smoothquant.cpp 8.03 KB
Newer Older
rocking's avatar
rocking committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include "ck_tile/host.hpp"
#include "smoothquant.hpp"
#include <cstring>

// different threshold for different dtype
template <typename DataType>
auto get_elimit()
{
    double rtol = 1e-5;
    double atol = 1e-5;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::bf16_t>()
{
    double rtol = 1e-5;
    double atol = 1e-5;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::int8_t>()
{
    // due to rounding, int8 quantization might have 1 abs error
    double rtol = 1;
    double atol = 1;
    return ck_tile::make_tuple(rtol, atol);
}

auto create_args(int argc, char* argv[])
{
    ck_tile::ArgParser arg_parser;
    arg_parser.insert("m", "3328", "m dimension")
        .insert("n", "4096", "n dimension")
        .insert("stride", "-1", "stride per row, if -1 then equal to n")
37
        .insert("sx", "1", "0 is pure quantization, 1 is to apply smoothquant")
rocking's avatar
rocking committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        .insert("v", "1", "cpu validation or not")
        .insert("kname", "1", "print kernel name or not")
        .insert("prec", "fp16", "precision")
        .insert("warmup", "5", "cold iter")
        .insert("repeat", "20", "hot iter");

    bool result = arg_parser.parse(argc, argv);
    return std::make_tuple(result, arg_parser);
}

template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
    ck_tile::index_t m      = arg_parser.get_int("m");
    ck_tile::index_t n      = arg_parser.get_int("n");
    ck_tile::index_t stride = arg_parser.get_int("stride");
    if(stride < 0)
        stride = n;
    std::string data_type = arg_parser.get_str("prec");
57
    bool smooth_x         = arg_parser.get_bool("sx");
rocking's avatar
rocking committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    int kname             = arg_parser.get_int("kname");
    int do_validation     = arg_parser.get_int("v");
    int warmup            = arg_parser.get_int("warmup");
    int repeat            = arg_parser.get_int("repeat");

    assert(stride >= n);

    using TypeConfig = SmoothquantTypeConfig<DataType>;

    using XDataType       = typename TypeConfig::XDataType;
    using XScaleDataType  = typename TypeConfig::XScaleDataType;
    using YScaleDataType  = typename TypeConfig::YScaleDataType;
    using QYDataType      = typename TypeConfig::QYDataType;
    using ComputeDataType = typename TypeConfig::ComputeDataType;

    // host verify
    ck_tile::HostTensor<XDataType> x_host({m, n}, {stride, 1});
    ck_tile::HostTensor<XScaleDataType> xscale_host({n});

    ck_tile::HostTensor<YScaleDataType> yscale_host_ref({m}, {1});
    ck_tile::HostTensor<YScaleDataType> yscale_host_dev({m}, {1});

    ck_tile::HostTensor<QYDataType> qy_host_ref({m, n}, {stride, 1});
    ck_tile::HostTensor<QYDataType> qy_host_dev({m, n}, {stride, 1});

    ck_tile::FillUniformDistribution<XDataType>{-.5f, .5f}(x_host);
    ck_tile::FillUniformDistribution<XScaleDataType>{1e-3, .5f}(xscale_host);

    ck_tile::DeviceMem x_buf(x_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem xscale_buf(xscale_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem yscale_buf(yscale_host_dev.get_element_space_size_in_bytes());
    ck_tile::DeviceMem qy_buf(qy_host_dev.get_element_space_size_in_bytes());

    x_buf.ToDevice(x_host.data());
    xscale_buf.ToDevice(xscale_host.data());

    std::cout << "[" << data_type << "]"
              << " m:" << m << ", n:" << n << ", stride:" << stride << std::flush;

