moe.cpp 11.6 KB
Newer Older
shengnxu's avatar
shengnxu committed
1
2
3
4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
#include "moe.hpp"
#include "ck_tile/host.hpp"
root's avatar
root committed
5
6
//#include "rotary.hpp"
//#include "utils.hpp"
shengnxu's avatar
shengnxu committed
7
#include "ck_tile/host/reference/reference_permute.hpp"
root's avatar
root committed
8
9
10
11
12
13
#include "include/ck_tile/ops/fused_moe/pipeline/fused_moe_pipeline_nsplit2.hpp"
#include "include/ck_tile/ops/fused_moe/pipeline/fused_moe_pipeline_problem.hpp"
#include "include/ck_tile/ops/fused_moe/pipeline/fused_moe_tile_shape.hpp"
#include "include/ck_tile/ops/fused_moe/pipeline/fused_moe_traits.hpp"
#include "include/ck_tile/ops/fused_moe/pipeline/fused_moe_weight_permute_enum.hpp"
#include "include/ck_tile/ops/fused_moe/kernel/fused_moe_kernel.hpp"
shengnxu's avatar
shengnxu committed
14
15
16
17
18
19
20
21
22
23

#include <array>
#include <cstring>
#include <functional>
#include <numeric>
#include <ostream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
root's avatar
root committed
24
//#include <torch/torch.h>
shengnxu's avatar
shengnxu committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
//test args
auto create_args(int argc, char* argv[])
{
    // get command line data to internal params
    ck_tile::ArgParser arg_parser;
    arg_parser.insert("num_tokens", "10", "")
        .insert("num_experts", "8", "")
        .insert("v", "0", "validation")
        .insert("hidden_size", "4096", "")
        .insert("shard_intermediate_size", "4096", "")
        .insert("topk",
                "2",
                "\n"
                "")
        .insert(
            "dtype",
            "fp16",
            "\n"
            "")
        .insert("use_fp8_w8a8", "0", "")
        .insert("use_int8_w8a16",
                "0",
                "");

    bool result = arg_parser.parse(argc, argv);
    return std::make_tuple(result, arg_parser);
}

//run args assertion and tensor allocation
    //and slope/scale gen, tensor copy to device
    //init traits/feature instant
    //init args, from tensor to tensor pointer and stride, real args to kernel
    //call moe
    //move result to host
    //referrence gen
    //validation
template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
    std::string data_type    = arg_parser.get_str("dtype");
    int do_validation        = arg_parser.get_int("v");
    bool use_fp8_w8a8 = arg_parser.get_bool("use_fp8_w8a8");
    bool use_int8_w8a16 = arg_parser.get_bool("use_int8_w8a16");
   // auto mode                = static_cast<mode_enum>(arg_parser.get_uint32("mode"));
    ck_tile::index_t num_tokens   = arg_parser.get_int("num_tokens");
    ck_tile::index_t num_experts   = arg_parser.get_int("num_experts");
    ck_tile::index_t hidden_size = arg_parser.get_int("hidden_size");
    ck_tile::index_t shard_intermediate_size = arg_parser.get_int("shard_intermediate_size");
    ck_tile::index_t topk = arg_parser.get_int("topk");

    int stream_warmup = arg_parser.get_int("warmup");
    int stream_repeat = arg_parser.get_int("repeat");
    bool kname        = arg_parser.get_bool("kname");

    ck_tile::stream_config stream_config{nullptr,
                                         true,
                                         /* log_level = */ (kname ? 1 : 0),
                                         stream_warmup,
                                         stream_repeat,
                                         arg_parser.get_str("timer") == std::string("gpu")};

    //type config, need type config before tensor gen, and define the acc types
    using TypeConfig = MoeTypeConfig<DataType>;
    using ADataType             = typename TypeConfig::ADataType;
    using GDataType             = typename TypeConfig::GDataType;
    using UDataType             = typename TypeConfig::UDataType;
    using DDataType          = typename TypeConfig::DDataType;
    using ODataType          = typename TypeConfig::ODataType;
    using AccDataType = typename TypeConfig::AccDataType;
    using ScaleDataType = typename TypeConfig::ScaleDataType;

