::
end
(
weights_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
+
ds_size
);
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
CShuffleDataType
>
c
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// random scale values
float
scale_in
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_wei
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
float
scale_out
=
float
(
std
::
rand
())
/
float
(
RAND_MAX
);
// initialize out_element_op for each iteration
const
auto
out_element_op
=
OutElementOp
{
scale_in
,
scale_wei
,
scale_out
};
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
ds_size
=
3
;
// 3 element-wise scale multipliers
std
::
size_t
flop
=
GetFlops
<
NDimSpatial
>
(
e_g_n_k_wos_lengths
,
b_g_k_c_xs_lengths
,
ds_size
);
std
::
size_t
num_btype
=
conv_param
.
GetInputByte
<
InDataType
>
()
+
conv_param
.
GetWeightByte
<
WeiDataType
>
()
+
sizeof
(
float
)
+
sizeof
(
float
)
+
sizeof
(
float
)
+
conv_param
.
GetOutputByte
<
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
get_rtol
<
OutDataType
>
(),
get_atol
<
OutDataType
>
());
}
return
true
;
}
example/62_convnd_activ/convinvscale/convnd_fwd_xdl_convinvscale_fp8.cpp
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convinvscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
f8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
f8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ConvInvscale
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeDataType
,
BComputeDataType
>
;
#include "run_convnd_fwd_convinvscale_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
example/62_convnd_activ/convinvscale/run_convnd_fwd_convinvscale_example.inc
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
bool
run_convnd_fwd_example
(
int
argc
,
char
*
argv
[])
{
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
// instantiate in and wei element ops, will
// instantiate out_element_op below for every iteration
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
run
=
[
&
](
auto
ndim_spatial
,
auto
in_layout
,
auto
wei_layout
,
auto
ds_layout
,
auto
out_layout
)
{
constexpr
ck
::
index_t
ndim_spatial_value
=
ndim_spatial
.
value
;
using
InLayout
=
decltype
(
in_layout
);
using
WeiLayout
=
decltype
(
wei_layout
);
using
DsLayout
=
decltype
(
ds_layout
);
using
OutLayout
=
decltype
(
out_layout
);
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_grouped_conv_fwd
<
ndim_spatial_value
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceGroupedConvNDFwdInstance
<
ndim_spatial_value
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
);
};
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
return
run
(
ck
::
Number
<
1
>
{},
ctc
::
GNWC
{},
ctc
::
GKXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
return
run
(
ck
::
Number
<
2
>
{},
ctc
::
GNHWC
{},
ctc
::
GKYXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNHWK
{});
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
return
run
(
ck
::
Number
<
3
>
{},
ctc
::
GNDHWC
{},
ctc
::
GKZYXC
{},
ck
::
Tuple
<>
{},
ctc
::
GNDHWK
{});
}
return
true
;
}
example/62_convnd_activ/convscale/CMakeLists.txt
View file @
0aecd4cf
...
@@ -5,6 +5,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
...
@@ -5,6 +5,8 @@ foreach(gpu IN LISTS GPU_TARGETS)
add_custom_target
(
example_convnd_activ_xdl_convscale
)
add_custom_target
(
example_convnd_activ_xdl_convscale
)
add_example_executable
(
example_convnd_fwd_xdl_convscale_fp8 convnd_fwd_xdl_convscale_fp8.cpp
)
add_example_executable
(
example_convnd_fwd_xdl_convscale_fp8 convnd_fwd_xdl_convscale_fp8.cpp
)
add_example_dependencies
(
example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8
)
add_example_dependencies
(
example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8
)
add_example_executable
(
example_convnd_fwd_xdl_convscale_fp8_bf8 convnd_fwd_xdl_convscale_fp8_bf8.cpp
)
add_example_dependencies
(
example_convnd_activ_xdl_convscale example_convnd_fwd_xdl_convscale_fp8_bf8
)
set
(
target 1
)
set
(
target 1
)
endif
()
endif
()
endforeach
()
endforeach
()
example/62_convnd_activ/convscale/convnd_fwd_xdl_convscale_fp8_bf8.cpp
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_fwd_convscale_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_abd_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
using
InDataType
=
ck
::
f8_t
;
using
WeiDataType
=
ck
::
bf8_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
OutDataType
=
ck
::
f8_t
;
using
AComputeDataType
=
ck
::
f8_t
;
using
BComputeDataType
=
ck
::
bf8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
ConvScale
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DsLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
DsLayout
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
AComputeDataType
,
BComputeDataType
>
;
#include "run_convnd_fwd_convscale_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run_convnd_fwd_example
(
argc
,
argv
)
?
0
:
1
;
}
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
View file @
0aecd4cf
...
@@ -528,26 +528,6 @@ struct UnaryTypeConvert<ck::bhalf_t, float>
...
@@ -528,26 +528,6 @@ struct UnaryTypeConvert<ck::bhalf_t, float>
}
}
};
};
struct
ConvInvscale
{
/// @brief Op to multiply convolution results by inverted scale factors
/// @param e Output after scaling
/// @param c Convolution result
/// @param d0 Input scale factor
/// @param d1 Weights scale factor
/// @param d2 Output scale factor
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
,
typename
D2
>
__host__
__device__
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
,
const
D2
&
d2
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
f8_t
,
float
,
float
,
float
,
float
>
(
f8_t
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
,
const
float
&
d2
)
const
{
e
=
type_convert
<
f8_t
>
(
c
/
d0
/
d1
/
d2
);
};
};
}
// namespace element_wise
}
// namespace element_wise
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
0aecd4cf
...
