smfmac_op_util.hpp 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/utility/amd_smfmac.hpp"
#include "ck/library/utility/fill.hpp"

namespace ck {
namespace smfmac_op_util {

template <typename src_vec1, typename src_vec2, typename acc_vec>
__device__ void
builtin_smfmac_naive_selector(const src_vec1&, const src_vec2&, const int32_t&, acc_vec&)
{
}

template <>
__device__ void
builtin_smfmac_naive_selector<half4_t,
                              half8_t,
                              StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 4, true>>(
    const half4_t& reg_a,
    const half8_t& reg_b,
    const int32_t& reg_idx,
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 4, true>& reg_c)
{
    intrin_smfmac_f32_16x16x32f16<16, 16>::Run(
        reg_a, reg_b, reg_idx, reg_c.GetVectorTypeReference(Number<0>{}));
}

template <>
__device__ void
builtin_smfmac_naive_selector<bhalf4_t,
                              bhalf8_t,
                              StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 4, true>>(
    const bhalf4_t& reg_a,
    const bhalf8_t& reg_b,
    const int32_t& reg_idx,
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 4, true>& reg_c)
{
    intrin_smfmac_f32_16x16x32bf16<16, 16>::Run(
        reg_a, reg_b, reg_idx, reg_c.GetVectorTypeReference(Number<0>{}));
}

template <>
__device__ void builtin_smfmac_naive_selector<
    half4_t,
    half8_t,
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 16, true>>(
    const half4_t& reg_a,
    const half8_t& reg_b,
    const int32_t& reg_idx,
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 16, true>& reg_c)
{
    intrin_smfmac_f32_32x32x16f16<32, 32>::Run(
        reg_a, reg_b, reg_idx, reg_c.GetVectorTypeReference(Number<0>{}));
}

template <>
__device__ void builtin_smfmac_naive_selector<
    bhalf4_t,
    bhalf8_t,
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 16, true>>(
    const bhalf4_t& reg_a,
    const bhalf8_t& reg_b,
    const int32_t& reg_idx,
    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, float, 1, 16, true>& reg_c)
{
    intrin_smfmac_f32_32x32x16bf16<32, 32>::Run(
        reg_a, reg_b, reg_idx, reg_c.GetVectorTypeReference(Number<0>{}));
}

// Smfmac instructions are using 4:2 structural sparsity, that means that in every contignuous
// subgroup of 4 elements, atleast 2 must be equal to zero and the position of non-zero elements is
// stored in idx register to allow selection of corresponding B matrix elements for multiplication.
// Currently smfmac instructions support only A matrix as sparse
template <typename src1_t,
          index_t src1_vec_size,
          typename src2_t,
          index_t src2_vec_size,
          typename acc_t,
          index_t acc_vec_size,
          typename dst_t,
          int32_t M,
          int32_t N,
          int32_t K>
__global__ void matmul(const src1_t* a, const src2_t* b, dst_t* c)
{
    __shared__ src1_t a_shared[M * K];
    __shared__ src2_t b_shared[K * N];
    const int lane = threadIdx.x;
    // smfmac's A part is storing only non-zero elements in 2VGPRs
    // smfmac's B part is storing all elements in 4VGPRs
    using src1_vec      = typename vector_type<src1_t, src1_vec_size>::type;
    using src1_full_vec = typename vector_type<src1_t, src1_vec_size * 2>::type;
    using src2_vec      = typename vector_type<src2_t, src2_vec_size>::type;
    src1_vec a_frag     = {};
    src2_vec b_frag     = {};

    src1_full_vec a_temp = {};
    src2_vec b_temp      = {};
    // initialize c fragment to 0
    using acc_vec = StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr, acc_t, 1, acc_vec_size, true>;
    acc_vec c_thread_buf_;

    for(int i = 0; i < 8; ++i)
    {
        a_temp[i] = a[(lane % M) * K + (lane / M) * 8 + i]; // M K
    }

    for(int i = 0; i < 8; ++i)
    {
        b_temp[i] = b[(8 * (lane / N) + i) * N + (lane % N)]; // K N
    }

    __syncthreads();

    for(int i = 0; i < 8; ++i)
    {
        a_shared[(lane % M) * K + (lane / M) * 8 + i] = a_temp[i];
    }
    for(int i = 0; i < 8; ++i)
    {
        b_shared[(8 * (lane / N) + i) * N + (lane % N)] = b_temp[i];
    }

    __syncthreads();

    // Idx must be a 32-bit register and it is storing 4 2-bit indexes of A's non zero elements.
    // It starts with last two elements of every 4 elements subgroup set as non-zero
    int32_t idx = 0b11101110;
    // Bit masks are for zeroing 0-3rd position of idx
    static constexpr int32_t bit_clear_masks[4] = {0b11, 0b1100, 0b110000, 0b11000000};

    src1_t curr_val;
    int32_t a_pos = 0;
    for(int j = 0; j < 2; ++j)
    {
        a_pos = j * 2;
        for(int i = 0; i < 4; ++i)
        {
            curr_val = a_shared[(lane % M) * K + (lane / M) * 8 + 4 * j + i];
            if(curr_val != 0.0f)
            {
                idx &= ~bit_clear_masks[a_pos];
                idx |= (i % 4) << 2 * a_pos;
                a_frag[a_pos] = curr_val;
                a_pos++;
            }
        }
    }

    for(int i = 0; i < 8; ++i)
    {
        b_frag[i] = b_shared[(8 * (lane / N) + i) * N + (lane % N)];
    }

    builtin_smfmac_naive_selector<src1_vec, src2_vec, acc_vec>(a_frag, b_frag, idx, c_thread_buf_);
    __syncthreads();

