Commit 08e057ee authored by Po Yen, Chen's avatar Po Yen, Chen
Browse files

Add depedency headers

parent 5f053ccf
#pragma once
#include "attention_generic.cuh"
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
#include "dtype_bfloat16.cuh"
#include "dtype_fp8.cuh"
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <stdint.h>
namespace vllm {
// A vector type to store Q, K, V elements.
template <typename T, int VEC_SIZE>
struct Vec {};
// A vector type to store FP32 accumulators.
template <typename T>
struct FloatVec {};
// Template vector operations.
template <typename Acc, typename A, typename B>
inline __device__ Acc mul(A a, B b);
template <typename T>
inline __device__ float sum(T v);
template <typename T>
inline __device__ float dot(T a, T b) {
return sum(mul<T, T, T>(a, b));
}
template <typename A, typename T>
inline __device__ float dot(T a, T b) {
return sum(mul<A, T, T>(a, b));
}
template <typename T>
inline __device__ void zero(T& dst) {
constexpr int WORDS = sizeof(T) / 4;
union {
T raw;
uint32_t words[WORDS];
} tmp;
#pragma unroll
for (int ii = 0; ii < WORDS; ++ii) {
tmp.words[ii] = 0u;
}
dst = tmp.raw;
}
} // namespace vllm
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
* and
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
#endif
#include <stdint.h>
namespace vllm {
// Define custom BF16 vector data types.
struct bf16_4_t {
__nv_bfloat162 x;
__nv_bfloat162 y;
};
struct bf16_8_t {
__nv_bfloat162 x;
__nv_bfloat162 y;
__nv_bfloat162 z;
__nv_bfloat162 w;
};
// BF16 vector types for Q, K, V.
template <>
struct Vec<__nv_bfloat16, 1> {
using Type = __nv_bfloat16;
};
template <>
struct Vec<__nv_bfloat16, 2> {
using Type = __nv_bfloat162;
};
template <>
struct Vec<__nv_bfloat16, 4> {
using Type = bf16_4_t;
};
template <>
struct Vec<__nv_bfloat16, 8> {
using Type = bf16_8_t;
};
// FP32 accumulator vector types corresponding to Vec.
template <>
struct FloatVec<__nv_bfloat16> {
using Type = float;
};
template <>
struct FloatVec<__nv_bfloat162> {
using Type = float2;
};
template <>
struct FloatVec<bf16_4_t> {
using Type = Float4_;
};
template <>
struct FloatVec<bf16_8_t> {
using Type = Float8_;
};
// Utility functions for type conversions.
inline __device__ float2 bf1622float2(const __nv_bfloat162 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __bfloat1622float2(val);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __bfloat162bfloat162(val);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
// Vector addition.
inline __device__ __nv_bfloat16 add(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
#ifndef USE_ROCM
return a + b;
#else
return __hadd(a, b);
#endif
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ __nv_bfloat162 add(__nv_bfloat162 a, __nv_bfloat162 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hadd2(a, b);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ bf16_4_t add(bf16_4_t a, bf16_4_t b) {
bf16_4_t c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
inline __device__ bf16_8_t add(bf16_8_t a, bf16_8_t b) {
bf16_8_t c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
inline __device__ float2 add(__nv_bfloat162 a, float2 fb) {
float2 fa = bf1622float2(a);
return add(fa, fb);
}
inline __device__ Float4_ add(bf16_4_t a, Float4_ fb) {
Float4_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
return fc;
}
inline __device__ Float8_ add(bf16_8_t a, Float8_ fb) {
Float8_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
fc.z = add(a.z, fb.z);
fc.w = add(a.w, fb.w);
return fc;
}
// Vector multiplication.
template <>
inline __device__ __nv_bfloat16 mul(__nv_bfloat16 a, __nv_bfloat16 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hmul(a, b);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
template <>
inline __device__ __nv_bfloat162 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hmul2(a, b);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
template <>
inline __device__ __nv_bfloat162 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
return mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}
template <>
inline __device__ bf16_4_t mul(bf16_4_t a, bf16_4_t b) {
bf16_4_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
return c;
}
template <>
inline __device__ bf16_4_t mul(__nv_bfloat16 a, bf16_4_t b) {
__nv_bfloat162 s = bf162bf162(a);
bf16_4_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
return c;
}
template <>
inline __device__ bf16_8_t mul(bf16_8_t a, bf16_8_t b) {
bf16_8_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
return c;
}
template <>
inline __device__ bf16_8_t mul(__nv_bfloat16 a, bf16_8_t b) {
__nv_bfloat162 s = bf162bf162(a);
bf16_8_t c;
c.x = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.x);
c.y = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.y);
c.z = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.z);
c.w = mul<__nv_bfloat162, __nv_bfloat162, __nv_bfloat162>(s, b.w);
return c;
}
template <>
inline __device__ float mul(__nv_bfloat16 a, __nv_bfloat16 b) {
float fa = __bfloat162float(a);
float fb = __bfloat162float(b);
return fa * fb;
}
template <>
inline __device__ float2 mul(__nv_bfloat162 a, __nv_bfloat162 b) {
float2 fa = bf1622float2(a);
float2 fb = bf1622float2(b);
return mul<float2, float2, float2>(fa, fb);
}
template <>
inline __device__ float2 mul(__nv_bfloat16 a, __nv_bfloat162 b) {
return mul<float2, __nv_bfloat162, __nv_bfloat162>(bf162bf162(a), b);
}
template <>
inline __device__ Float4_ mul(bf16_4_t a, bf16_4_t b) {
Float4_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
return fc;
}
template <>
inline __device__ Float4_ mul(__nv_bfloat16 a, bf16_4_t b) {
__nv_bfloat162 s = bf162bf162(a);
Float4_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
return fc;
}
template <>
inline __device__ Float8_ mul(bf16_8_t a, bf16_8_t b) {
Float8_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.x, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.y, b.y);
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.z, b.z);
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(a.w, b.w);
return fc;
}
template <>
inline __device__ Float8_ mul(__nv_bfloat16 a, bf16_8_t b) {
__nv_bfloat162 s = bf162bf162(a);
Float8_ fc;
fc.x = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.x);
fc.y = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.y);
fc.z = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.z);
fc.w = mul<float2, __nv_bfloat162, __nv_bfloat162>(s, b.w);
return fc;
}
// Vector fused multiply-add.