@@ -961,6 +961,29 @@ struct Elu
...
@@ -961,6 +961,29 @@ struct Elu
const
float
alpha_
;
const
float
alpha_
;
};
};
struct
ConvInvscale
{
__host__
__device__
ConvInvscale
(
float
scale_in
=
1.
f
,
float
scale_wei
=
1.
f
,
float
scale_out
=
1.
f
)
:
scale_in_
(
scale_in
),
scale_wei_
(
scale_wei
),
scale_out_
(
scale_out
)
{
}
template
<
typename
E
,
typename
C
>
__host__
__device__
void
operator
()(
E
&
e
,
const
C
&
c
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
f8_t
,
float
>
(
f8_t
&
e
,
const
float
&
c
)
const
{
e
=
type_convert
<
f8_t
>
(
c
/
scale_in_
/
scale_wei_
/
scale_out_
);
};
float
scale_in_
;
float
scale_wei_
;
float
scale_out_
;
};
struct
ConvScale
struct
ConvScale
{
{
__host__
__device__
ConvScale
(
float
scale_in
=
1.
f
,
__host__
__device__
ConvScale
(
float
scale_in
=
1.
f
,
...
...
include/ck_tile/core/arch/amd_buffer_addressing.hpp
View file @
0aecd4cf
...
@@ -552,8 +552,9 @@ namespace impl{
...
@@ -552,8 +552,9 @@ namespace impl{
template
<
index_t
N
>
template
<
index_t
N
>
CK_TILE_DEVICE
void
insert_dummy_dep_per_dword
(
array
<
float
,
N
>&
b
)
CK_TILE_DEVICE
void
insert_dummy_dep_per_dword
(
array
<
float
,
N
>&
b
)
{
{
static_for
<
0
,
b
.
size
(),
1
>
{}([
&
](
auto
i
){
constexpr
auto
kSize
=
remove_cvref_t
<
decltype
(
b
)
>::
size
();
asm
volatile
(
" "
:
:
"v"
(
b
.
get
(
i
))
:
"memory"
);
static_for
<
0
,
kSize
,
1
>
{}([
&
](
auto
i
){
asm
volatile
(
" "
:
:
"v"
(
b
.
get
(
number
<
i
>
{}))
:
"memory"
);
});
});
}
}
#if 1
#if 1
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_outelementop_instance.hpp
View file @
0aecd4cf
...
@@ -15,6 +15,7 @@ namespace instance {
...
@@ -15,6 +15,7 @@ namespace instance {
using
F32
=
float
;
using
F32
=
float
;
using
F8
=
ck
::
f8_t
;
using
F8
=
ck
::
f8_t
;
using
BF8
=
ck
::
bf8_t
;
template
<
ck
::
index_t
...
Is
>
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
@@ -72,6 +73,43 @@ using device_grouped_conv_fwd_xdl_outelementop_f8_instances = std::tuple<
...
@@ -72,6 +73,43 @@ using device_grouped_conv_fwd_xdl_outelementop_f8_instances = std::tuple<
// clang-format on
// clang-format on
>
;
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
,
typename
OutElementOp
>
using
device_grouped_conv_fwd_xdl_outelementop_f8_bf8_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| Compute| Compute|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| TypeA| TypeB|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if defined(CK_ENABLE_FP8) && defined(CK_ENABLE_BF8)
// generic instance
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
F8
,
BF8
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
F8
,
BF8
>
,
DeviceGroupedConvFwdMultipleABD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
F8
,
BF8
,
F32
,
F32
,
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
OutElementOp
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
8
,
F8
,
BF8
>
#endif
// clang-format on
>
;
}
// namespace instance
}
// namespace instance
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
View file @
0aecd4cf
...
@@ -402,6 +402,17 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
...
@@ -402,6 +402,17 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
NHWGC
>
&&
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
NHWGC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
{
{
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
AComputeType
,
half_t
>
&&
is_same_v
<
BComputeType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1p0_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_1x1s1p0_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_f16_oddc_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
AComputeType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
AComputeType
,
int8_t
>
&&
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_convinvscale.hpp
0 → 100644
View file @
0aecd4cf
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_abd.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ConvInvscale
=
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
;
#ifdef CK_ENABLE_FP8
void
add_device_grouped_conv3d_fwd_xdl_convinvscale_ndhwgc_gkzyxc_ndhwgk_f8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleABD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
F8
,
F8
,
ck
::
Tuple
<>
,
F8
,
PassThrough
,
PassThrough
,
ConvInvscale
,
F8
,
F8
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DLayouts
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
DDataTypes
,
typename
OutDataType
,
typename
AComputeType
,
typename
BComputeType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
,
AComputeType
,
BComputeType
>>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleABD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
ConvInvscale
,
AComputeType
,
BComputeType
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
#ifdef CK_ENABLE_FP8
if
constexpr
(
is_same_v
<
InDataType
,
f8_t
>
&&
is_same_v
<
WeiDataType
,
f8_t
>
&&
is_same_v
<
OutDataType
,
f8_t
>
&&
is_same_v
<
AComputeType
,
f8_t
>
&&
is_same_v
<
BComputeType
,
f8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_convinvscale_ndhwgc_gkzyxc_ndhwgk_f8_instances
(
op_ptrs
);
}
#endif
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment