process_perf_data.py 11.7 KB
Newer Older
1
2
3
4
5
#!/usr/bin/env python3
import os, io, argparse, datetime
#import numpy as np
import sqlalchemy
from sqlalchemy.types import NVARCHAR, Float, Integer
Illia Silin's avatar
Illia Silin committed
6
from sqlalchemy import text
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import pymysql
import pandas as pd
from sshtunnel import SSHTunnelForwarder

def print_to_string(*args, **kwargs):
    output = io.StringIO()
    print(*args, file=output, **kwargs)
    contents = output.getvalue()
    output.close()
    return contents

def parse_args():
    parser = argparse.ArgumentParser(description='Parse results from tf benchmark runs')
    parser.add_argument('filename', type=str, help='Log file to prase or directory containing log files')
    args = parser.parse_args()
    files = []
    if os.path.isdir(args.filename):
        all_files = os.listdir(args.filename)
        for name in all_files:
            if not 'log' in name:
                continue
            files.append(os.path.join(args.filename, name))
    else:
        files = [args.filename]
    args.files = files
    return args

def get_log_params(logfile):
    print("logfile=",logfile)
    branch_name=' '
    node_id=' '
    gpu_arch=' '
    hip_vers=' '
    compute_units=0
    environment=' '
    rocm_vers=' '
    for line in open(logfile):
        if 'Branch name' in line:
            lst=line.split()
            branch_name=lst[2]
        if 'On branch' in line:
            lst=line.split()
            branch_name=lst[2]
        if 'Node name' in line:
            lst=line.split()
            node_id=lst[2]
        if 'GPU_arch' in line:
            lst=line.split()
            gpu_arch=lst[2]
        if 'HIP version' in line:
            lst=line.split()
            hip_vers=lst[2]
        if 'Compute Unit' in line:
            lst=line.split()
            compute_units=lst[2]
        if 'Environment type' in line:
            lst=line.split()
            environment=lst[2]
        if 'InstalledDir' in line:
            lst=line.split()
            rocm_vers=lst[1][lst[1].find('/opt/rocm-')+len('/opt/rocm-'):lst[1].rfind('/llvm/bin')]
    return branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment

def parse_logfile(logfile):
    glue=''
    res=[]
    tests=[]
    kernels=[]
    tflops=[]
    dtype=[]
    alayout=[]
    blayout=[]
    M=[]
    N=[]
    K=[]
    StrideA=[]
    StrideB=[]
    StrideC=[]
85
    if 'perf_gemm.log' in logfile:
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        for line in open(logfile):
            if 'Best Perf' in line:
                lst=line.split()
                if len(lst)>=37: #the line is complete
                    tests.append(glue.join(lst[5:30]))
                    kernels.append(glue.join(lst[37:]))
                    tflops.append(lst[33])
                    dtype.append(lst[5])
                    alayout.append(lst[8])
                    blayout.append(lst[11])
                    M.append(lst[14])
                    N.append(lst[17])
                    K.append(lst[20])
                    StrideA.append(lst[23])
                    StrideB.append(lst[26])
                    StrideC.append(lst[29])
                elif len(lst)<37 and len(lst)>=33: #the tflops are available
                    tests.append(glue.join(lst[5:30]))
                    kernels.append("N/A")
                    tflops.append(lst[33])
                    dtype.append(lst[5])
                    alayout.append(lst[8])
                    blayout.append(lst[11])
                    M.append(lst[14])
                    N.append(lst[17])
                    K.append(lst[20])
                    StrideA.append(lst[23])
                    StrideB.append(lst[26])
                    StrideC.append(lst[29])
                    print("warning: incomplete line:",lst)
                elif len(lst)<33: #even the tflops are not available
                    print("Error in ckProfiler output!")
                    print("warning: incomplete line=",lst)
        #sort results
        #sorted_tests = sorted(tests)
        res = [x for _,x in sorted(zip(tests,tflops))]
        #sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
        test_list=list(range(1,len(tests)+1))
124
125
    #parse conv_fwd and conv_bwd performance tests:
    elif 'conv_fwd' in logfile or 'conv_bwd_data' in logfile:
126
127
128
129
130
        for line in open(logfile):
            if 'tflops:' in line:
                lst=line.split()
                res.append(lst[1])
    #parse all other performance tests:
131
    elif 'resnet50' in logfile or 'batched_gemm' in logfile or 'grouped_gemm' in logfile  or 'gemm_bilinear' in logfile or 'reduction' in logfile:
132
133
134
135
        for line in open(logfile):
            if 'Best Perf' in line:
                lst=line.split()
                res.append(lst[4])
136
137
138
139
140
    elif 'onnx_gemm' in logfile or 'splitK_gemm' in logfile:
        for line in open(logfile):
            if 'Best Perf' in line:
                lst=line.split()
                res.append(lst[33])
141
142
143
144
    return res


def get_baseline(table, connection):
Illia Silin's avatar
Illia Silin committed
145
146
    query = text('''SELECT * from '''+table+''' WHERE Datetime = (SELECT MAX(Datetime) FROM '''+table+''' where Branch_ID='develop' );''')
    return pd.read_sql(query, connection)
147
148
149
150
151
152

def store_new_test_result(table_name, test_results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, connection):
    params=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(environment),str(datetime.datetime.now())]
    df=pd.DataFrame(data=[params],columns=['Branch_ID','Node_ID','GPU_arch','Compute Units','ROCM_version','HIP_version','Environment','Datetime'])
    df_add=pd.DataFrame(data=[test_results],columns=testlist)
    df=pd.concat([df,df_add],axis=1)
153
    #print("new test results dataframe:",df)
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    df.to_sql(table_name,connection,if_exists='append',index=False)
    return 0

def compare_test_to_baseline(baseline,test,testlist):
    regression=0
    if not baseline.empty:
        base=baseline[testlist].to_numpy(dtype='float')
        base_list=base[0]
        ave_perf=0
        for i in range(len(base_list)):
            # success criterion:
            if base_list[i]>1.01*float(test[i]):
                print("test # ",i,"shows regression by {:.3f}%".format(
                    (float(test[i])-base_list[i])/base_list[i]*100))
                regression=1
169
            if base_list[i]>0: ave_perf=ave_perf+float(test[i])/base_list[i]
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        if regression==0:
            print("no regressions found")
        ave_perf=ave_perf/len(base_list)
        print("average performance relative to baseline:",ave_perf)
    else:
        print("could not find a baseline")
    return regression

'''
def post_test_params(tlist,connection):
    sorted_dtypes = [x for _,x in sorted(zip(tests,dtype))]
    sorted_alayout = [x for _,x in sorted(zip(tests,alayout))]
    sorted_blayout = [x for _,x in sorted(zip(tests,blayout))]
    sorted_M = [x for _,x in sorted(zip(tests,M))]
    sorted_N = [x for _,x in sorted(zip(tests,N))]
    sorted_K = [x for _,x in sorted(zip(tests,K))]
    sorted_StrideA = [x for _,x in sorted(zip(tests,StrideA))]
    sorted_StrideB = [x for _,x in sorted(zip(tests,StrideB))]
    sorted_StrideC = [x for _,x in sorted(zip(tests,StrideC))]
    ck_gemm_params=[tlist,sorted_dtypes,sorted_alayout,sorted_blayout,
                sorted_M,sorted_N,sorted_K,sorted_StrideA,sorted_StrideB,
                sorted_StrideC]
    df=pd.DataFrame(np.transpose(ck_gemm_params),columns=['Test_number','Data_type',
        'Alayout','BLayout','M','N','K', 'StrideA','StrideB','StrideC'])
    print(df)

    dtypes = {
        'Test_number': Integer(),
        'Data_type': NVARCHAR(length=5),
        'Alayout': NVARCHAR(length=12),
        'Blayout': NVARCHAR(length=12),
        'M': Integer(),
        'N': Integer(),
        'K': Integer(),
        'StrideA': Integer(),
        'StrideB': Integer(),
        'StrideC': Integer()
        }
    df.to_sql("ck_gemm_test_params",connection,if_exists='replace',index=False, dtype=dtypes)
'''

def main():
    args = parse_args()
    results=[]
    tflops_base=[]
    testlist=[]
    #parse the test parameters from the logfile
    for filename in args.files:
        branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment = get_log_params(filename)

    print("Branch name:",branch_name)
    print("Node name:",node_id)
    print("GPU_arch:",gpu_arch)
    print("Compute units:",compute_units)
    print("ROCM_version:",rocm_vers)
    print("HIP_version:",hip_vers)
    print("Environment:",environment)
    #parse results, get the Tflops value for "Best Perf" kernels
    results=parse_logfile(filename)

    print("Number of tests:",len(results))
    sql_hostname = '127.0.0.1'
    sql_username = os.environ["dbuser"]
    sql_password = os.environ["dbpassword"]
    sql_main_database = 'miopen_perf'
    sql_port = 3306
    ssh_host = os.environ["dbsship"]
    ssh_user = os.environ["dbsshuser"]
    ssh_port = int(os.environ["dbsshport"])
    ssh_pass = os.environ["dbsshpassword"]

    with SSHTunnelForwarder(
            (ssh_host, ssh_port),
            ssh_username=ssh_user,
            ssh_password=ssh_pass,
            remote_bind_address=(sql_hostname, sql_port)) as tunnel:

        sqlEngine = sqlalchemy.create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}'.
            format(sql_username, sql_password, sql_hostname, tunnel.local_bind_port, sql_main_database))
        conn = sqlEngine.connect()

        #save gemm performance tests:
252
        if 'perf_gemm.log' in filename:
253
254
255
256
257
258
259
260
261
262
263
264
265
            #write the ck_gemm_test_params table only needed once the test set changes
            #post_test_params(test_list,conn)
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_gemm_tflops"
        if 'batched_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_batched_gemm_tflops"
        if 'grouped_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_grouped_gemm_tflops"
266
        if 'conv_fwd' in filename:
267
268
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
269
270
            table_name="ck_conv_fwd_tflops"
        if 'conv_bwd_data' in filename:
271
272
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
273
274
            table_name="ck_conv_bwd_data_tflops"
        if 'gemm_bilinear' in filename:
275
276
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
277
            table_name="ck_gemm_bilinear_tflops"
278
279
280
281
282
283
284
285
286
287
288
289
        if 'reduction' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_reduction_GBps"
        if 'resnet50_N4' in filename:
            for i in range(1,50):
                testlist.append("Layer%i"%i)
            table_name="ck_resnet50_N4_tflops"
        if 'resnet50_N256' in filename:
            for i in range(1,50):
                testlist.append("Layer%i"%i)
            table_name="ck_resnet50_N256_tflops"
290
291
292
293
294
295
296
297
        if 'onnx_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_onnx_gemm_tflops"
        if 'splitK_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_splitK_gemm_tflops"
298
299
300
301
302
303
304
305
306
307
308

        tflops_base = get_baseline(table_name,conn)
        store_new_test_result(table_name, results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, conn)
        conn.close()

    #compare the results to the baseline if baseline exists
    regression=0
    regression=compare_test_to_baseline(tflops_base,results,testlist)
    return regression

if __name__ == '__main__':
309
    main()