inline __device__ __nv_bfloat162 fma(__nv_bfloat162 a, __nv_bfloat162 b,
__nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hfma2(a, b, c);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ __nv_bfloat162 fma(__nv_bfloat16 a, __nv_bfloat162 b,
__nv_bfloat162 c) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
return __hfma2(bf162bf162(a), b, c);
#endif
__builtin_unreachable(); // Suppress missing return statement warning
}
inline __device__ bf16_4_t fma(bf16_4_t a, bf16_4_t b, bf16_4_t c) {
bf16_4_t d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
inline __device__ bf16_4_t fma(__nv_bfloat16 a, bf16_4_t b, bf16_4_t c) {
__nv_bfloat162 s = bf162bf162(a);
bf16_4_t d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
return d;
}
inline __device__ bf16_8_t fma(bf16_8_t a, bf16_8_t b, bf16_8_t c) {
bf16_8_t d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
inline __device__ bf16_8_t fma(__nv_bfloat16 a, bf16_8_t b, bf16_8_t c) {
__nv_bfloat162 s = bf162bf162(a);
bf16_8_t d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
d.z = fma(s, b.z, c.z);
d.w = fma(s, b.w, c.w);
return d;
}
inline __device__ float fma(__nv_bfloat16 a, __nv_bfloat16 b, float fc) {
return __bfloat162float(a) * __bfloat162float(b) + fc;
}
inline __device__ float2 fma(__nv_bfloat162 a, __nv_bfloat162 b, float2 fc) {
float2 fa = bf1622float2(a);
float2 fb = bf1622float2(b);
return fma(fa, fb, fc);
}
inline __device__ float2 fma(__nv_bfloat16 a, __nv_bfloat162 b, float2 fc) {
return fma(bf162bf162(a), b, fc);
}
inline __device__ Float4_ fma(bf16_4_t a, bf16_4_t b, Float4_ fc) {
Float4_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
return fd;
}
inline __device__ Float4_ fma(__nv_bfloat16 a, bf16_4_t b, Float4_ fc) {
__nv_bfloat162 s = bf162bf162(a);
Float4_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
return fd;
}
inline __device__ Float8_ fma(bf16_8_t a, bf16_8_t b, Float8_ fc) {
Float8_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
fd.z = fma(a.z, b.z, fc.z);
fd.w = fma(a.w, b.w, fc.w);
return fd;
}
inline __device__ Float8_ fma(__nv_bfloat16 a, bf16_8_t b, Float8_ fc) {
__nv_bfloat162 s = bf162bf162(a);
Float8_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
fd.z = fma(s, b.z, fc.z);
fd.w = fma(s, b.w, fc.w);
return fd;
}
// Vector sum.
template <>
inline __device__ float sum(__nv_bfloat16 v) {
return __bfloat162float(v);
}
template <>
inline __device__ float sum(__nv_bfloat162 v) {
float2 vf = bf1622float2(v);
return vf.x + vf.y;
}
template <>
inline __device__ float sum(bf16_4_t v) {
return sum(v.x) + sum(v.y);
}
template <>
inline __device__ float sum(bf16_8_t v) {
return sum(v.x) + sum(v.y) + sum(v.z) + sum(v.w);
}
// From float32 to bfloat16.
inline __device__ void from_float(__nv_bfloat16& dst, float src) {
dst = __float2bfloat16(src);
}
inline __device__ void from_float(__nv_bfloat162& dst, float2 src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
dst = __float22bfloat162_rn(src);
#endif
}
inline __device__ void from_float(bf16_4_t& dst, Float4_ src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
dst.x = __float22bfloat162_rn(src.x);
dst.y = __float22bfloat162_rn(src.y);
#endif
}
inline __device__ void from_float(bf16_8_t& dst, Float8_ src) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
dst.x = __float22bfloat162_rn(src.x);
dst.y = __float22bfloat162_rn(src.y);
dst.z = __float22bfloat162_rn(src.z);
dst.w = __float22bfloat162_rn(src.w);
#endif
}
// From bfloat16 to float32.
inline __device__ float to_float(__nv_bfloat16 u) {
return __bfloat162float(u);
}
// Zero-out a variable.
inline __device__ void zero(__nv_bfloat16& dst) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
assert(false);
#else
// Same as CUDART_ZERO_BF16 introduced in CUDA 12.2.
dst = __ushort_as_bfloat16((unsigned short)0x0000U);
#endif
}
} // namespace vllm
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
* and
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#ifdef USE_ROCM
#include <hip/hip_fp16.h>
#endif
#include <stdint.h>
namespace vllm {
// FP16 vector types for Q, K, V.
