profile_grouped_conv_fwd.cpp 9.75 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
3
4
5
6
7
8

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

9
10
#include "profiler/profile_grouped_conv_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
11
12
13
14
15
16

namespace {

enum struct ConvLayout
{
    GNHWC_GKYXC_GNHWK, // 0
Chao Liu's avatar
Chao Liu committed
17
    NHWGC_GKYXC_NHWGK, // 1
18
19
20
21
22
23
24
25
};

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
26
    F8_F8_F8,       // 4
27
    BF8_BF8_F8,     // 5
28
29
};

30
31
32
#define OP_NAME "grouped_conv_fwd"
#define OP_DESC "Grouped Convolution Forward"

33
34
35
36
static void print_helper_msg()
{
    std::cout
        // clang-format off
37
        << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
38
39
40
        << "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
        << "                 1: Input fp16, Weight fp16, Output fp16\n"
        << "                 2: Input bf16, Weight bf16, Output bf16\n"
41
        << "                 3: Input int8, Weight int8, Output int8\n"
42
43
        << "                 4: Input fp8, Weight fp8, Output fp8\n"
        << "                 5: Input bf8, Weight bf8, Output fp8)\n"
44
        << "arg3: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
Chao Liu's avatar
Chao Liu committed
45
        << "                     1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])\n"
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        << "arg4: verification (0: no, 1: yes)\n"
        << "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
        << "arg6: print tensor value (0: no; 1: yes)\n"
        << "arg7: time kernel (0: no, 1: yes)\n"
        << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
    // clang-format on
}

} // namespace

int profile_grouped_conv_fwd(int argc, char* argv[])
{
    // 8 for control, 1 for num_dim_spatial
    if(argc < 9)
    {
        print_helper_msg();
        return 1;
    }

    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<ConvLayout>(std::stoi(argv[3]));
    const bool do_verification = std::stoi(argv[4]);
    const int init_method      = std::stoi(argv[5]);
    const bool do_log          = std::stoi(argv[6]);
    const bool time_kernel     = std::stoi(argv[7]);
    const int num_dim_spatial  = std::stoi(argv[8]);

    // 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
    if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
    {
        print_helper_msg();
        return 1;
    }

    const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);

    using F32  = float;
    using F16  = ck::half_t;
    using BF16 = ck::bhalf_t;
    using INT8 = int8_t;
86
    using F8   = ck::f8_t;
87
    using BF8  = ck::bf8_t;
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    //
    using GNWC   = ck::tensor_layout::convolution::GNWC;
    using GNHWC  = ck::tensor_layout::convolution::GNHWC;
    using GNDHWC = ck::tensor_layout::convolution::GNDHWC;

    using GKXC   = ck::tensor_layout::convolution::GKXC;
    using GKYXC  = ck::tensor_layout::convolution::GKYXC;
    using GKZYXC = ck::tensor_layout::convolution::GKZYXC;

    using GNWK   = ck::tensor_layout::convolution::GNWK;
    using GNHWK  = ck::tensor_layout::convolution::GNHWK;
    using GNDHWK = ck::tensor_layout::convolution::GNDHWK;

    //
    using NWGC   = ck::tensor_layout::convolution::NWGC;
    using NHWGC  = ck::tensor_layout::convolution::NHWGC;
    using NDHWGC = ck::tensor_layout::convolution::NDHWGC;

    using NWGK   = ck::tensor_layout::convolution::NWGK;
    using NHWGK  = ck::tensor_layout::convolution::NHWGK;
    using NDHWGK = ck::tensor_layout::convolution::NDHWGK;

    constexpr auto I1 = ck::Number<1>{};
    constexpr auto I2 = ck::Number<2>{};
    constexpr auto I3 = ck::Number<3>{};

    auto profile = [&](auto num_dim_spatial_tmp,
                       auto in_layout,
                       auto wei_layout,
                       auto out_layout,
                       auto in_type,
                       auto wei_type,
                       auto out_type) {
        constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;

        using InLayout  = decltype(in_layout);
        using WeiLayout = decltype(wei_layout);
        using OutLayout = decltype(out_layout);

        using InDataType  = decltype(in_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
                                                                InLayout,
                                                                WeiLayout,
                                                                OutLayout,
                                                                InDataType,
                                                                WeiDataType,
                                                                OutDataType>(
            do_verification, init_method, do_log, time_kernel, params);

        return pass ? 0 : 1;
    };

    // GNHWC_GKYXC_GNHWK
    if(num_dim_spatial == 1 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{});
        }
    }
    else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{});
        }
    }
    else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{});
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{});
        }
    }
Chao Liu's avatar
Chao Liu committed
202
203
    // NHWGC_GKYXC_NHWGK
    else if(num_dim_spatial == 1 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
204
205
206
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
207
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{});
208
209
210
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
211
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{});
212
213
214
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
215
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{});
216
217
218
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
219
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{});
220
221
        }
    }
Chao Liu's avatar
Chao Liu committed
222
    else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
223
224
225
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
226
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
227
228
229
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
230
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
231
232
233
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
234
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{});
235
236
237
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
238
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{});
239
240
        }
    }
Chao Liu's avatar
Chao Liu committed
241
    else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
242
243
244
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
Chao Liu's avatar
Chao Liu committed
245
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
246
247
248
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
Chao Liu's avatar
Chao Liu committed
249
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
250
251
252
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
Chao Liu's avatar
Chao Liu committed
253
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{});
254
255
256
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
Chao Liu's avatar
Chao Liu committed
257
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{});
258
        }
259
260
261
262
        else if(data_type == ConvDataType::F8_F8_F8)
        {
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, F8{}, F8{});
        }
263
264
265
266
        else if(data_type == ConvDataType::BF8_BF8_F8)
        {
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF8{}, BF8{}, F8{});
        }
267
268
269
270
271
272
    }

    std::cout << "this data_type & layout is not implemented" << std::endl;

    return 1;
}
273
274

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_conv_fwd);