test_gemm.cpp 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.

#include <numeric>
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <gtest/gtest.h>

#include "ck/library/utility/host_tensor.hpp"

#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"

#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/wrapper/layout.hpp"
#include "ck/wrapper/tensor.hpp"
#include "ck/wrapper/operations/copy.hpp"
#include "ck/wrapper/operations/gemm.hpp"

template <typename DataType>
void CheckResult(const std::vector<DataType>& a_data,
                 const std::vector<DataType>& b_data,
                 std::vector<DataType>& c_m_n_device_result,
                 const ck::index_t M,
                 const ck::index_t N,
                 const ck::index_t K)
{
    using PassThrough           = ck::tensor_operation::element_wise::PassThrough;
    using ReferenceGemmInstance = ck::tensor_operation::host::
        ReferenceGemm<DataType, DataType, DataType, float, PassThrough, PassThrough, PassThrough>;

    Tensor<DataType> a_m_k(HostTensorDescriptor({M, K}));
    Tensor<DataType> b_k_n(HostTensorDescriptor({K, N}, {1, K}));
    Tensor<DataType> c_m_n_host_result(HostTensorDescriptor({M, N}));

    a_m_k.mData = a_data;
    b_k_n.mData = b_data;

    auto ref_op       = ReferenceGemmInstance{};
    auto ref_invoker  = ref_op.MakeInvoker();
    auto ref_argument = ref_op.MakeArgument(
        a_m_k, b_k_n, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{});

    ref_invoker.Run(ref_argument);
    EXPECT_TRUE(ck::utils::check_err(c_m_n_device_result, c_m_n_host_result.mData));
}

template <typename DataType,
          typename GemmTraits,
          ck::index_t scalar_per_vector,
          typename BlockShape,
          typename ThreadLayoutShape>
__global__ void DeviceGemm(const void* p_a,
                           const void* p_b,
                           void* p_c,
                           const ck::index_t M,
                           const ck::index_t N,
                           const ck::index_t K,
                           const BlockShape tile_shape,
                           const ThreadLayoutShape thread_layout)
{
    constexpr auto MPerBlock = ck::wrapper::size<0>(tile_shape);
    constexpr auto NPerBlock = ck::wrapper::size<1>(tile_shape);
    constexpr auto KPerBlock = ck::wrapper::size<2>(tile_shape);

    const auto a_global_layout =
        ck::wrapper::make_layout(ck::make_tuple(M, K), ck::make_tuple(K, 1));
    const auto b_global_layout =
        ck::wrapper::make_layout(ck::make_tuple(N, K), ck::make_tuple(K, 1));
    const auto c_global_layout =
        ck::wrapper::make_layout(ck::make_tuple(M, N), ck::make_tuple(N, 1));

    constexpr auto a_tile_layout = ck::wrapper::make_layout(
        ck::make_tuple(MPerBlock, KPerBlock), ck::make_tuple(KPerBlock, ck::Number<1>{}));
    constexpr auto b_tile_layout = ck::wrapper::make_layout(
        ck::make_tuple(NPerBlock, KPerBlock), ck::make_tuple(KPerBlock, ck::Number<1>{}));
    constexpr auto c_tile_layout = ck::wrapper::make_layout(
        ck::make_tuple(MPerBlock, NPerBlock), ck::make_tuple(NPerBlock, ck::Number<1>{}));

    auto a_global_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Global>(
        static_cast<const DataType*>(p_a), a_global_layout);
    auto b_global_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Global>(
        static_cast<const DataType*>(p_b), b_global_layout);
    auto c_global_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Global>(
        static_cast<DataType*>(p_c), c_global_layout);

    auto a_padded_global_tensor = ck::wrapper::pad(a_global_tensor, shape(a_tile_layout));
    auto b_padded_global_tensor = ck::wrapper::pad(b_global_tensor, shape(b_tile_layout));
    auto c_padded_global_tensor = ck::wrapper::pad(c_global_tensor, shape(c_tile_layout));

    __shared__ DataType lds_a[ck::wrapper::size(a_tile_layout)];
    __shared__ DataType lds_b[ck::wrapper::size(b_tile_layout)];

    auto a_lds_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Lds>(
        static_cast<DataType*>(lds_a), a_tile_layout);
    auto b_lds_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Lds>(
        static_cast<DataType*>(lds_b), b_tile_layout);

    const ck::index_t block_idx      = static_cast<ck::index_t>(blockIdx.x);
    using DimAccessOrder             = ck::Tuple<ck::Number<0>, ck::Number<1>>;
    constexpr ck::index_t vector_dim = 1;

    auto c_global_local_tile = ck::wrapper::make_local_tile(
        c_padded_global_tensor,
        tile_shape,
        block_idx,
        make_tuple(ck::Number<1>{}, ck::Number<1>{}, ck::wrapper::slice(KPerBlock)));
    auto c_global_local_partition =
        ck::wrapper::make_blockwise_gemm_xdl_c_local_partition<DataType,
                                                               decltype(a_tile_layout),
                                                               decltype(b_tile_layout),
                                                               ck::wrapper::size(thread_layout),
                                                               GemmTraits>(c_global_local_tile);
    auto c_vgpr_reg = ck::wrapper::make_blockwise_gemm_xdl_c_vgpr<DataType,
                                                                  decltype(a_tile_layout),
                                                                  decltype(b_tile_layout),
                                                                  ck::wrapper::size(thread_layout),
                                                                  GemmTraits>();
    ck::wrapper::clear(c_vgpr_reg);

