gemm_dl_int8.cpp 9.64 KB
Newer Older
Jianfeng Yan's avatar
Jianfeng Yan committed
1
2
3
4
5
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

Chao Liu's avatar
Chao Liu committed
6
7
8
9
10
11
12
13
14
15
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
Jianfeng Yan's avatar
Jianfeng Yan committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType   = int8_t;
using BDataType   = int8_t;
using CDataType   = int8_t;
using AccDataType = int32_t;

using ALayout = Col;
using BLayout = Row;
using CLayout = Row;

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::
        // #########|  AData|   BData|   CData|    AccData| ALayout| BLayout| CLayout|           A|           B|           C|           GEMM| Block|  MPer|  NPer| K0Per| K1|      M1Per|      N1Per|   KPer|  M11N11Thread|  M11N11Thread|     ABlockTransfer|       ABlockTransfer| ABlockTransfer| ABlockTransfer|      ABlockTransfer|     ABlockTransfer|       ABlockTransfer|     BBlockTransfer|       BBlockTransfer| BBlockTransfer| BBlockTransfer|      BBlockTransfer|     BBlockTransfer|      BBlockTransfer|     CThreadTransfer| CThreadTransfer|    CThreadTransfer|
        // #########|   Type|    Type|    Type|       Type|        |        |        | Elementwise| Elementwise| Elementwise| Spacialization|  Size| Block| Block| Block|   | ThreadM111| ThreadN111| Thread| ClusterM110Xs| ClusterN110Xs| ThreadSliceLengths| ThreadClusterLengths|  ThreadCluster|      SrcAccess|     SrcVectorTensor|    SrcVectorTensor|      DstVectorTensor| ThreadSliceLengths| ThreadClusterLengths|  ThreadCluster|      SrcAccess|     SrcVectorTensor|    SrcVectorTensor|     DstVectorTensor|        SrcDstAccess| SrcDstVectorDim| DstScalarPerVector|
        // #########|       |        |        |           |        |        |        |   Operation|   Operation|   Operation|               |      |      |      |      |   |           |           |       |              |              |        K0_M0_M1_K1|          K0_M0_M1_K1|   ArrangeOrder|          Order| Lengths_K0_M0_M1_K1| ContiguousDimOrder|  Lengths_K0_M0_M1_K1|        K0_N0_N1_K1|          K0_N0_N1_K1|   ArrangeOrder|          Order| Lengths_K0_N0_N1_K1| ContiguousDimOrder| Lengths_K0_N0_N1_K1|               Order|                |                   |
        // #########|       |        |        |           |        |        |        |            |            |            |               |      |      |      |      |   |           |           |       |              |              |                   |                     |               |               |                    |                   |                     |                   |                     |               |               |                    |                   |                    |                    |                |                   |
        DeviceGemmDl< int8_t,  int8_t,  int8_t,    int32_t,     Col,     Row,     Row, PassThrough, PassThrough, PassThrough,    GemmDefault,   256,   128,   128,    16,  4,          4,          4,      1,       S<8, 2>,       S<8, 2>,      S<2, 1, 4, 4>,      S<8, 1,  32, 1>,  S<0, 3, 1, 2>,  S<0, 3, 1, 2>,       S<1, 1, 4, 1>,      S<0, 3, 1, 2>,        S<1, 1, 4, 4>,      S<2, 1, 4, 4>,      S<8, 1,  32, 1>,  S<0, 3, 1, 2>,  S<0, 3, 1, 2>,       S<1, 1, 4, 1>,      S<0, 3, 1, 2>,       S<1, 1, 4, 4>, S<0, 1, 2, 3, 4, 5>,               5,                  4>;
// clang-format on

using ReferenceGemmInstance = ck::tensor_operation::host::
50
    ReferenceGemm<ADataType, BDataType, CDataType, AccDataType, AElementOp, BElementOp, CElementOp>;
Jianfeng Yan's avatar
Jianfeng Yan committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    if(argc == 1)
    {
        // do nothing
    }
    else if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);

        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=n0, 1=yes)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(1);
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    case 2:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_Sequential<0>{});
        b_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

    // do GEMM
    auto gemm     = DeviceGemmInstance{};
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
                                      StrideC,
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);

    if(!gemm.IsSupportedArgument(argument))
    {
Chao Liu's avatar
Chao Liu committed
168
        std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
Jianfeng Yan's avatar
Jianfeng Yan committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    bool pass = true;

    if(do_verification)
    {
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        pass = ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
    }

    return pass ? 0 : 1;
}