Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel_ROCM
Commits
015807d8
Commit
015807d8
authored
Jan 29, 2024
by
Jakub Piasecki
Browse files
add support for fp16/bf16int8 gemms with postops
parent
efd41464
Changes
37
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1032 additions
and
381 deletions
+1032
-381
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+83
-1
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+20
-0
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
..._operation_instance/device_operation_instance_factory.hpp
+3
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
...ude/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
+114
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
...brary/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
+53
-1
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
...k/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
+116
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_silu.hpp
...k/library/tensor_operation_instance/gpu/gemm_add_silu.hpp
+116
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_multiply_add.hpp
...brary/tensor_operation_instance/gpu/gemm_multiply_add.hpp
+50
-0
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
...ary/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
+43
-145
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_int8_f16_mk_kn_mn_instance.cpp
...ice_gemm_xdl_c_shuffle_f16_int8_f16_mk_kn_mn_instance.cpp
+0
-122
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_int8_f16_mk_nk_mn_instance.cpp
...ice_gemm_xdl_c_shuffle_f16_int8_f16_mk_nk_mn_instance.cpp
+0
-111
library/src/tensor_operation_instance/gpu/gemm_add/CMakeLists.txt
...src/tensor_operation_instance/gpu/gemm_add/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/gemm_add/device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
..._xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
+69
-0
library/src/tensor_operation_instance/gpu/gemm_add/device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
...add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
+69
-0
library/src/tensor_operation_instance/gpu/gemm_add_fastgelu/CMakeLists.txt
...r_operation_instance/gpu/gemm_add_fastgelu/CMakeLists.txt
+2
-0
library/src/tensor_operation_instance/gpu/gemm_add_fastgelu/device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
..._xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
+73
-0
library/src/tensor_operation_instance/gpu/gemm_add_fastgelu/device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
...elu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
+72
-0
library/src/tensor_operation_instance/gpu/gemm_add_relu/CMakeLists.txt
...ensor_operation_instance/gpu/gemm_add_relu/CMakeLists.txt
+4
-0
library/src/tensor_operation_instance/gpu/gemm_add_relu/device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
..._xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
+71
-0
library/src/tensor_operation_instance/gpu/gemm_add_relu/device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
...elu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
+70
-0
No files found.
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -75,6 +75,15 @@ struct Add
y
=
ck
::
type_convert
<
bhalf_t
>
(
y_tmp
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
bhalf_t
>
(
bhalf_t
&
y
,
const
float
&
x0
,
const
bhalf_t
&
x1
)
const
{
const
float
x2_tmp
=
ck
::
type_convert
<
float
>
(
x1
);
const
float
y_tmp
=
x0
+
x2_tmp
;
y
=
ck
::
type_convert
<
bhalf_t
>
(
y_tmp
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
int8_t
>
(
int8_t
&
y
,
const
int8_t
&
x0
,
const
int8_t
&
x1
)
const
...
...
@@ -264,6 +273,14 @@ struct AddRelu
y
=
a
>
0.0
f
?
a
:
0.0
f
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
bhalf_t
,
float
,
bhalf_t
>
(
bhalf_t
&
y
,
const
float
&
x0
,
const
bhalf_t
&
x1
)
const
{
const
float
a
=
x0
+
x1
;
y
=
a
>
type_convert
<
bhalf_t
>
(
0.0
f
)
?
a
:
type_convert
<
bhalf_t
>
(
0.0
f
);
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
int
,
int
,
int8_t
>
(
int
&
y
,
const
int
&
x0
,
const
int8_t
&
x1
)
const
...
...
@@ -354,6 +371,71 @@ struct AddFastGelu
e
=
type_convert
<
half_t
>
(
x1_f
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
bhalf_t
,
float
,
bhalf_t
>
(
bhalf_t
&
e
,
const
float
&
c
,
const
bhalf_t
&
d
)
const
{
const
float
x0_f
=
c
+
d
;
float
x1_f
=
0
;
ck
::
tensor_operation
::
element_wise
::
FastGelu
{}.
template
operator
()
<
float
,
float
>(
x1_f
,
x0_f
);
e
=
type_convert
<
bhalf_t
>
(
x1_f
);
}
};
// E = Silu(C + D)
struct
AddSilu
{
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
>
(
float
&
e
,
const
float
&
c
,
const
float
&
d
)
const
{
const
float
x
=
c
+
d
;
Silu
{}.
template
operator
()
<
float
>(
e
,
x
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
half_t
,
half_t
>
(
half_t
&
e
,
const
half_t
&
c
,
const
half_t
&
d
)
const
{
const
half_t
x
=
c
+
d
;
ck
::
tensor_operation
::
element_wise
::
Silu
{}.