97
    smoothquant_traits traits{data_type, smooth_x};
rocking's avatar
rocking committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    smoothquant_args args{x_buf.GetDeviceBuffer(),
                          xscale_buf.GetDeviceBuffer(),
                          yscale_buf.GetDeviceBuffer(),
                          qy_buf.GetDeviceBuffer(),
                          m,
                          n,
                          stride};

    float ave_time = smoothquant(
        traits, args, ck_tile::stream_config{nullptr, true, kname ? 1 : 0, warmup, repeat});

    std::size_t num_byte = sizeof(XDataType) * m * n + sizeof(XScaleDataType) * n +
                           sizeof(YScaleDataType) * m + sizeof(QYDataType) * m * n;

    float gb_per_sec = num_byte / 1.E6 / ave_time;
    std::cout << ", " << ave_time * 1.E3 << " us, " << gb_per_sec << " GB/s" << std::flush;

    bool pass = true;

    if(do_validation)
    {
        using YDataType = ComputeDataType;
        ck_tile::HostTensor<ComputeDataType> y_host({m, n}, {stride, 1});
        // smooth outlier
        {
            auto f = [&](auto n_) {
                auto v_xscale = ck_tile::type_convert<ComputeDataType>(xscale_host(n_));

                for(int m_ = 0; m_ < m; ++m_)
                {
129
130
131
132
133
                    auto v_x = ck_tile::type_convert<ComputeDataType>(x_host(m_, n_));
                    if(smooth_x)
                        y_host(m_, n_) = v_x * v_xscale;
                    else
                        y_host(m_, n_) = v_x;
rocking's avatar
rocking committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                }
            };

            ck_tile::make_ParallelTensorFunctor(f, xscale_host.get_element_space_size())(
                std::thread::hardware_concurrency());
        }

        // yscale
        {
            ck_tile::HostTensor<YDataType> y_rowwise_amax_host({m});

            using ReduceAmax = ck_tile::ReduceOp::AbsMax;
            ck_tile::reference_reduce<ComputeDataType, ComputeDataType, YDataType>(
                y_host, y_rowwise_amax_host, ReduceAmax{});

            auto op = [](const auto& v0) {
                return v0 /
                       ck_tile::type_convert<ComputeDataType>(ck_tile::numeric<QYDataType>::max());
            };
            ck_tile::reference_unary_elementwise<YDataType, YScaleDataType, ComputeDataType>(
                y_rowwise_amax_host, yscale_host_ref, op);

            yscale_buf.FromDevice(yscale_host_dev.mData.data());

            auto [rtol, atol] = get_elimit<YScaleDataType>();
            pass &= ck_tile::check_err(yscale_host_dev,
                                       yscale_host_ref,
                                       std::string("yscale Error: Incorrect results!"),
                                       rtol,
                                       atol);
        }

        // rowwise quantization
        {
            ck_tile::reference_rowwise_quantization2d<YDataType, YScaleDataType, QYDataType>(
                y_host, yscale_host_ref, qy_host_ref);

            qy_buf.FromDevice(qy_host_dev.data());
            auto [rtol, atol] = get_elimit<QYDataType>();

            if(stride == n)
            {
                pass = ck_tile::check_err(qy_host_dev,
                                          qy_host_ref,
                                          std::string("qy Error: Incorrect results!"),
                                          rtol,
                                          atol);
            }
            else
            {
                for(int i_r = 0; i_r < m; i_r++)
                {
                    std::vector<QYDataType> qy_host_dev_row(qy_host_dev.begin() + i_r * stride,
                                                            qy_host_dev.begin() + i_r * stride + n);
                    std::vector<QYDataType> qy_host_ref_row(qy_host_ref.begin() + i_r * stride,
                                                            qy_host_ref.begin() + i_r * stride + n);
                    pass &= ck_tile::check_err(qy_host_dev_row,
                                               qy_host_ref_row,
                                               std::string("qy[") + std::to_string(i_r) +
                                                   std::string("] Error: Incorrect results!"),
                                               rtol,
                                               atol);
                }
            }
        }

        std::cout << ", valid:" << (pass ? "y" : "n") << std::flush << std::endl;
    }

    return pass;
}

int main(int argc, char* argv[])
{
    auto [result, arg_parser] = create_args(argc, argv);
    if(!result)
        return -1;

    const std::string data_type = arg_parser.get_str("prec");
    if(data_type == "fp16")
    {
        return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
    }
    else if(data_type == "bf16")
    {
        return run<ck_tile::bf16_t>(arg_parser) ? 0 : -2;
    }

    return -3;
}