    //tensor
    ck_tile::HostTensor<GDataType> g_host_ref({num_experts,
                               shard_intermediate_size/2,
                               hidden_size/16,2,8});
    ck_tile::HostTensor<UDataType> u_host_ref({num_experts,
                               shard_intermediate_size/2,
                               hidden_size/16,2,8});
    ck_tile::HostTensor<DDataType> d_host_ref({num_experts,
                               hidden_size,
                               shard_intermediate_size/2/16,2,8});
    //reference_permute(const HostTensor<DataType>& x, HostTensor<DataType>& y, std::vector<index_t> dims)
    ck_tile::HostTensor<ADataType> a_host({num_tokens, hidden_size});
    ck_tile::HostTensor<GDataType> g_host({num_experts,
                               shard_intermediate_size/2,
                               hidden_size});
    ck_tile::HostTensor<UDataType> u_host({num_experts,
                               shard_intermediate_size/2,
                               hidden_size});
    ck_tile::HostTensor<DDataType> d_host({num_experts,
root's avatar
root committed
115
                               hidden_size,
shengnxu's avatar
shengnxu committed
116
                               shard_intermediate_size/2});
root's avatar
root committed
117
118
119
    ck_tile::reference_permute<GDataType>(g_host_ref, g_host, {0, 1, 3, 4, 2, 5});
    ck_tile::reference_permute<GDataType>(u_host_ref, u_host, {0, 1, 3, 4, 2, 5});
    ck_tile::reference_permute<GDataType>(d_host_ref, d_host, {0, 1, 3, 4, 2, 5});
shengnxu's avatar
shengnxu committed
120
121
    ck_tile::HostTensor<ODataType> o_host({num_tokens, hidden_size});

root's avatar
root committed
122
    ck_tile::HostTensor<ck_tile::fp32_t> sorted_weights({num_tokens,topk});
shengnxu's avatar
shengnxu committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    ck_tile::HostTensor<ck_tile::index_t> sorted_topk_ids({num_tokens,topk});
    ck_tile::HostTensor<ck_tile::index_t> sorted_expert_ids({num_tokens,topk});
    ck_tile::HostTensor<ck_tile::index_t> sorted_num_tokens_post_padded({1});
    //device buffer
    ck_tile::DeviceMem a_buf(a_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem g_buf(g_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem u_buf(u_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem d_buf(d_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem o_buf(o_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem sorted_weight_buf(sorted_weights.get_element_space_size_in_bytes());
    ck_tile::DeviceMem sorted_topk_ids_buf(sorted_topk_ids.get_element_space_size_in_bytes());
    ck_tile::DeviceMem sorted_expert_ids_buf(sorted_expert_ids.get_element_space_size_in_bytes());
    ck_tile::DeviceMem sorted_tiles_buf(sorted_num_tokens_post_padded.get_element_space_size_in_bytes());
    a_buf.ToDevice(a_host.data());
    g_buf.ToDevice(g_host.data());
    u_buf.ToDevice(u_host.data());
    d_buf.ToDevice(d_host.data());
    
    //init traits
    const auto init_traits = [&](auto& traits) {
        traits.DownPreShuffled        = 0;   
    };
    //init host args pack internal params to a struct to pass to kernel
    const auto init_args = [&](auto& args) {
        const ck_tile::index_t stride_a = hidden_size;
        const ck_tile::index_t stride_gu = hidden_size;
        const ck_tile::index_t stride_d = shard_intermediate_size/2;
        const ck_tile::index_t stride_o = hidden_size;
        const ck_tile::index_t stride_expert_gu = hidden_size * shard_intermediate_size/2;
        const ck_tile::index_t stride_expert_d = hidden_size * shard_intermediate_size/2;

        args.a_ptr = a_buf.GetDeviceBuffer();
        args.g_ptr = g_buf.GetDeviceBuffer();
        args.u_ptr = u_buf.GetDeviceBuffer();
        args.d_ptr = d_buf.GetDeviceBuffer();
        args.o_ptr = o_buf.GetDeviceBuffer();
        args.sorted_token_ids_ptr = sorted_topk_ids_buf.GetDeviceBuffer();
        args.sorted_weight_ptr = sorted_weight_buf.GetDeviceBuffer();
        args.sorted_expert_ids_ptr = sorted_expert_ids_buf.GetDeviceBuffer();
        args.num_sorted_tiles_ptr = sorted_tiles_buf.GetDeviceBuffer();
        args.stride_a = stride_a;
        args.stride_gu = stride_gu;
        args.stride_d = stride_d;
        args.stride_o = stride_o;
        args.stride_expert_gu = stride_expert_gu;
        args.stride_expert_d = stride_expert_d;
        
root's avatar
root committed
170
//        args.dim_size = dim_size;
shengnxu's avatar
shengnxu committed
171
172
173
        args.hidden_size = hidden_size;
        args.num_tokens = num_tokens;  // input number of tokens for current iteration
        args.num_experts = num_experts; 
root's avatar
root committed
174
    };
shengnxu's avatar
shengnxu committed
175
    //
root's avatar
root committed
176
   // constexpr ck_tile::index_t ts_experts = experts_;
shengnxu's avatar
shengnxu committed
177
    //tiling
root's avatar
root committed
178
    using moe_block_tile_0   = ck_tile::sequence<32,  // kM_a
shengnxu's avatar
shengnxu committed
179
180
181
182
183
                                        128, // kN_g/u
                                        128, // kN_sub0
                                        32,  // kK_a
                                        128 // kN_d
                                        >;
root's avatar
root committed
184
185
186
    using moe_block_warps0_0 = ck_tile::sequence<1, 4, 1>;//mnk
    using moe_block_warps1_0 = ck_tile::sequence<4, 1, 1>;
    using moe_warp_tile_0    = ck_tile::sequence<32, 32, 16>;
shengnxu's avatar
shengnxu committed
187
188
    // using fmha_warp_tile_4    = ck::Sequence<32, 32, 8>;

root's avatar
root committed
189
    using moe_shape = ck_tile::FusedMoeTileShape<moe_block_tile_0,
shengnxu's avatar
shengnxu committed
190
191
192
193
194
195
196
                                                                moe_block_warps0_0,
                                                                moe_warp_tile_0,
                                                                moe_block_warps1_0,
                                                                moe_warp_tile_0>; 
    using moe_traits = ck_tile::FusedMoeTraits<false,//down preshuffle
          -1, // index_t kBlockPerCu_  = ,overwrite occupancy if not -1
          0,//index_t OAtomic_
root's avatar
root committed
197
          ck_tile::FusedMoeWeightPermuteEnum::permute_b_nr_kr_kw_nw_kv//FusedMoeWeightPermuteEnum WeightPermute_ =
shengnxu's avatar
shengnxu committed
198
199
          >;
    using moe_problem  = ck_tile::FusedMoePipelineProblem<ADataType, GDataType, UDataType, DDataType,
root's avatar
root committed
200
          ODataType, AccDataType, ScaleDataType, ck::tensor_operation::element_wise::Silu, moe_shape, moe_traits>; 
shengnxu's avatar
shengnxu committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    using moe_pipeline = ck_tile::FusedMoePipelineNSplit2<moe_problem>;                     
    using Hargs = ck_tile::FusedMoeKernel::FusedMoeCommonHargs;
    using moe_partitioner = ck_tile::FusedMoeTilePartitioner_PersistentSplitD<moe_shape>;                                                                                            \
    using kernel = ck_tile::FusedMoeKernel<moe_partitioner,moe_pipeline>;
    using Kargs = ck_tile::FusedMoeKernel::FusedMoeCommonKargs;
    Hargs hargs;
    Kargs kargs;
    //args to hargs                                     
    init_args[](hargs);                                                                                                         \
    auto kargs = kernel::MakeKargs(hargs);
    int cu_count = getAvailableComputeUnitCount(stream_config);                                                                                                                                       \
    const dim3 grids      = kernel::GridSize(cu_count,moe_pipeline::kBlockPerCu);                                                
    constexpr dim3 blocks = kernel::BlockSize();                                                
                                                                                                
    float ave_time = ck_tile::launch_kernel(                                                    
        s, ck_tile::make_kernel<blocks.x, 1>(kernel{}, grids, blocks, 0, kargs));               
                                                                                                
    return ave_time;


}

//main
int main(int argc, char* argv[])
{
    auto [result, arg_parser] = create_args(argc, argv);
    if (!result)
        return -1;
    const std::string data_type = arg_parser.get_str("prec");
    if(data_type == "fp16")
    {
        return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
    }
    else if(data_type == "bf16")
    {
        return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
    }
    else if(data_type == "fp8")
    {
        return run<ck_tile::fp8_t>(arg_parser) ? 0 : -2;
    }

    return -3;
}
    //call creat args
    //call run
     

root's avatar
root committed
249
    //return