template <>
struct Vec<uint16_t, 1> {
using Type = uint16_t;
};
template <>
struct Vec<uint16_t, 2> {
using Type = uint32_t;
};
template <>
struct Vec<uint16_t, 4> {
using Type = uint2;
};
template <>
struct Vec<uint16_t, 8> {
using Type = uint4;
};
// FP32 accumulator vector types corresponding to Vec.
template <>
struct FloatVec<uint16_t> {
using Type = float;
};
template <>
struct FloatVec<uint32_t> {
using Type = float2;
};
template <>
struct FloatVec<uint2> {
using Type = Float4_;
};
template <>
struct FloatVec<uint4> {
using Type = Float8_;
};
// Utility functions for type conversions.
inline __device__ uint32_t h0_h0(uint16_t a) {
#ifndef USE_ROCM
uint32_t b;
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a));
return b;
#else
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u16[0] = a;
tmp.u16[1] = a;
return tmp.u32;
#endif
}
inline __device__ float half_to_float(uint16_t h) {
float f;
#ifndef USE_ROCM
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h));
#else
asm volatile("v_cvt_f32_f16 %0, %1;" : "=v"(f) : "v"(h));
#endif
return f;
}
inline __device__ float2 half2_to_float2(uint32_t v) {
#ifndef USE_ROCM
uint16_t lo, hi;
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v));
return make_float2(half_to_float(lo), half_to_float(hi));
#else
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
tmp.u32 = v;
float2 ret;
ret.x = half_to_float(tmp.u16[0]);
ret.y = half_to_float(tmp.u16[1]);
return ret;
#endif
}
inline __device__ uint16_t float_to_half(float f) {
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
#ifndef USE_ROCM
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f));
#else
asm volatile("v_cvt_f16_f32 %0, %1;\n" : "=v"(tmp.u32) : "v"(f));
#endif
return tmp.u16[0];
}
inline __device__ uint32_t float2_to_half2(float2 f) {
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
#ifndef USE_ROCM
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n"
: "=r"(tmp.u32)
: "f"(f.y), "f"(f.x));
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
#endif
#else
tmp.u16[0] = float_to_half(f.x);
tmp.u16[1] = float_to_half(f.y);
#endif
return tmp.u32;
}
// Vector addition.
inline __device__ uint16_t add(uint16_t a, uint16_t b) {
uint16_t c;
#ifndef USE_ROCM
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
#else
asm volatile("v_add_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
inline __device__ uint32_t add(uint32_t a, uint32_t b) {
uint32_t c;
#ifndef USE_ROCM
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
#else
asm volatile("v_pk_add_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
inline __device__ uint2 add(uint2 a, uint2 b) {
uint2 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
inline __device__ uint4 add(uint4 a, uint4 b) {
uint4 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
inline __device__ float2 add(uint32_t a, float2 fb) {
float2 fa = half2_to_float2(a);
return add(fa, fb);
}
inline __device__ Float4_ add(uint2 a, Float4_ fb) {
Float4_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
return fc;
}
inline __device__ Float8_ add(uint4 a, Float8_ fb) {
Float8_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
fc.z = add(a.z, fb.z);
fc.w = add(a.w, fb.w);
return fc;
}
// Vector multiplication.
template <>
inline __device__ uint16_t mul(uint16_t a, uint16_t b) {
uint16_t c;
#ifndef USE_ROCM
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
#else
asm volatile("v_mul_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
template <>
inline __device__ uint32_t mul(uint32_t a, uint32_t b) {
uint32_t c;
#ifndef USE_ROCM
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
#else
asm volatile("v_pk_mul_f16 %0, %1, %2;\n" : "=v"(c) : "v"(a), "v"(b));
#endif
return c;
}
template <>
inline __device__ uint32_t mul(uint16_t a, uint32_t b) {
return mul<uint32_t, uint32_t, uint32_t>(h0_h0(a), b);
}
template <>
inline __device__ uint2 mul(uint2 a, uint2 b) {
uint2 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
return c;
}
template <>
inline __device__ uint2 mul(uint16_t a, uint2 b) {
uint32_t s = h0_h0(a);
uint2 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
return c;
}
template <>
inline __device__ uint4 mul(uint4 a, uint4 b) {
uint4 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
c.z = mul<uint32_t, uint32_t, uint32_t>(a.z, b.z);
c.w = mul<uint32_t, uint32_t, uint32_t>(a.w, b.w);
return c;
}
template <>
inline __device__ uint4 mul(uint16_t a, uint4 b) {
uint32_t s = h0_h0(a);
uint4 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
c.z = mul<uint32_t, uint32_t, uint32_t>(s, b.z);
c.w = mul<uint32_t, uint32_t, uint32_t>(s, b.w);
return c;
}
template <>
inline __device__ float mul(uint16_t a, uint16_t b) {
float fa = half_to_float(a);
float fb = half_to_float(b);
return fa * fb;
}
template <>
inline __device__ float2 mul(uint32_t a, uint32_t b) {
float2 fa = half2_to_float2(a);
float2 fb = half2_to_float2(b);
return mul<float2, float2, float2>(fa, fb);
}
template <>
inline __device__ float2 mul(uint16_t a, uint32_t b) {
return mul<float2, uint32_t, uint32_t>(h0_h0(a), b);
}
template <>
inline __device__ Float4_ mul(uint2 a, uint2 b) {
Float4_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
return fc;
}
template <>
inline __device__ Float4_ mul(uint16_t a, uint2 b) {
uint32_t s = h0_h0(a);
Float4_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
return fc;
}
template <>
inline __device__ Float8_ mul(uint4 a, uint4 b) {
Float8_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
fc.z = mul<float2, uint32_t, uint32_t>(a.z, b.z);
fc.w = mul<float2, uint32_t, uint32_t>(a.w, b.w);
return fc;
}
template <>
inline __device__ Float8_ mul(uint16_t a, uint4 b) {
uint32_t s = h0_h0(a);
Float8_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
fc.z = mul<float2, uint32_t, uint32_t>(s, b.z);
fc.w = mul<float2, uint32_t, uint32_t>(s, b.w);
return fc;
}
// Vector fused multiply-add.
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c) {
uint32_t d;
#ifndef USE_ROCM
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n"
: "=r"(d)
: "r"(a), "r"(b), "r"(c));
#else
asm volatile("v_pk_fma_f16 %0, %1, %2, %3;\n"
: "=v"(d)
: "v"(a), "v"(b), "v"(c));
#endif
return d;
}
inline __device__ uint32_t fma(uint16_t a, uint32_t b, uint32_t c) {
return fma(h0_h0(a), b, c);
}
inline __device__ uint2 fma(uint2 a, uint2 b, uint2 c) {
uint2 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
inline __device__ uint2 fma(uint16_t a, uint2 b, uint2 c) {
uint32_t s = h0_h0(a);
uint2 d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
return d;
}
inline __device__ uint4 fma(uint4 a, uint4 b, uint4 c) {
uint4 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
inline __device__ uint4 fma(uint16_t a, uint4 b, uint4 c) {
uint32_t s = h0_h0(a);
uint4 d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
d.z = fma(s, b.z, c.z);
d.w = fma(s, b.w, c.w);
return d;
}
inline __device__ float fma(uint16_t a, uint16_t b, float fc) {
float fa = half_to_float(a);
float fb = half_to_float(b);
return fa * fb + fc;
}
inline __device__ float2 fma(uint32_t a, uint32_t b, float2 fc) {
float2 fa = half2_to_float2(a);
float2 fb = half2_to_float2(b);
return fma(fa, fb, fc);
}
inline __device__ float2 fma(uint16_t a, uint32_t b, float2 fc) {
return fma(h0_h0(a), b, fc);
}
inline __device__ Float4_ fma(uint2 a, uint2 b, Float4_ fc) {
Float4_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
return fd;
}
inline __device__ Float4_ fma(uint16_t a, uint2 b, Float4_ fc) {
uint32_t s = h0_h0(a);
Float4_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
return fd;
}
inline __device__ Float8_ fma(uint4 a, uint4 b, Float8_ fc) {
Float8_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
fd.z = fma(a.z, b.z, fc.z);
fd.w = fma(a.w, b.w, fc.w);
return fd;
}
inline __device__ Float8_ fma(uint16_t a, uint4 b, Float8_ fc) {
uint32_t s = h0_h0(a);
Float8_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
fd.z = fma(s, b.z, fc.z);
fd.w = fma(s, b.w, fc.w);
return fd;
}
// Vector sum.
template <>
inline __device__ float sum(uint16_t v) {
return half_to_float(v);
}
template <>
inline __device__ float sum(uint32_t v) {
float2 tmp = half2_to_float2(v);
return tmp.x + tmp.y;
}
template <>
inline __device__ float sum(uint2 v) {
uint32_t c = add(v.x, v.y);
return sum(c);
}
template <>
inline __device__ float sum(uint4 v) {
uint32_t c = add(v.x, v.y);
c = add(c, v.z);
c = add(c, v.w);
return sum(c);
}
// From float32 to float16.
inline __device__ void from_float(uint16_t& dst, float src) {
dst = float_to_half(src);
}
inline __device__ void from_float(uint32_t& dst, float2 src) {
dst = float2_to_half2(src);
}
inline __device__ void from_float(uint2& dst, Float4_ src) {
dst.x = float2_to_half2(src.x);
dst.y = float2_to_half2(src.y);
}
inline __device__ void from_float(uint4& dst, Float8_ src) {
dst.x = float2_to_half2(src.x);
dst.y = float2_to_half2(src.y);
dst.z = float2_to_half2(src.z);
dst.w = float2_to_half2(src.w);
}
// From float16 to float32.
inline __device__ float to_float(uint16_t u) { return half_to_float(u); }
inline __device__ float2 to_float(uint32_t u) { return half2_to_float2(u); }
inline __device__ Float4_ to_float(uint2 u) {
Float4_ tmp;
tmp.x = half2_to_float2(u.x);
tmp.y = half2_to_float2(u.y);
return tmp;
}
inline __device__ Float8_ to_float(uint4 u) {
Float8_ tmp;
tmp.x = half2_to_float2(u.x);
tmp.y = half2_to_float2(u.y);
tmp.z = half2_to_float2(u.z);
tmp.w = half2_to_float2(u.w);
return tmp;
}
// Zero-out a variable.
inline __device__ void zero(uint16_t& dst) { dst = uint16_t(0); }
} // namespace vllm
/*
* Adapted from
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
* and
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h
* Copyright (c) 2023, The vLLM team.