    // store results from unpacked c_thread_buf_ output
    if constexpr(K == 32)
    {
        static_for<0, acc_vec_size, 1>{}([&](auto i) {
            c[(4 * (lane / 16) + i) * N + lane % 16] =
                ck::type_convert<dst_t>(c_thread_buf_[Number<i>{}]);
        });
    }
    else
    {
        static_for<0, acc_vec_size, 1>{}([&](auto i) {
            c[((8 * (i / 4)) % 32 + 4 * (lane / 32) + i % 4) * N + lane % 32] =
                ck::type_convert<dst_t>(c_thread_buf_[Number<i>{}]);
        });
    }
}

struct GemmParams
{
    GemmParams() : M(16), N(16), K(32), StrideA(32), StrideB(16), StrideC(16), alpha(1), beta(0) {}

    ck::index_t M;
    ck::index_t N;
    ck::index_t K;

    ck::index_t StrideA;
    ck::index_t StrideB;
    ck::index_t StrideC;

    float alpha;
    float beta;
};

template <typename GemmInstance,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunHostGEMM(const Tensor<ADataType>& A,
                 const Tensor<BDataType>& B,
                 Tensor<CDataType>& C,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
{
    auto ref_gemm     = GemmInstance{};
    auto ref_invoker  = ref_gemm.MakeInvoker();
    auto ref_argument = ref_gemm.MakeArgument(A, B, C, a_element_op, b_element_op, c_element_op);

    ref_invoker.Run(ref_argument);
}

template <typename KernelType, typename ADataType, typename BDataType, typename CDataType>
bool RunDeviceGEMM(KernelType kernel,
                   const Tensor<ADataType>& A,
                   const Tensor<BDataType>& B,
                   Tensor<CDataType>& C)
{
    DeviceMem a_m_k_device_buf(sizeof(ADataType) * A.mDesc.GetElementSpaceSize());
    DeviceMem b_n_k_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpaceSize());

    a_m_k_device_buf.ToDevice(A.mData.data());
    b_n_k_device_buf.ToDevice(B.mData.data());
    kernel<<<1, 64>>>(static_cast<const ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                      static_cast<const BDataType*>(b_n_k_device_buf.GetDeviceBuffer()),
                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()));
    c_m_n_device_buf.FromDevice(C.mData.data());

    return true;
}

template <typename DeviceSmfmac,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename GPUAccDataType,
          typename CPUAccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
          index_t CAccNum,
          index_t M,
          index_t N,
          index_t K>
struct TestSmfmac
{
    auto PrepareGemmTensor(const ck::smfmac_op_util::GemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        Tensor<ADataType> a_m_k(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BDataType> b_n_k(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<CDataType> c_m_n_host_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_device_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        auto f_generate_tensor_value = [](auto& tensor, auto type) {
            using dataType = decltype(type);
            tensor.GenerateTensorValue(GeneratorTensor_2<dataType>{-5, 5});
        };

        f_generate_tensor_value(a_m_k, ADataType{});
        f_generate_tensor_value(b_n_k, BDataType{});
        ck::utils::TransformIntoStructuralSparsity<ADataType>{}(a_m_k);

        return std::make_tuple(a_m_k, b_n_k, c_m_n_host_result, c_m_n_device_result);
    }

    auto operator()(const DeviceSmfmac& smfmac_kernel)
    {
        std::cout << "ALayout = " << ALayout{}.name << ", BLayout = " << BLayout{}.name
                  << ", CLayout = " << CLayout{}.name << std::endl;

        // Arrange
        ck::smfmac_op_util::GemmParams params;
        params.M       = M;
        params.N       = N;
        params.K       = K;
        params.StrideA = K; // M K
        params.StrideB = N; // K N
        params.StrideC = N; // M N

        auto host_tensors = PrepareGemmTensor(params);

        const Tensor<ADataType>& a  = std::get<0>(host_tensors);
        const Tensor<BDataType>& b  = std::get<1>(host_tensors);
        Tensor<CDataType>& c_host   = std::get<2>(host_tensors);
        Tensor<CDataType>& c_device = std::get<3>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                      BDataType,
                                                      CDataType,
                                                      CPUAccDataType,
                                                      AElementwiseOperation,
                                                      BElementwiseOperation,
                                                      CElementwiseOperation>;
        ck::smfmac_op_util::RunHostGEMM<ReferenceGemmInstance>(
            a, b, c_host, a_element_op, b_element_op, c_element_op);

        // Act
        bool is_supported = ck::smfmac_op_util::RunDeviceGEMM(smfmac_kernel, a, b, c_device);

        if(is_supported)
        {
            // Assert
            bool res = false;
            if(std::is_same<CDataType, float>::value)
            {
                res = ck::utils::check_err(c_device.mData, c_host.mData);
                std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
            }
            else
            {
                std::cout << "UNSUPPORTED CDataType" << std::endl;
            }

            return res;
        }
        else
        {
            return true;
        }
    }
};

} // namespace smfmac_op_util
} // namespace ck