    const ck::index_t num_loop = ck::math::integer_divide_ceil(K, KPerBlock);
    ck::index_t i              = 0;
    do
    {
        const auto k_slice = ck::wrapper::slice(i * KPerBlock, (i + 1) * KPerBlock);
        auto a_padded_global_tensor_k_slice = a_padded_global_tensor(ck::wrapper::slice(), k_slice);
        auto b_padded_global_tensor_k_slice = b_padded_global_tensor(ck::wrapper::slice(), k_slice);
        auto a_global_local_tile            = ck::wrapper::make_local_tile(
            a_padded_global_tensor_k_slice,
            tile_shape,
            block_idx,
            make_tuple(ck::Number<1>{}, ck::wrapper::slice(N), ck::Number<1>{}));
        auto b_global_local_tile = ck::wrapper::make_local_tile(
            b_padded_global_tensor_k_slice,
            tile_shape,
            block_idx,
            make_tuple(ck::wrapper::slice(M), ck::Number<1>{}, ck::Number<1>{}));

        ck::wrapper::blockwise_copy<DimAccessOrder, vector_dim, scalar_per_vector>(
            a_global_local_tile, a_lds_tensor, thread_layout);
        ck::wrapper::blockwise_copy<DimAccessOrder, vector_dim, scalar_per_vector>(
            b_global_local_tile, b_lds_tensor, thread_layout);
        ck::block_sync_lds();
        ck::wrapper::blockwise_gemm_xdl<DataType, ck::wrapper::size(thread_layout), GemmTraits>(
            a_lds_tensor, b_lds_tensor, c_vgpr_reg);

        ++i;
    } while(i < num_loop);

    ck::wrapper::copy(c_vgpr_reg, c_global_local_partition);
}

template <typename DataType,
          typename GemmTraits,
          ck::index_t scalar_per_vector,
          typename BlockShape,
          typename ThreadLayoutShape>
void PerformGemm(const ck::index_t M,
                 const ck::index_t N,
                 const ck::index_t K,
                 const BlockShape& tile_shape,
                 const ThreadLayoutShape& thread_layout)
{
    // Global memory buffers
    DeviceMem a_mem(M * K * sizeof(DataType));
    DeviceMem b_mem(K * N * sizeof(DataType));
    DeviceMem c_mem(M * N * sizeof(DataType));

    std::vector<DataType> a_data(M * K);
    std::vector<DataType> b_data(K * N);
    ck::utils::FillUniformDistributionIntegerValue<DataType>{-5.f, 5.f}(a_data);
    ck::utils::FillUniformDistributionIntegerValue<DataType>{-5.f, 5.f}(b_data);

    a_mem.ToDevice(a_data.data());
    b_mem.ToDevice(b_data.data());
    c_mem.SetZero();

    const ck::index_t grid_size =
        ck::math::integer_divide_ceil(M, ck::wrapper::size<0>(tile_shape)) *
        ck::math::integer_divide_ceil(N, ck::wrapper::size<1>(tile_shape));

    const auto kernel =
        DeviceGemm<DataType, GemmTraits, scalar_per_vector, BlockShape, ThreadLayoutShape>;
    launch_and_time_kernel(StreamConfig{nullptr},
                           kernel,
                           dim3(grid_size),
                           dim3(ck::wrapper::size(thread_layout)),
                           0,
                           a_mem.GetDeviceBuffer(),
                           b_mem.GetDeviceBuffer(),
                           c_mem.GetDeviceBuffer(),
                           M,
                           N,
                           K,
                           tile_shape,
                           thread_layout);

    std::vector<DataType> c_data(M * N);
    c_mem.FromDevice(c_data.data());

    CheckResult<DataType>(a_data, b_data, c_data, M, N, K);
}

TEST(TestGemm, Float)
{
    using DataType           = float;
    const auto thread_layout = ck::make_tuple(ck::Number<16>{}, ck::Number<16>{});
    const auto tile_shape = ck::make_tuple(ck::Number<128>{}, ck::Number<128>{}, ck::Number<64>{});
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 4>(
        512, 512, 128, tile_shape, thread_layout);
    // Irregular case
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 1>(
        129, 129, 67, tile_shape, thread_layout);
}

TEST(TestGemm, Int8)
{
    using DataType           = int8_t;
    const auto thread_layout = ck::make_tuple(ck::Number<64>{}, ck::Number<4>{});
    const auto tile_shape = ck::make_tuple(ck::Number<128>{}, ck::Number<128>{}, ck::Number<64>{});
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 16>(
        512, 512, 128, tile_shape, thread_layout);
    // Irregular case
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 1>(
        129, 129, 67, tile_shape, thread_layout);
}

TEST(TestGemm, Half)
{
    using DataType           = ck::half_t;
    const auto thread_layout = ck::make_tuple(ck::Number<32>{}, ck::Number<8>{});
    const auto tile_shape = ck::make_tuple(ck::Number<128>{}, ck::Number<128>{}, ck::Number<64>{});
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 8>(
        512, 512, 128, tile_shape, thread_layout);
    // Irregular case
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 1>(
        129, 129, 67, tile_shape, thread_layout);
}

TEST(TestGemm, Float_2x4_4x2_XdlPerWave)
{
    using DataType                            = float;
    const auto thread_layout_4x2_xdl_per_wave = ck::make_tuple(ck::Number<16>{}, ck::Number<8>{});
    const auto thread_layout_2x4_xdl_per_wave = ck::make_tuple(ck::Number<8>{}, ck::Number<16>{});
    const auto tile_shape = ck::make_tuple(ck::Number<128>{}, ck::Number<128>{}, ck::Number<64>{});
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_4x2XdlPerWave_4K1, 4>(
        512, 512, 128, tile_shape, thread_layout_4x2_xdl_per_wave);
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x4XdlPerWave_4K1, 4>(
        512, 512, 128, tile_shape, thread_layout_2x4_xdl_per_wave);
}