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "attention_generic.cuh"
#include <stdint.h>
namespace vllm {
// Define custom FP32 vector data types.
struct Float4_ {
float2 x;
float2 y;
};
struct Float8_ {
float2 x;
float2 y;
float2 z;
float2 w;
};
// FP32 vector types for Q, K, V.
template <>
struct Vec<float, 1> {
using Type = float;
};
template <>
struct Vec<float, 2> {
using Type = float2;
};
template <>
struct Vec<float, 4> {
using Type = float4;
};
// FP32 accumulator vector types corresponding to Vec.
template <>
struct FloatVec<float> {
using Type = float;
};
template <>
struct FloatVec<float2> {
using Type = float2;
};
template <>
struct FloatVec<float4> {
using Type = float4;
};
// Vector addition.
inline __device__ float add(float a, float b) { return a + b; }
inline __device__ float2 add(float2 a, float2 b) {
float2 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
inline __device__ float4 add(float4 a, float4 b) {
float4 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
// Vector multiplication.
template <>
inline __device__ float mul<float, float>(float a, float b) {
return a * b;
}
template <>
inline __device__ float2 mul(float2 a, float2 b) {
float2 c;
c.x = a.x * b.x;
c.y = a.y * b.y;
return c;
}
template <>
inline __device__ float2 mul(float a, float2 b) {
float2 c;
c.x = a * b.x;
c.y = a * b.y;
return c;
}
template <>
inline __device__ float4 mul(float4 a, float4 b) {
float4 c;
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
c.w = a.w * b.w;
return c;
}
template <>
inline __device__ float4 mul(float a, float4 b) {
float4 c;
c.x = a * b.x;
c.y = a * b.y;
c.z = a * b.z;
c.w = a * b.w;
return c;
}
// Vector fused multiply-add.
inline __device__ float fma(float a, float b, float c) { return a * b + c; }
inline __device__ float2 fma(float2 a, float2 b, float2 c) {
float2 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
inline __device__ float2 fma(float a, float2 b, float2 c) {
float2 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
return d;
}
inline __device__ float4 fma(float4 a, float4 b, float4 c) {
float4 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
inline __device__ float4 fma(float a, float4 b, float4 c) {
float4 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
d.z = fma(a, b.z, c.z);
d.w = fma(a, b.w, c.w);
return d;
}
inline __device__ Float4_ fma(float a, Float4_ b, Float4_ c) {
Float4_ d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
return d;
}
inline __device__ Float8_ fma(float a, Float8_ b, Float8_ c) {
Float8_ d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
d.z = fma(a, b.z, c.z);
d.w = fma(a, b.w, c.w);
return d;
}
// Vector sum.
template <>
inline __device__ float sum(float v) {
return v;
}
template <>
inline __device__ float sum(float2 v) {
return v.x + v.y;
}
template <>
inline __device__ float sum(float4 v) {
return v.x + v.y + v.z + v.w;
}
template <>
inline __device__ float sum(Float4_ v) {
return v.x.x + v.x.y + v.y.x + v.y.y;
}
template <>
inline __device__ float sum(Float8_ v) {
return v.x.x + v.x.y + v.y.x + v.y.y + v.z.x + v.z.y + v.w.x + v.w.y;
}
// Vector dot product.
inline __device__ float dot(float a, float b) { return a * b; }
inline __device__ float dot(float2 a, float2 b) {
float2 c = mul<float2, float2, float2>(a, b);
return c.x + c.y;
}
inline __device__ float dot(Float4_ a, Float4_ b) {
float2 acc = mul<float2, float2, float2>(a.x, b.x);
acc = fma(a.y, b.y, acc);
return acc.x + acc.y;
}
inline __device__ float dot(Float8_ a, Float8_ b) {
float2 acc = mul<float2, float2, float2>(a.x, b.x);
acc = fma(a.y, b.y, acc);
acc = fma(a.z, b.z, acc);
acc = fma(a.w, b.w, acc);
return acc.x + acc.y;
}
// From float to float.
inline __device__ void from_float(float& dst, float src) { dst = src; }
inline __device__ void from_float(float2& dst, float2 src) { dst = src; }
inline __device__ void from_float(float4& dst, float4 src) { dst = src; }
// From float to float.
inline __device__ float to_float(float u) { return u; }
inline __device__ float2 to_float(float2 u) { return u; }
inline __device__ float4 to_float(float4 u) { return u; }
inline __device__ Float4_ to_float(Float4_ u) { return u; }
inline __device__ Float8_ to_float(Float8_ u) { return u; }
// Zero-out a variable.
inline __device__ void zero(float& dst) { dst = 0.f; }
} // namespace vllm
#pragma once
#include "attention_generic.cuh"
#include <stdint.h>
#ifdef ENABLE_FP8
#ifndef USE_ROCM
#include <cuda_fp8.h>
#endif // USE_ROCM
#endif // ENABLE_FP8
namespace vllm {
enum class Fp8KVCacheDataType {
kAuto = 0,
kFp8E4M3 = 1,
kFp8E5M2 = 2,
};
// fp8 vector types for quantization of kv cache
template <>
struct Vec<uint8_t, 1> {
using Type = uint8_t;
};
template <>
struct Vec<uint8_t, 2> {
using Type = uint16_t;
};
template <>
struct Vec<uint8_t, 4> {
using Type = uint32_t;
};
template <>
struct Vec<uint8_t, 8> {
using Type = uint2;
};
} // namespace vllm
#pragma once
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#endif
#ifndef USE_ROCM
#define WARP_SIZE 32
#else
#define WARP_SIZE warpSize
#endif
#ifndef USE_ROCM
#define VLLM_LDG(arg) __ldg(arg)
#else
#define VLLM_LDG(arg) *(arg)
#endif
#ifndef USE_ROCM
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) \
__shfl_xor_sync(uint32_t(-1), var, lane_mask)
#define VLLM_SHFL_XOR_SYNC_WIDTH(var, lane_mask, width) \
__shfl_xor_sync(uint32_t(-1), var, lane_mask, width)
#else
#define VLLM_SHFL_XOR_SYNC(var, lane_mask) __shfl_xor(var, lane_mask)
#define VLLM_SHFL_XOR_SYNC_WIDTH(var, lane_mask, width) \
__shfl_xor(var, lane_mask, width)
#endif
#ifndef USE_ROCM
#define VLLM_SHFL_SYNC(var, src_lane) __shfl_sync(uint32_t(-1), var, src_lane)
#else
#define VLLM_SHFL_SYNC(var, src_lane) __shfl(var, src_lane)
#endif
#ifndef USE_ROCM
#define VLLM_SHFL_DOWN_SYNC(var, lane_delta) \
__shfl_down_sync(uint32_t(-1), var, lane_delta)
#else
#define VLLM_SHFL_DOWN_SYNC(var, lane_delta) __shfl_down(var, lane_delta)
#endif
#ifndef USE_ROCM
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
cudaFuncSetAttribute(FUNC, cudaFuncAttributeMaxDynamicSharedMemorySize, VAL)
#else
#define VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(FUNC, VAL) \
hipFuncSetAttribute(FUNC, hipFuncAttributeMaxDynamicSharedMemorySize, VAL)
#endif
#pragma once
#ifdef __HIPCC__
#include <hip/hip_runtime.h>
#else
#include <type_traits>
#include <stdint.h>
#include <math.h>
#include <iostream>
#endif
#include "hip_float8_impl.h"
struct alignas(1) hip_fp8 {
struct from_bits_t {};
HIP_FP8_HOST_DEVICE static constexpr from_bits_t from_bits() {
return from_bits_t();
}
uint8_t data;
hip_fp8() = default;
HIP_FP8_HOST_DEVICE constexpr hip_fp8(const hip_fp8&) = default;
HIP_FP8_HOST_DEVICE constexpr hip_fp8(uint8_t v) = delete;
explicit HIP_FP8_HOST_DEVICE constexpr hip_fp8(uint8_t v, from_bits_t)
: data(v) {}
#ifdef __HIP__MI300__
// NOTE: ON-DEVICE... always optimal bias
explicit HIP_FP8_DEVICE hip_fp8(float v)
: data(hip_fp8_impl::to_fp8_from_fp32(v)) {}
explicit HIP_FP8_DEVICE hip_fp8(_Float16 v)
: hip_fp8(static_cast<float>(v)) {}
// Host only implementation using s/w simulation
explicit HIP_FP8_HOST
#else // __HIP__MI300__
// both Host and DEVICE for non-MI300 using s/w simulation
explicit HIP_FP8_HOST_DEVICE
#endif // __HIP__MI300__
hip_fp8(float v) {
data = hip_fp8_impl::to_float8<4, 3, float, true /*negative_zero_nan*/,
true /*clip*/>(v);
}
explicit HIP_FP8_HOST_DEVICE hip_fp8(double v)
: hip_fp8(static_cast<float>(v)) {}
#ifdef __HIP__MI300__
// upcast using device specific intrinsic
explicit inline HIP_FP8_DEVICE operator float() const {
float fval;
uint32_t i32val = static_cast<uint32_t>(data);
// upcast
asm volatile("v_cvt_f32_fp8 %0, %1 src0_sel:BYTE_0"
: "=v"(fval)
: "v"(i32val));
return fval;
}
explicit inline HIP_FP8_HOST operator float() const
#else // __HIP__MI300__
explicit inline HIP_FP8_HOST_DEVICE operator float() const
#endif // __HIP__MI300__
{
return hip_fp8_impl::from_float8<4, 3, float, true /*negative_zero_nan*/>(
data);
}
};
namespace std {
inline hip_fp8 sin(hip_fp8 a) { return hip_fp8(sinf(float(a))); }
inline hip_fp8 cos(hip_fp8 a) { return hip_fp8(cosf(float(a))); }
HIP_FP8_HOST_DEVICE constexpr hip_fp8 real(const hip_fp8& a) { return a; }
} // namespace std
// Special operator overloading
inline std::ostream& operator<<(std::ostream& os, const hip_fp8& f8) {
return os << float(f8);
}
// all + operator overloading with mixed types
// mixed types, always converts to f32, does computation in f32, and returns
// float
inline HIP_FP8_HOST_DEVICE float operator+(const float fa, hip_fp8 b) {
return (fa + float(b));
}
inline HIP_FP8_HOST_DEVICE float operator+(hip_fp8 a, const float fb) {
return (float(a) + fb);
}
inline HIP_FP8_HOST_DEVICE hip_fp8 operator+(hip_fp8 a, hip_fp8 b) {
return hip_fp8(float(a) + float(b));
}
inline HIP_FP8_HOST_DEVICE hip_fp8& operator+=(hip_fp8& a, hip_fp8 b) {
return a = hip_fp8(float(a) + float(b));
}
// overloading multiplication, always returns float,
inline HIP_FP8_HOST_DEVICE float operator*(hip_fp8 a, hip_fp8 b) {
return float(a) * float(b);
}
inline HIP_FP8_HOST_DEVICE float operator*(float a, hip_fp8 b) {
return (a * float(b));
}
inline HIP_FP8_HOST_DEVICE float operator*(hip_fp8 a, float b) {
return (float(a) * b);
}
inline HIP_FP8_HOST_DEVICE float operator*(int32_t a, hip_fp8 b) {
return ((float)a * float(b));
}
inline HIP_FP8_HOST_DEVICE float operator*(double a, hip_fp8 b) {
return ((float)a * float(b));
}
// overloading for compare
inline HIP_FP8_HOST_DEVICE bool operator==(hip_fp8 a, hip_fp8 b) {
return (a.data == b.data);
}
inline HIP_FP8_HOST_DEVICE bool operator!=(hip_fp8 a, hip_fp8 b) {
return (a.data != b.data);
}
inline HIP_FP8_HOST_DEVICE bool operator>=(hip_fp8 a, hip_fp8 b) {
return static_cast<float>(a) >= static_cast<float>(b);
}
inline HIP_FP8_HOST_DEVICE bool operator>(hip_fp8 a, hip_fp8 b) {
return static_cast<float>(a) > static_cast<float>(b);
}
#pragma once
#if defined(__HIPCC__) && \
(defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
#define __HIP__MI300__
#endif
#ifdef __HIPCC__
#define HIP_FP8_HOST_DEVICE __host__ __device__
#define HIP_FP8_HOST __host__
#define HIP_FP8_DEVICE __device__
#else
#define HIP_FP8_HOST_DEVICE
#define HIP_FP8_HOST
#define HIP_FP8_DEVICE
#endif
namespace hip_fp8_impl {
#ifdef __HIP__MI300__
HIP_FP8_DEVICE uint8_t to_fp8_from_fp32(float v) {
uint8_t i8data;
union {
float fval;
uint32_t i32val;
uint8_t i8val[4]; // NOTE: not endian independent
} val;
uint32_t ival = 0;
val.fval = v;
if ((val.i32val & 0x7F800000) !=
0x7F800000) { /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
}
ival = __builtin_amdgcn_cvt_pk_fp8_f32(val.fval, val.fval, ival,
false); // false -> WORD0
val.i32val = ival;
i8data = val.i8val[0];
return i8data;
}
#endif // __HIP__MI300__
HIP_FP8_HOST inline int clz(uint32_t x) { return __builtin_clz(x); }
#if defined(__HIPCC__) || defined(__CUDA_ARCH__)
HIP_FP8_DEVICE inline int clz(uint32_t x) { return __clz(x); }
#endif
template <int we, int wm, typename T, bool negative_zero_nan, bool clip>
HIP_FP8_HOST_DEVICE uint8_t to_float8(T _x, bool stoch = false,
uint32_t rng = 0) {
#ifdef __HIPCC__
constexpr bool is_half = std::is_same<T, _Float16>::value;
#else
constexpr bool is_half = false;
#endif
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(wm + we == 7, "wm+we==7");
static_assert(is_half || is_float, "Only half and float can be cast to f8");
const int mfmt = (sizeof(T) == 4) ? 23 : 10;
uint32_t x;
if (sizeof(T) == 4) {
x = reinterpret_cast<uint32_t&>(_x);
} else {
x = reinterpret_cast<uint16_t&>(_x);
}
uint32_t head, mantissa;
int exponent, bias;
uint32_t sign;
if (sizeof(T) == 4) {
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
} else {
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
}
uint32_t signed_inf = (sign << 7) + (((1 << we) - 1) << wm);
// Deal with inf and NaNs
if (negative_zero_nan) {
if (sizeof(T) == 4) {
if ((x & 0x7F800000) == 0x7F800000) {
return 0x80;
}
} else {
// if(__hisinf(x) || __hisnan(x))
if ((x & 0x7C00) == 0x7C00) {
return 0x80;
}
}
} else {
if (sizeof(T) == 4) {
if ((x & 0x7F800000) == 0x7F800000) {
return signed_inf + (mantissa != 0 ? 1 : 0);
}
} else {
if ((x & 0x7C00) == 0x7C00) {
return signed_inf + (mantissa != 0 ? 1 : 0);
}
}
}
if (x == 0) {
return 0;
}
// First need to check if it is normal or denorm as there is a difference of
// implicit 1 Then need to adjust the exponent to align with the F8 exponent,
// in the meanwhile, shift The mantissa. Then for stochastic rounding, add rng
// to mantissa and truncate. And for RNE, no need to add rng. Then probably
// need to check whether there is carry and adjust exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent
// bits
const int f8_bias = (1 << (we - 1)) - 1 + (negative_zero_nan ? 1 : 0);
const int f8_denormal_act_exponent =
1 - f8_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, f8_exponent, exponent_diff;
if (exponent == 0) { // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we
mostly concern fp16 here. In this case, f8 is usually in denormal. But there
could be exceptions. fp16 denormal has exponent bias 15 while bf8 with NANOO has
exponent bias 16. It means that there are some numbers in fp16 denormal but they
are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8
(NANOO) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff =
f8_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
} else { // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if (act_exponent <= f8_denormal_act_exponent) {
/* This is the case where fp32/fp16 is normal but it is in f8 denormal
range. For example fp8 nanoo mode, denormal exponent is -7, but if the
fp32/fp16 actual exponent is -7, it is actually larger due to the implicit 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = f8_denormal_act_exponent - act_exponent;
} else { // both fp32/fp16 and f8 are in normal range
exponent_diff = 0; // exponent_diff=0 does not mean there is no
// difference for this case, act_exponent could be
// larger. Just that it does not need shift mantissa
}
mantissa += (1 << mfmt); // Add the implicit 1 into mantissa
}
bool midpoint = (mantissa & ((1 << (mfmt - wm + exponent_diff)) - 1)) ==
static_cast<uint32_t>(1 << (mfmt - wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be
done before we shift right as shift right could rip off some residual part
and make something not midpoint look like midpoint. For example, the fp16
number 0x1002 (0 00100 0000000010), it is larger than midpoint, but after
shift right by 4 bits, it would look like midpoint.
*/
if (exponent_diff > 0) {
mantissa >>= exponent_diff;
} else if (exponent_diff == -1) {
mantissa <<= -exponent_diff;
}
bool implicit_one = mantissa & (1 << mfmt);
// if there is no implicit 1, it means the f8 is denormal and need to adjust
// to denorm exponent
f8_exponent = (act_exponent + exponent_diff) /*actual f8 exponent*/ +
f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
uint32_t drop_mask = (1 << (mfmt - wm)) - 1;
bool odd = mantissa & (1 << (mfmt - wm)); // if the least significant bit
// that is not truncated is 1
mantissa +=
(stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) &
drop_mask;
// Now we deal with overflow
if (f8_exponent == 0) {
if ((1 << mfmt) & mantissa) {
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
} else {
if ((1 << (mfmt + 1)) & mantissa) {
mantissa >>= 1;
f8_exponent++;
}
}
mantissa >>= (mfmt - wm);
// above range: quantize to maximum possible float of the same sign
const int max_exp = (1 << we) - (negative_zero_nan ? 1 : 2);
if (f8_exponent > max_exp) {
if (clip) {
mantissa = (1 << wm) - 1;
f8_exponent = max_exp;
} else {
return signed_inf;
}
}
if (f8_exponent == 0 && mantissa == 0) {
return negative_zero_nan ? 0 : (sign << 7);
}
mantissa &= (1 << wm) - 1;
return (sign << 7) | (f8_exponent << wm) | mantissa;
}
template <int we, int wm, typename T = float, bool negative_zero_nan = true>
inline HIP_FP8_HOST_DEVICE T from_float8(uint8_t x) {
#ifdef __HIPCC__
constexpr bool is_half = std::is_same<T, _Float16>::value;
#else
constexpr bool is_half = false;
#endif
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(is_half || is_float, "only half and float are supported");
constexpr int weo = is_half ? 5 : 8;
constexpr int wmo = is_half ? 10 : (is_float ? 23 : 7);
T fInf, fNegInf, fNaN, fNeg0;
#ifdef __HIPCC__
if (is_half) {
const uint16_t ihInf = 0x7C00;
const uint16_t ihNegInf = 0xFC00;
const uint16_t ihNaN = 0x7C01;
const uint16_t ihNeg0 = 0x8000;
fInf = reinterpret_cast<const _Float16&>(ihInf);
fNegInf = reinterpret_cast<const _Float16&>(ihNegInf);
fNaN = reinterpret_cast<const _Float16&>(ihNaN);
fNeg0 = reinterpret_cast<const _Float16&>(ihNeg0);
} else
#endif
if (is_float) {
const uint32_t ifInf = 0x7F800000;
const uint32_t ifNegInf = 0xFF800000;
const uint32_t ifNaN = 0x7F800001;
const uint32_t ifNeg0 = 0x80000000;
fInf = reinterpret_cast<const float&>(ifInf);
fNegInf = reinterpret_cast<const float&>(ifNegInf);
fNaN = reinterpret_cast<const float&>(ifNaN);
fNeg0 = reinterpret_cast<const float&>(ifNeg0);
}
if (x == 0) {
return 0;
}
uint32_t sign = x >> 7;
uint32_t mantissa = x & ((1 << wm) - 1);
int exponent = (x & 0x7F) >> wm;
if (negative_zero_nan) {
if (x == 0x80) {
return fNaN;
}
} else {
if (x == 0x80) {
return fNeg0;
}
if (exponent == ((1 << we) - 1)) {
return (mantissa == 0) ? (sign ? fNegInf : fInf) : fNaN;
}
}
typename std::conditional<sizeof(T) == 2, uint16_t, uint32_t>::type retval;
if (we == 5 && is_half && !negative_zero_nan) {
retval = x << 8;
return reinterpret_cast<const T&>(retval);
}
const int exp_low_cutoff =
(1 << (weo - 1)) - (1 << (we - 1)) + 1 - (negative_zero_nan ? 1 : 0);
// subnormal input
if (exponent == 0) {
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + clz(mantissa) - (32 - wm);
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1 << wm) - 1);
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - wm;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if (exponent <= 0) {
mantissa |= 1 << wmo;
mantissa >>= 1 - exponent;
exponent = 0;
}
if (sizeof(T) == 2) {
retval = (sign << 15) | (exponent << 10) | mantissa;
} else {
retval = (sign << 31) | (exponent << 23) | mantissa;
}
return reinterpret_cast<const T&>(retval);
}
} // namespace hip_fp8_impl
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment