Commit 00b1a7e2 authored by rocking's avatar rocking
Browse files

Add smoothquant instance library

parent d6b0e59e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 1, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 1, 4, 64, 2, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 2, 4, 64, 1, true , false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "smoothquant_instance_common.hpp"
// clang-format off
// rm rn tm tn vn pd 2p
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 3, 4, 64, 4, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 6, 4, 64, 2, true , false>>(const S&, A);
template float smoothquant_<trait_<ck_tile::fp16_t, 1, 12, 4, 64, 1, true , false>>(const S&, A);
// clang-format on
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "smoothquant.hpp"
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kTwoPass_>
using trait_ = smoothquant_traits_<DataType_,
Repeat_M_,
Repeat_N_,
ThreadPerBlock_M_,
ThreadPerBlock_N_,
Vector_N_,
kPadN_,
kTwoPass_>;
template <typename data_type>
float smoothquant_dispatch(smoothquant_traits /*t*/,
smoothquant_args a,
const ck_tile::stream_config& s)
{
#if 1
float r = -1;
// clang-format off
// rm rn tm tn vn pd 2p
if(a.n <= 64) {
r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 1, true, false>>(s, a);
}
else if(a.n <= 128) {
if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 2, 4, 64, 1, true, false>>(s, a);
}
else if(a.n <= 256) {
if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 4, 64, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 4, 4, 64, 1, true, false>>(s, a);
}
else if(a.n <= 512) {
/*if (a.n % 8 == 0)
r = smoothquant_<trait_<data_type, 1, 1, 4, 64, 8, true, false>>(s, a);
else */if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 4, 64, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 4, 4, 64, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 8, 4, 64, 1, true, false>>(s, a);
}
else if(a.n <= 768) {
if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 3, 4, 64, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 6, 4, 64, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1,12, 4, 64, 1, true, false>>(s, a);
}
else if(a.n <= 1024) {
/*if (a.n % 8 == 0)
r = smoothquant_<trait_<data_type, 1, 1, 2, 128, 8, true, false>>(s, a);
else */if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 2, 128, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 4, 2, 128, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 1, true, false>>(s, a);
}
else if(a.n <= 1536) {
/*if (a.n % 8 == 0)
r = smoothquant_<trait_<data_type, 1, 3, 4, 64, 8, true, false>>(s, a);
else */if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 3, 2, 128, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 3, 1, 256, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 6, 1, 256, 1, true, false>>(s, a);
}
else if(a.n <= 2048) {
/*if (a.n % 8 == 0)
r = smoothquant_<trait_<data_type, 1, 1, 1, 256, 8, true, false>>(s, a);
else */if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 1, 256, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 8, 1, 256, 1, true, false>>(s, a);
}
else if(a.n <= 3072) {
/*if (a.n % 8 == 0)
r = smoothquant_<trait_<data_type, 1, 3, 1, 128, 8, true, false>>(s, a);
else */if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 3, 1, 256, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 6, 1, 256, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 3, 1, 1024, 1, true, false>>(s, a);
}
else if(a.n <= 4096) {
/*if (a.n % 8 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 1, 256, 8, true, false>>(s, a);
else */if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 4, true, false>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 1, 1024, 2, true, false>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 4, 1, 1024, 1, true, false>>(s, a);
}
else if(a.n > 4096) {
/*if (a.n % 8 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 1, 256, 8, true, true>>(s, a);
else */if (a.n % 4 == 0)
r = smoothquant_<trait_<data_type, 1, 4, 1, 256, 4, true, true>>(s, a);
else if (a.n % 2 == 0)
r = smoothquant_<trait_<data_type, 1, 2, 1, 1024, 2, true, true>>(s, a);