template
operator
()
<
half_t
>(
e
,
x
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
float
,
half_t
>
(
half_t
&
e
,
const
float
&
c
,
const
half_t
&
d
)
const
{
const
float
x0_f
=
c
+
d
;
float
x1_f
=
0
;
ck
::
tensor_operation
::
element_wise
::
Silu
{}.
template
operator
()
<
float
>(
x1_f
,
x0_f
);
e
=
type_convert
<
half_t
>
(
x1_f
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
bhalf_t
,
float
,
bhalf_t
>
(
bhalf_t
&
e
,
const
float
&
c
,
const
bhalf_t
&
d
)
const
{
const
float
x0_f
=
c
+
d
;
float
x1_f
=
0
;
ck
::
tensor_operation
::
element_wise
::
Silu
{}.
template
operator
()
<
float
>(
x1_f
,
x0_f
);
e
=
type_convert
<
bhalf_t
>
(
x1_f
);
}
};
}
// namespace element_wise
...
...
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
015807d8
...
...
@@ -156,6 +156,12 @@ struct PassThrough
y
=
type_convert
<
half_t
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
bhalf_t
,
int8_t
>
(
bhalf_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
type_convert
<
bhalf_t
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
int8_t
,
int32_t
>
(
int8_t
&
y
,
const
int32_t
&
x
)
const
{
...
...
@@ -551,6 +557,20 @@ struct Sigmoid
};
};
struct
Silu
{
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
ck
::
half_t
>::
value
||
is_same
<
T
,
int8_t
>::
value
||
is_same
<
T
,
int32_t
>::
value
,
"Data type is not supported by this operation!"
);
constexpr
T
one
=
type_convert
<
T
>
(
1
);
y
=
x
*
(
one
/
(
one
+
ck
::
math
::
exp
(
-
x
)));
};
};
struct
TanH
{
template
<
typename
T
>
...
...
library/include/ck/library/tensor_operation_instance/device_operation_instance_factory.hpp
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -98,6 +98,8 @@ using Scale = ck::tensor_operation::element_wise::Scale;
using
Bilinear
=
ck
::
tensor_operation
::
element_wise
::
Bilinear
;
using
AddAddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddAddFastGelu
;
using
AddFastGelu
=
ck
::
tensor_operation
::
element_wise
::
AddFastGelu
;
using
AddRelu
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
using
AddSilu
=
ck
::
tensor_operation
::
element_wise
::
AddSilu
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
using
FastGelu
=
ck
::
tensor_operation
::
element_wise
::
FastGelu
;
using
AddMultiply
=
ck
::
tensor_operation
::
element_wise
::
AddMultiply
;
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add.hpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
>>>&
);
void
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
>>>&
);
// GEMM + Add +
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
Add
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
Add
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined CK_ENABLE_INT8 && CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_fastgelu.hpp
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-202
3
, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-202
4
, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
...
...
@@ -68,6 +68,32 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_inst
PassThrough
,
AddFastGelu
>>>&
);
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
);
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
);
// GEMM + Add + FastGelu
template
<
typename
ALayout
,
typename
BLayout
,
...
...
@@ -106,6 +132,32 @@ struct DeviceOperationInstanceFactory<
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined CK_ENABLE_BF16 && CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
ADataType
,
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
bhalf_t
>
&&
is_same_v
<
EDataType
,
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_relu.hpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
);
void
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
);
// GEMM + Add + Relu
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddRelu
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddRelu
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined CK_ENABLE_INT8 && CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_add_silu.hpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
void
add_device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddSilu
>>>&
);
void
add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddSilu
>>>&
);
// GEMM + Add + Silu
template
<
typename
ALayout
,
typename
BLayout
,
typename
D0Layout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
D0DataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddSilu
>>
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
>
,
EDataType
,
PassThrough
,
PassThrough
,
AddSilu
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#if defined CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_silu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
#if defined CK_ENABLE_INT8 && CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
EDataType
,
ck
::
bhalf_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_add_silu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm_multiply_add.hpp
View file @
015807d8
...
...
@@ -73,6 +73,34 @@ void add_device_gemm_multiply_add_xdl_c_shuffle_f16_f8_f32_f32_f16_mk_nk_mn_mn_m
MultiplyAdd
>>>&
);
#endif
#if defined CK_ENABLE_INT8
void
add_device_gemm_multiply_add_xdl_c_shuffle_f16_int8_f16_f16_f16_mk_kn_mn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Row_Tuple
,
Row
,
F16
,
I8
,
F16_F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
MultiplyAdd
>>>&
);
void
add_device_gemm_multiply_add_xdl_c_shuffle_f16_int8_f16_f16_f16_mk_nk_mn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Col
,
Row_Row_Tuple
,
Row
,
F16
,
I8
,
F16_F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
MultiplyAdd
>>>&
);
#endif
// GEMM + Multiply + Add
template
<
typename
ALayout
,
typename
BLayout
,
...
...
@@ -155,6 +183,28 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
}
#endif
#if defined CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
int8_t
>
&&
is_same_v
<
D0DataType
,
half_t
>
&&
is_same_v
<
D1DataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
D1Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_int8_f16_f16_f16_mk_kn_mn_mn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
D0Layout
,
Row
>
&&
is_same_v
<
D1Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_multiply_add_xdl_c_shuffle_f16_int8_f16_f16_f16_mk_nk_mn_mn_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
};
...
...
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
View file @
015807d8
set
(
GEMM_INSTANCES
)
list
(
APPEND GEMM_INSTANCES device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_km_kn_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_km_nk_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_lds_direct_load_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_int8_f16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_int8_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_interwave_pipeline_v1_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_dl_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_kn_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_km_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_nk_mn_irregular_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_default_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_padded_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp
)
add_instance_library
(
device_gemm_instance
${
GEMM_INSTANCES
}
)
set
(
ENABLE_PIPELINE_V2_OPT
)
if
(
ENABLE_PIPELINE_V2_OPT
)
set
(
WAVES_PER_EU_DEFS
CK_USE_WAVES_PER_EU=1
CK_MIN_WAVES_PER_EU=1
CK_MAX_WAVES_PER_EU=1
)
set
(
IGLP_OPT_DEFS
CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT=1
)
# TODO: The "-vectorize-slp=false" LLVM option is a workaround to prevent inefficient instruction scheduling
# caused by the SLP Vectorizer. Remove this option after fix the SLP Vectorizer issue.
# layout=NT
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";-mllvm;-vectorize-slp=false"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
# layout=NN
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";-mllvm;-vectorize-slp=false"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
# layout=TT
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";;"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
# layout=TN
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";;"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
endif
(
ENABLE_PIPELINE_V2_OPT
)
add_instance_library
(
device_gemm_instance
device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_xdl_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_nk_mn_instance.cpp
)
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_int8_f16_mk_kn_mn_instance.cpp
deleted
100644 → 0
View file @
efd41464
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_f16_int8_f16_mk_nk_mn_instance.cpp
deleted
100644 → 0
View file @
efd41464
This diff is collapsed.
Click to expand it.
library/src/tensor_operation_instance/gpu/gemm_add/CMakeLists.txt
0 → 100644
View file @
015807d8
add_instance_library
(
device_gemm_add_instance
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
library/src/tensor_operation_instance/gpu/gemm_add/device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
// clang-format on
>
;
using
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
256
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
void
add_device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
Add
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances
{});
add_device_operation_instances
(
instances
,
device_gemm_add_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_add/device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
// clang-format on
>
;
using
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
256
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
void
add_device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
Add
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances
{});
add_device_operation_instances
(
instances
,
device_gemm_add_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_add_fastgelu/CMakeLists.txt
View file @
015807d8
add_instance_library
(
device_gemm_add_fastgelu_instance
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance.cpp
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
)
library/src/tensor_operation_instance/gpu/gemm_add_fastgelu/device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
// clang-format on
>
;
using
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
256
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances
{});
add_device_operation_instances
(
instances
,
device_gemm_add_fastgelu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_add_fastgelu/device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
// static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
// clang-format on
>
;
using
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
256
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
void
add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddFastGelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances
{});
add_device_operation_instances
(
instances
,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_add_relu/CMakeLists.txt
0 → 100644
View file @
015807d8
add_instance_library
(
device_gemm_add_relu_instance
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
)
library/src/tensor_operation_instance/gpu/gemm_add_relu/device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instance.cpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
// clang-format on
>
;
using
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
256
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
F32
,
F32
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
void
add_device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
BF16
,
I8
,
BF16_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_generic_instances
{});
add_device_operation_instances
(
instances
,
device_gemm_add_relu_xdl_c_shuffle_bf16_i8_bf16_bf16_mk_kn_mn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm_add_relu/device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instance.cpp
0 → 100644
View file @
015807d8
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/utility/sequence.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// e = elementwise((a * b), d0, d1)
// outout: e[m, n]
// input: a[m, k], b[k, n], d0[m, n], d1[m, n]
using
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
1
>
// clang-format on
>
;
using
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
=
std
::
tuple
<
// clang-format off
// M/N/K padding
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
256
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
2
,
S
<
4
,
16
,
4
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
2
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
32
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemmMultipleD_Xdl_CShuffle
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F32
,
F32
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
,
GemmMNKPadding
,
1
,
64
,
16
,
16
,
64
,
8
,
8
,
16
,
16
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
// clang-format on
>
;
void
add_device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
I8
,
F16_Tuple
,
F16
,
PassThrough
,
PassThrough
,
AddRelu
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_generic_instances
{});
add_device_operation_instances
(
instances
,
device_gemm_add_relu_xdl_c_shuffle_f16_i8_f16_f16_mk_kn_mn_mn_instances
{});
}
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment