run_gemm_example.inc 12.5 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
3
4
5

#pragma once

6
7
8
9
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"

template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
10
11
12
13
14
15
16
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
    static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif

    using namespace ck::literals;

17
18
19
20
21
22
    auto M       = problem_size.M;
    auto N       = problem_size.N;
    auto K       = problem_size.K;
    auto StrideA = problem_size.StrideA;
    auto StrideB = problem_size.StrideB;
    auto StrideC = problem_size.StrideC;
23
24
25
26
27
28
29
30
31
32
33
34
35

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
            {
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
            }
            else
            {
                return HostTensorDescriptor({row, col}, {1_uz, stride});
            }
        };

36
    auto f_get_default_stride =
37
38
        [](std::size_t row, std::size_t col, ck::index_t stride, auto layout) {
            if(stride == -1)
39
            {
40
                // give a chance if stride is -1, return a default packed stride
41
42
                if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
                {
43
                    return static_cast<std::size_t>(col);
44
45
46
                }
                else
                {
47
                    return static_cast<std::size_t>(row);
48
49
50
                }
            }
            else
51
                return static_cast<std::size_t>(stride);
52
53
54
55
56
57
        };

    StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
    StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
    StrideC = f_get_default_stride(M, N, StrideC, CLayout{});

58
59
60
61
62
    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    switch(config.init_method)
    {
63
    case 0:
64
65
        ck::utils::FillConstant<ADataType>{ck::type_convert<ADataType>(1.f)}(a_m_k);
        ck::utils::FillConstant<BDataType>{ck::type_convert<BDataType>(1.f)}(b_k_n);
66
        break;
67
    case 1:
68
69
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n);
70
        break;
zjing14's avatar
zjing14 committed
71
72
73
74
75
76
77
78
79
    case 2:
        ck::utils::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
        ck::utils::FillUniformDistribution<BDataType>{-1.f, 1.f}(b_k_n);
        break;
    case 3:
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{1.f, 1.f}(a_m_k);
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n);
        break;
    case 4:
80
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
zjing14's avatar
zjing14 committed
81
82
83
84
85
86
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{1.f, 1.f}(b_k_n);
        break;
    case 5:
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-2.f, 2.f}(a_m_k);
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{-2.f, 2.f}(b_k_n);
        break;
87
    default:
88
89
        ck::utils::FillUniformDistribution<ADataType>{-0.1f, 0.1f}(a_m_k);
        ck::utils::FillUniformDistribution<BDataType>{-0.1f, 0.1f}(b_k_n);
90
91
92
    }

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
93
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
94
    Tensor<CDataType> c_m_n_device_ref_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
95
96
97
98
99
100

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

#ifdef BUILD_INT4_EXAMPLE
101
102
103
104
105
    DeviceMem a_m_k_device_buf(sizeof(KernelADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_device_buf(sizeof(KernelBDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(KernelCDataType) *
                               c_m_n_device_result.mDesc.GetElementSpaceSize());

106
107
108
109
110
111
    const Tensor<KernelADataType> a_m_k_converted(a_m_k);
    const Tensor<KernelBDataType> b_k_n_converted(b_k_n);

    a_m_k_device_buf.ToDevice(a_m_k_converted.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n_converted.mData.data());
#else
112
113
114
    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
115
116
    DeviceMem c_m_n_device_ref_buf(sizeof(CDataType) *
                                   c_m_n_device_ref_result.mDesc.GetElementSpaceSize());
117

118
119
120
    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
#endif
121
    DeviceMem workspace;
122
123
124
125
126

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

127
128
129
130
131
132
133
134
135
136
    using BaseStreamK = ck::tensor_operation::device::DeviceGemmStreamK<ALayout,
                                                                        BLayout,
                                                                        CLayout,
                                                                        ADataType,
                                                                        BDataType,
                                                                        CDataType,
                                                                        AElementOp,
                                                                        BElementOp,
                                                                        CElementOp>;

137
    // do GEMM
138
139
140
141
142
143
144
145
    auto gemm      = DeviceGemmInstance{};
    auto invoker   = gemm.MakeInvoker();
    float ave_time = 0;

    if constexpr(std::is_same<ProblemType, ProblemSize>::value &&
                 !std::is_base_of<BaseStreamK, DeviceGemmInstance>::value)
    {
        auto argument = gemm.MakeArgument(
146
#ifdef BUILD_INT4_EXAMPLE
147
148
149
            static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
150
#else
151
152
153
            static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
154
#endif
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            M,
            N,
            K,
            StrideA,
            StrideB,
            StrideC,
            a_element_op,
            b_element_op,
            c_element_op);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return true;
        }

        ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
    }
    else if constexpr(std::is_same<ProblemType, ProblemSizeStreamK>::value &&
                      std::is_base_of<BaseStreamK, DeviceGemmInstance>::value)
176
    {
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        auto argument = gemm.MakeArgument(
#ifdef BUILD_INT4_EXAMPLE
            static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#else
            static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#endif
            M,
            N,
            K,
            StrideA,
            StrideB,
            StrideC,
            a_element_op,
            b_element_op,
            c_element_op,
            problem_size.NumSKBlocks);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return true;
        }

        std::size_t workspace_size = gemm.GetWorkSpaceSize(&argument);
        if(workspace_size != 0)
        {
            workspace.Realloc(workspace_size);
            gemm.SetWorkSpacePointer(&argument, workspace.GetDeviceBuffer());
        }

        ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});

#if 0
        // TODO!!!!!
        if(workspace_size != 0){
            float * ws_ptr = reinterpret_cast<float*>(malloc(workspace_size));
            size_t ws_dwords = workspace_size / sizeof(float);
            workspace.FromDevice(ws_ptr);

            for(size_t i = 0; i < ws_dwords; i++) {
                uint32_t rere = reinterpret_cast<uint32_t*>(ws_ptr)[i];
                printf("%4lu : %f(0x%08x)\n", i, ws_ptr[i], rere);
            }
            free(ws_ptr);
        }
#endif
228
    }
229
230
231
232
233
234
235
236
    else
    {
        // When the Problem Type and Problem Size does not fit.

        std::cerr << gemm.GetTypeString() << ": the instance does not support the problem config."
                  << std::endl;
        return true;
    }
237
238
239
240
241
242
243
244
245
246
247
248

    std::size_t flop = 2_uz * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

249
250
    bool pass = true;

251
    if((config.do_verification == 1) || (config.do_verification == 3))
252
    {
253
        // CPU verification
254
255
256
257
258
259
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

260
        std::cout << "Running verification on CPU." << std::endl;
261
262
263
        ref_invoker.Run(ref_argument);

#ifdef BUILD_INT4_EXAMPLE
264
265
266
267
268
        Tensor<CDataType> c_m_n_device_result_converted(c_m_n_host_result.mDesc);

        c_m_n_device_buf.FromDevice(c_m_n_device_result_converted.mData.data());

        c_m_n_device_result = c_m_n_device_result_converted.CopyAsType<CDataType>();
269

270
        return ck::utils::check_err(c_m_n_device_result_converted, c_m_n_host_result);
271
#else
272
273
        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

274
275
276
277
278
        pass &= ck::utils::check_err(c_m_n_device_result,
                                     c_m_n_host_result,
                                     "Error: Incorrect results!",
                                     get_rtol<CDataType>(),
                                     get_atol<CDataType>());
279
#endif
280
    }
281

282
283
    if((config.do_verification == 2) || (config.do_verification == 3))
    {
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        // GPU verification
        auto ref_gemm_gpu    = ReferenceGemmInstanceGPU{};
        auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();

        auto ref_argument_gpu = ref_gemm_gpu.MakeArgument(
            static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_m_n_device_ref_buf.GetDeviceBuffer()),
            M,
            N,
            K,
            a_element_op,
            b_element_op,
            c_element_op);

        std::cout << "Running verification on GPU." << std::endl;
        ref_invoker_gpu.Run(ref_argument_gpu, StreamConfig{});

        c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

305
306
307
308
309
        pass &= ck::utils::check_err(c_m_n_device_result,
                                     c_m_n_device_ref_result,
                                     "Error: Incorrect results!",
                                     get_rtol<CDataType>(),
                                     get_atol<CDataType>());
310
311
    }

312
    return pass == true;
313
314
315
316
317
318
319
320
321
}

bool run_gemm_example(int argc, char* argv[])
{
    ProblemSize problem_size;
    ExecutionConfig config;

    return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}
322
323
324
325
326
327
328
329

bool run_gemm_streamk_example(int argc, char* argv[])
{
    ProblemSizeStreamK problem_size;
    ExecutionConfig config;

    return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}