else
r = smoothquant_<trait_<data_type, 1, 4, 1, 1024, 1, true, true>>(s, a);
}
return r;
#else
return smoothquant_<trait_<data_type, 1, 1, 4, 64, 1, true, false>>(s, a);
#endif
// clang-format on
}
float smoothquant(smoothquant_traits t, smoothquant_args a, const ck_tile::stream_config& s)
{
float r = -1;
if(t.data_type.compare("fp16") == 0)
{
return smoothquant_dispatch<ck_tile::fp16_t>(t, a, s);
}
else if(t.data_type.compare("bf16") == 0)
{
return smoothquant_dispatch<ck_tile::bf16_t>(t, a, s);
}
if(r < 0)
throw std::runtime_error("Without supported instances!");
return r;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include <ck_tile/core.hpp>
#include "smoothquant.hpp"
#include <iostream>
#pragma once
using S = ck_tile::stream_config;
using A = smoothquant_args;
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kTwoPass_>
using trait_ = smoothquant_traits_<DataType_,
Repeat_M_,
Repeat_N_,
ThreadPerBlock_M_,
ThreadPerBlock_N_,
Vector_N_,
kPadN_,
kTwoPass_>;
template <typename Traits_>
float smoothquant_(const S& s, A a)
{
using DataType = typename Traits_::DataType;
using PipelineProblem = ck_tile::SmoothquantPipelineProblem<
typename SmoothquantTypeConfig<DataType>::XDataType,
typename SmoothquantTypeConfig<DataType>::XScaleDataType,
typename SmoothquantTypeConfig<DataType>::ComputeDataType,
typename SmoothquantTypeConfig<DataType>::YScaleDataType,
typename SmoothquantTypeConfig<DataType>::QYDataType,
typename Traits_::Shape,
Traits_::kPadN,
Traits_::kTwoPass>;
using OnePassPipeline = ck_tile::SmoothquantPipelineOnePass<PipelineProblem>;
using TwoPassPipeline = ck_tile::SmoothquantPipelineTwoPass<PipelineProblem>;
using Pipeline = std::conditional_t<Traits_::kTwoPass, TwoPassPipeline, OnePassPipeline>;
using Kernel = ck_tile::Smoothquant<Pipeline>;
const dim3 grids = Kernel::GridSize(a);
constexpr dim3 blocks = Kernel::BlockSize();
constexpr ck_tile::index_t kBlockPerCu = 1;
auto kargs = Kernel::MakeKargs(a);
if(s.log_level_ > 0)
std::cout << ", " << Kernel::GetName() << std::flush;
return ck_tile::launch_kernel(
s, ck_tile::make_kernel<blocks.x, kBlockPerCu>(Kernel{}, grids, blocks, 0, kargs));
}
#include "ck_tile/host.hpp"
#include "smoothquant.hpp"
#include <cstring>
// different threshold for different dtype
template <typename DataType>
auto get_elimit()
{
double rtol = 1e-5;
double atol = 1e-5;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::bf16_t>()
{
double rtol = 1e-5;
double atol = 1e-5;
return ck_tile::make_tuple(rtol, atol);
}
template <>
auto get_elimit<ck_tile::int8_t>()
{
// due to rounding, int8 quantization might have 1 abs error
double rtol = 1;
double atol = 1;
return ck_tile::make_tuple(rtol, atol);
}
auto create_args(int argc, char* argv[])
{
ck_tile::ArgParser arg_parser;
arg_parser.insert("m", "3328", "m dimension")
.insert("n", "4096", "n dimension")
.insert("stride", "-1", "stride per row, if -1 then equal to n")
.insert("e", "1e-5", "epsilon")
.insert("v", "1", "cpu validation or not")
.insert("kname", "1", "print kernel name or not")
.insert("prec", "fp16", "precision")
.insert("warmup", "0", "cold iter")
.insert("repeat", "1", "hot iter");
bool result = arg_parser.parse(argc, argv);
return std::make_tuple(result, arg_parser);
}
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
ck_tile::index_t m = arg_parser.get_int("m");
ck_tile::index_t n = arg_parser.get_int("n");
ck_tile::index_t stride = arg_parser.get_int("stride");
if(stride < 0)
stride = n;
std::string data_type = arg_parser.get_str("prec");
int kname = arg_parser.get_int("kname");
int do_validation = arg_parser.get_int("v");
int warmup = arg_parser.get_int("warmup");
int repeat = arg_parser.get_int("repeat");
assert(stride >= n);
using TypeConfig = SmoothquantTypeConfig<DataType>;
using XDataType = typename TypeConfig::XDataType;
using XScaleDataType = typename TypeConfig::XScaleDataType;
using YScaleDataType = typename TypeConfig::YScaleDataType;
using QYDataType = typename TypeConfig::QYDataType;
using ComputeDataType = typename TypeConfig::ComputeDataType;
// host verify
ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
ck_tile::HostTensor<XScaleDataType> xscale_host({n});
ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});
ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});
ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);
ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem xscale_buf(xscale_host.get_element_space_size_in_bytes());
ck_tile::DeviceMem yscale_buf(yscale_host_dev.get_element_space_size_in_bytes());
ck_tile::DeviceMem qy_buf(qy_host_dev.get_element_space_size_in_bytes());
x_buf.ToDevice(x_host.data());
xscale_buf.ToDevice(xscale_host.data());
std::cout << "[" << data_type << "]"
<< " m:" << m << ", n:" << n << ", stride:" << stride << std::flush;
smoothquant_traits traits{data_type};
smoothquant_args args{x_buf.GetDeviceBuffer(),
xscale_buf.GetDeviceBuffer(),
yscale_buf.GetDeviceBuffer(),
qy_buf.GetDeviceBuffer(),
m,
n,
stride};
float ave_time = smoothquant(
traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});
std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(XScaleDataType) * n +
sizeof(YScaleDataType) * m + sizeof(QYDataType) * m * n;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << ", " << ave_time * 1.E3 << " us, " << gb_per_sec << " GB/s" << std::flush;
bool pass = true;
if(do_validation)
{
using YDataType = ComputeDataType;
ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
// smooth outlier
{
auto f = [&](auto n_) {
auto v_xscale = ck_tile::type_convert<ComputeDataType>(xscale_host(n_));
for(int m_ = 0; m_ < m; ++m_)
{
auto v_x = ck_tile::type_convert<ComputeDataType>(x_host(m_, n_));
y_host(m_, n_) = v_x * v_xscale;
}
};
ck_tile::make_ParallelTensorFunctor(f, xscale_host.get_element_space_size())(
std::thread::hardware_concurrency());
}
// yscale
{
ck_tile::HostTensor<YDataType> y_rowwise_amax_host({m});
using ReduceAmax = ck_tile::ReduceOp::AbsMax;
ck_tile::reference_reduce<ComputeDataType, ComputeDataType, YDataType>(
y_host, y_rowwise_amax_host, ReduceAmax{});
auto op = [](const auto& v0) {
return v0 /
ck_tile::type_convert<ComputeDataType>(ck_tile::numeric<QYDataType>::max());
};
ck_tile::reference_unary_elementwise<YDataType, YScaleDataType, ComputeDataType>(
y_rowwise_amax_host, yscale_host_ref, op);
yscale_buf.FromDevice(yscale_host_dev.mData.data());
auto [rtol, atol] = get_elimit<YScaleDataType>();
pass &= ck_tile::check_err(yscale_host_dev,
yscale_host_ref,
std::string("yscale Error: Incorrect results!"),
rtol,
atol);
}
// rowwise quantization
{
ck_tile::reference_rowwise_quantization2d<YDataType, YScaleDataType, QYDataType>(
y_host, yscale_host_ref, qy_host_ref);
qy_buf.FromDevice(qy_host_dev.data());
auto [rtol, atol] = get_elimit<QYDataType>();
if(stride == n)
{
pass = ck_tile::check_err(qy_host_dev,
qy_host_ref,
std::string("qy Error: Incorrect results!"),
rtol,
atol);
}
else
{
for(int i_r = 0; i_r < m; i_r++)
{
std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
qy_host_dev.begin() + i_r * stride + n);
std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
qy_host_ref.begin() + i_r * stride + n);
pass &= ck_tile::check_err(qy_host_dev_row,
qy_host_ref_row,
std::string("qy[") + std::to_string(i_r) +
std::string("] Error: Incorrect results!"),
rtol,
atol);
}
}
}
std::cout << ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
}
return pass;
}
int main(int argc, char* argv[])
{
auto [result, arg_parser] = create_args(argc, argv);
if(!result)
return -1;
const std::string data_type = arg_parser.get_str("prec");
if(data_type == "fp16")
{
return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
}
else if(data_type == "bf16")
{
return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
}
return -3;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck_tile/core.hpp"
#include "ck_tile/host/kernel_launch.hpp"
#include "ck_tile/ops/smoothquant.hpp"
#include <string>
template <typename DataType>
struct SmoothquantTypeConfig;
template <>
struct SmoothquantTypeConfig<ck_tile::half_t>
{
using XDataType = ck_tile::half_t;
using XScaleDataType = float;
using YScaleDataType = float;
using QYDataType = ck_tile::int8_t;
using ComputeDataType = float;
