process_perf_data.py 13.2 KB
Newer Older
1
2
3
4
5
#!/usr/bin/env python3
import os, io, argparse, datetime
#import numpy as np
import sqlalchemy
from sqlalchemy.types import NVARCHAR, Float, Integer
Illia Silin's avatar
Illia Silin committed
6
from sqlalchemy import text
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import pymysql
import pandas as pd
from sshtunnel import SSHTunnelForwarder

def print_to_string(*args, **kwargs):
    output = io.StringIO()
    print(*args, file=output, **kwargs)
    contents = output.getvalue()
    output.close()
    return contents

def parse_args():
    parser = argparse.ArgumentParser(description='Parse results from tf benchmark runs')
    parser.add_argument('filename', type=str, help='Log file to prase or directory containing log files')
    args = parser.parse_args()
    files = []
    if os.path.isdir(args.filename):
        all_files = os.listdir(args.filename)
        for name in all_files:
            if not 'log' in name:
                continue
            files.append(os.path.join(args.filename, name))
    else:
        files = [args.filename]
    args.files = files
    return args

def get_log_params(logfile):
    print("logfile=",logfile)
    branch_name=' '
    node_id=' '
    gpu_arch=' '
    hip_vers=' '
    compute_units=0
    environment=' '
    rocm_vers=' '
    for line in open(logfile):
        if 'Branch name' in line:
            lst=line.split()
            branch_name=lst[2]
        if 'On branch' in line:
            lst=line.split()
            branch_name=lst[2]
        if 'Node name' in line:
            lst=line.split()
            node_id=lst[2]
        if 'GPU_arch' in line:
            lst=line.split()
            gpu_arch=lst[2]
        if 'HIP version' in line:
            lst=line.split()
            hip_vers=lst[2]
        if 'Compute Unit' in line:
            lst=line.split()
            compute_units=lst[2]
        if 'Environment type' in line:
            lst=line.split()
            environment=lst[2]
        if 'InstalledDir' in line:
            lst=line.split()
            rocm_vers=lst[1][lst[1].find('/opt/rocm-')+len('/opt/rocm-'):lst[1].rfind('/llvm/bin')]
    return branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment

def parse_logfile(logfile):
    glue=''
    res=[]
    tests=[]
    kernels=[]
    tflops=[]
    dtype=[]
    alayout=[]
    blayout=[]
    M=[]
    N=[]
    K=[]
    StrideA=[]
    StrideB=[]
    StrideC=[]
85
    if 'perf_gemm' in logfile and 'gemm_bilinear' not in logfile:
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        for line in open(logfile):
            if 'Best Perf' in line:
                lst=line.split()
                if len(lst)>=37: #the line is complete
                    tests.append(glue.join(lst[5:30]))
                    kernels.append(glue.join(lst[37:]))
                    tflops.append(lst[33])
                    dtype.append(lst[5])
                    alayout.append(lst[8])
                    blayout.append(lst[11])
                    M.append(lst[14])
                    N.append(lst[17])
                    K.append(lst[20])
                    StrideA.append(lst[23])
                    StrideB.append(lst[26])
                    StrideC.append(lst[29])
                elif len(lst)<37 and len(lst)>=33: #the tflops are available
                    tests.append(glue.join(lst[5:30]))
                    kernels.append("N/A")
                    tflops.append(lst[33])
                    dtype.append(lst[5])
                    alayout.append(lst[8])
                    blayout.append(lst[11])
                    M.append(lst[14])
                    N.append(lst[17])
                    K.append(lst[20])
                    StrideA.append(lst[23])
                    StrideB.append(lst[26])
                    StrideC.append(lst[29])
                    print("warning: incomplete line:",lst)
                elif len(lst)<33: #even the tflops are not available
                    print("Error in ckProfiler output!")
                    print("warning: incomplete line=",lst)
        #sort results
        #sorted_tests = sorted(tests)
        res = [x for _,x in sorted(zip(tests,tflops))]
        #sorted_kernels = [x for _,x in sorted(zip(tests,kernels))]
        test_list=list(range(1,len(tests)+1))
124
    #parse conv_fwd and conv_bwd performance tests:
125
    elif 'conv_fwd' in logfile or 'conv_bwd' in logfile:
126
127
128
129
130
        for line in open(logfile):
            if 'tflops:' in line:
                lst=line.split()
                res.append(lst[1])
    #parse all other performance tests:
131
    elif 'resnet50' in logfile or 'batched_gemm' in logfile or 'grouped_gemm' in logfile  or 'gemm_bilinear' in logfile or 'reduction' in logfile:
132
133
134
135
        for line in open(logfile):
            if 'Best Perf' in line:
                lst=line.split()
                res.append(lst[4])
136
    elif 'onnx_gemm' in logfile:
137
138
139
140
        for line in open(logfile):
            if 'Best Perf' in line:
                lst=line.split()
                res.append(lst[33])
141
    elif 'splitK_gemm' in logfile or 'mixed_gemm' in logfile:
142
143
144
145
        for line in open(logfile):
            if 'Best Perf' in line:
                lst=line.split()
                res.append(lst[36])
146
147
148
149
150
151
    elif 'perf_fmha' in logfile:
        for line in open(logfile):
            if 'TFlops' in line:
                lst=line.split()
                line_dict=dict(zip(lst[1:],lst))
                res.append(line_dict['TFlops,'])
152
153
154
155
    return res


def get_baseline(table, connection):
Illia Silin's avatar
Illia Silin committed
156
157
    query = text('''SELECT * from '''+table+''' WHERE Datetime = (SELECT MAX(Datetime) FROM '''+table+''' where Branch_ID='develop' );''')
    return pd.read_sql(query, connection)
158
159
160
161
162
163

def store_new_test_result(table_name, test_results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, connection):
    params=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(environment),str(datetime.datetime.now())]
    df=pd.DataFrame(data=[params],columns=['Branch_ID','Node_ID','GPU_arch','Compute Units','ROCM_version','HIP_version','Environment','Datetime'])
    df_add=pd.DataFrame(data=[test_results],columns=testlist)
    df=pd.concat([df,df_add],axis=1)
164
    #print("new test results dataframe:",df)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    df.to_sql(table_name,connection,if_exists='append',index=False)
    return 0

def compare_test_to_baseline(baseline,test,testlist):
    regression=0
    if not baseline.empty:
        base=baseline[testlist].to_numpy(dtype='float')
        base_list=base[0]
        ave_perf=0
        for i in range(len(base_list)):
            # success criterion:
            if base_list[i]>1.01*float(test[i]):
                print("test # ",i,"shows regression by {:.3f}%".format(
                    (float(test[i])-base_list[i])/base_list[i]*100))
                regression=1
180
            if base_list[i]>0: ave_perf=ave_perf+float(test[i])/base_list[i]
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        if regression==0:
            print("no regressions found")
        ave_perf=ave_perf/len(base_list)
        print("average performance relative to baseline:",ave_perf)
    else:
        print("could not find a baseline")
    return regression

'''
def post_test_params(tlist,connection):
    sorted_dtypes = [x for _,x in sorted(zip(tests,dtype))]
    sorted_alayout = [x for _,x in sorted(zip(tests,alayout))]
    sorted_blayout = [x for _,x in sorted(zip(tests,blayout))]
    sorted_M = [x for _,x in sorted(zip(tests,M))]
    sorted_N = [x for _,x in sorted(zip(tests,N))]
    sorted_K = [x for _,x in sorted(zip(tests,K))]
    sorted_StrideA = [x for _,x in sorted(zip(tests,StrideA))]
    sorted_StrideB = [x for _,x in sorted(zip(tests,StrideB))]
    sorted_StrideC = [x for _,x in sorted(zip(tests,StrideC))]
    ck_gemm_params=[tlist,sorted_dtypes,sorted_alayout,sorted_blayout,
                sorted_M,sorted_N,sorted_K,sorted_StrideA,sorted_StrideB,
                sorted_StrideC]
    df=pd.DataFrame(np.transpose(ck_gemm_params),columns=['Test_number','Data_type',
        'Alayout','BLayout','M','N','K', 'StrideA','StrideB','StrideC'])
    print(df)

    dtypes = {
        'Test_number': Integer(),
        'Data_type': NVARCHAR(length=5),
        'Alayout': NVARCHAR(length=12),
        'Blayout': NVARCHAR(length=12),
        'M': Integer(),
        'N': Integer(),
        'K': Integer(),
        'StrideA': Integer(),
        'StrideB': Integer(),
        'StrideC': Integer()
        }
    df.to_sql("ck_gemm_test_params",connection,if_exists='replace',index=False, dtype=dtypes)
'''

def main():
    args = parse_args()
    results=[]
    tflops_base=[]
    testlist=[]
    #parse the test parameters from the logfile
    for filename in args.files:
        branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment = get_log_params(filename)

    print("Branch name:",branch_name)
    print("Node name:",node_id)
    print("GPU_arch:",gpu_arch)
    print("Compute units:",compute_units)
    print("ROCM_version:",rocm_vers)
    print("HIP_version:",hip_vers)
    print("Environment:",environment)
    #parse results, get the Tflops value for "Best Perf" kernels
    results=parse_logfile(filename)

    print("Number of tests:",len(results))
    sql_hostname = '127.0.0.1'
    sql_username = os.environ["dbuser"]
    sql_password = os.environ["dbpassword"]
245
    sql_main_database = os.environ["ck_perf_db"]
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    sql_port = 3306
    ssh_host = os.environ["dbsship"]
    ssh_user = os.environ["dbsshuser"]
    ssh_port = int(os.environ["dbsshport"])
    ssh_pass = os.environ["dbsshpassword"]

    with SSHTunnelForwarder(
            (ssh_host, ssh_port),
            ssh_username=ssh_user,
            ssh_password=ssh_pass,
            remote_bind_address=(sql_hostname, sql_port)) as tunnel:

        sqlEngine = sqlalchemy.create_engine('mysql+pymysql://{0}:{1}@{2}:{3}/{4}'.
            format(sql_username, sql_password, sql_hostname, tunnel.local_bind_port, sql_main_database))
        conn = sqlEngine.connect()

        #save gemm performance tests:
263
        if 'perf_gemm' in filename and 'gemm_bilinear' not in filename:
264
265
266
267
268
269
270
271
272
273
274
275
276
            #write the ck_gemm_test_params table only needed once the test set changes
            #post_test_params(test_list,conn)
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_gemm_tflops"
        if 'batched_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_batched_gemm_tflops"
        if 'grouped_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_grouped_gemm_tflops"
277
        if 'perf_conv_fwd' in filename:
278
279
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
280
            table_name="ck_conv_fwd_tflops"
281
        if 'perf_conv_bwd_data' in filename:
282
283
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
284
            table_name="ck_conv_bwd_data_tflops"
285
286
287
288
289
290
291
292
293
294
295
296
        if 'grouped_conv_fwd' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_grouped_conv_fwd_tflops"
        if 'grouped_conv_bwd_data' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_grouped_conv_bwd_data_tflops"
        if 'grouped_conv_bwd_weight' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_grouped_conv_bwd_weight_tflops"
297
        if 'gemm_bilinear' in filename:
298
299
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
300
            table_name="ck_gemm_bilinear_tflops"
301
302
303
304
305
306
307
308
309
310
311
312
        if 'reduction' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_reduction_GBps"
        if 'resnet50_N4' in filename:
            for i in range(1,50):
                testlist.append("Layer%i"%i)
            table_name="ck_resnet50_N4_tflops"
        if 'resnet50_N256' in filename:
            for i in range(1,50):
                testlist.append("Layer%i"%i)
            table_name="ck_resnet50_N256_tflops"
313
314
315
316
317
318
319
320
        if 'onnx_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_onnx_gemm_tflops"
        if 'splitK_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_splitK_gemm_tflops"
321
322
323
324
        if 'mixed_gemm' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_mixed_gemm_tflops"
325
326
327
328
329
330
331
332
        if 'fmha_fwd' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_fmha_fwd_tflops"
        if 'fmha_bwd' in filename:
            for i in range(1,len(results)+1):
                testlist.append("Test%i"%i)
            table_name="ck_fmha_bwd_tflops"
333
334
335
336
337
338
339
340
341
342
343

        tflops_base = get_baseline(table_name,conn)
        store_new_test_result(table_name, results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, conn)
        conn.close()

    #compare the results to the baseline if baseline exists
    regression=0
    regression=compare_test_to_baseline(tflops_base,results,testlist)
    return regression

if __name__ == '__main__':
344
    main()