};
template <>
struct SmoothquantTypeConfig<ck_tile::bf16_t>
{
using XDataType = ck_tile::bf16_t;
using XScaleDataType = float;
using YScaleDataType = float;
using QYDataType = ck_tile::int8_t;
using ComputeDataType = float;
};
// runtime args
struct smoothquant_args : public ck_tile::SmoothquantHostArgs
{
};
// this is used to pattern-match internl kernel implementation, not to instantiate kernel
template <typename DataType_,
ck_tile::index_t Repeat_M_, // each thread repeat along M
ck_tile::index_t Repeat_N_, // each thread repeat along N
ck_tile::index_t ThreadPerBlock_M_, // num threads along M
ck_tile::index_t ThreadPerBlock_N_, // num threads along N
ck_tile::index_t Vector_N_, // vector size along N
bool kPadN_,
bool kTwoPass_>
struct smoothquant_traits_
{
using DataType = ck_tile::remove_cvref_t<DataType_>;
static constexpr bool is_warp_per_row = ThreadPerBlock_N_ <= warpSize;
static_assert((ThreadPerBlock_M_ * ThreadPerBlock_N_) % warpSize == 0);
static constexpr ck_tile::index_t total_warps =
(ThreadPerBlock_M_ * ThreadPerBlock_N_) / warpSize;
// num of warps along m
static constexpr ck_tile::index_t BlockWarps_M = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return total_warps * (warpSize / ThreadPerBlock_N_);
}
else
{
// static_assert(warpSize % ThreadPerBlock_M_ == 0);
return total_warps / (ThreadPerBlock_N_ / warpSize);
}
}();
// num of warps along n
static constexpr ck_tile::index_t BlockWarps_N = []() {
if constexpr(is_warp_per_row)
{
static_assert(warpSize % ThreadPerBlock_N_ == 0);
return 1;
}
else
{
static_assert(ThreadPerBlock_N_ % warpSize == 0);
return ThreadPerBlock_N_ / warpSize;
}
}();
static constexpr ck_tile::index_t Repeat_M = Repeat_M_;
static constexpr ck_tile::index_t Repeat_N = Repeat_N_;
static constexpr ck_tile::index_t Block_M = Repeat_M_ * ThreadPerBlock_M_;
static constexpr ck_tile::index_t Block_N = Repeat_N_ * ThreadPerBlock_N_ * Vector_N_;
static constexpr ck_tile::index_t Warp_M = ThreadPerBlock_M_ / BlockWarps_M;
static constexpr ck_tile::index_t Warp_N = ThreadPerBlock_N_ / BlockWarps_N * Vector_N_;
using BlockTile = ck_tile::sequence<Block_M, Block_N>;
using BlockWarps = ck_tile::sequence<BlockWarps_M, BlockWarps_N>;
using WarpTile = ck_tile::sequence<Warp_M, Warp_N>;
using Vector = ck_tile::sequence<1, Vector_N_>;
using Shape = ck_tile::SmoothquantShape<BlockTile, BlockWarps, WarpTile, Vector>;
static constexpr bool kPadN = kPadN_;
static constexpr bool kTwoPass = kTwoPass_;
};
template <typename Traits_>
float smoothquant_(const ck_tile::stream_config& s, smoothquant_args a);
// This is the public API, will be generated by script
struct smoothquant_traits
{
std::string data_type;
};
float smoothquant(smoothquant_traits, smoothquant_args, const ck_tile::stream_config&);
...@@ -41,7 +41,7 @@ template <typename BlockTile_, // block size, seq<M, N> ...@@ -41,7 +41,7 @@ template <typename BlockTile_, // block size, seq<M, N>
typename WarpTile_, // warp size, seq<M, N> typename WarpTile_, // warp size, seq<M, N>
typename Vector_, // contiguous pixels(vector size) along seq<M, N> typename Vector_, // contiguous pixels(vector size) along seq<M, N>
index_t BlockSize_ = index_t BlockSize_ =
warpSize * reduce_on_sequence(WarpPerBlock_{}, multiplies{}, number<1>{})> warpSize* reduce_on_sequence(WarpPerBlock_{}, multiplies{}, number<1>{})>
struct SmoothquantShape struct SmoothquantShape
{ {
// block size // block size
......
...@@ -28,8 +28,8 @@ struct SmoothquantPipelineProblem ...@@ -28,8 +28,8 @@ struct SmoothquantPipelineProblem
static constexpr bool kNeedCrossLaneSync = BlockShape::ThreadPerWarp_N > 1; static constexpr bool kNeedCrossLaneSync = BlockShape::ThreadPerWarp_N > 1;
static constexpr bool kNeedCrossWarpSync = BlockShape::WarpPerBlock_N > 1; static constexpr bool kNeedCrossWarpSync = BlockShape::WarpPerBlock_N > 1;
static constexpr bool kPadN = kPadN_; static constexpr bool kPadN = kPadN_;
static constexpr bool kTwoPass = kTwoPass_; static constexpr bool kTwoPass = kTwoPass_;
}; };
} // namespace ck_tile } // namespace ck_tile
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment