reduce_threadwise.cpp 8.98 KB
Newer Older
root's avatar
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>

#include "ck/utility/reduction_enums.hpp"
#include "reduce_threadwise_impl.hpp"
#include "reduce_example_common.hpp"

using namespace ck;
using namespace ck::tensor_operation::device;

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

class SimpleAppArgs
{
    private:
    int option_index = 0;

    public:
    std::vector<size_t> inLengths = {16, 64, 32, 16};
    std::vector<int> reduceDims   = {0, 1, 2};
    std::vector<float> scales     = {1.0f, 0.0f};

    bool do_verification = true;
    int data_type        = 1;
    int init_method      = 2;
    bool time_kernel     = true;

    public:
    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
        std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
                  << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
        std::cout << "Arg1: data type (0: fp16, 1: fp32, 3: int8, 5: bp16, 6: fp64, 7: int4)"
                  << std::endl;
        std::cout << "Arg2 -- init method (0=no init, 1=single integer value, 2=scope integer "
                     "value, 3=decimal value)"
                  << std::endl;
        std::cout << "Arg3 -- time kernel (0=no, 1=yes)" << std::endl;
    };

    int processArgs(int argc, char* argv[])
    {
        using ck::host_common::getTypeValuesFromString;

        int ch;

        while(1)
        {
            ch = getopt_long(argc, argv, "D:R:v:l:", long_options, &option_index);
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'R':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                reduceDims = getTypeValuesFromString<int>(optarg);
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;
            default: show_usage(argv[0]); return (-1);
            };
        };

        if(optind + 3 > argc)
        {
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");
        };

        data_type   = std::atoi(argv[optind++]);
        init_method = std::atoi(argv[optind++]);
        time_kernel = static_cast<bool>(std::atoi(argv[optind]));

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        return (0);
    };
};

template <typename InOutDataType,
          typename AccDataType,
          ReduceTensorOp ReduceOpId,
          index_t PropagateNan,
          index_t OutputIndex>
bool reduce_threadwise_test(bool do_verification,
                           int init_method,
                           bool time_kernel,
                           const std::vector<size_t>& inLengths,
                           const std::vector<int>& reduceDims,
                           float alpha,
                           float beta)
{
    bool matched = false;
    int result   = 0;

    const auto tuple_object = reduce_shape_instances{};

    static_for<0, std::tuple_size<reduce_shape_instances>::value, 1>{}([&](auto i) {
        if(matched)
            return;

        using ShapeType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;

        if(ShapeType::Rank_ != inLengths.size() || ShapeType::NumReduceDim_ != reduceDims.size())
            return;

        std::array<int, ShapeType::NumReduceDim_> arrReduceDims;

        ck::ranges::copy(reduceDims, arrReduceDims.begin());

        result = reduce_threadwise_impl<InOutDataType,
                                       AccDataType,
                                       ReduceOpId,
                                       ShapeType::Rank_,
                                       ShapeType::NumReduceDim_,
                                       PropagateNan,
                                       OutputIndex>(
            do_verification, init_method, time_kernel, inLengths, arrReduceDims, alpha, beta);

        matched = true;
    });

    return (result == 0) ? true : false;
};

constexpr ReduceTensorOp ReduceOpId = ReduceTensorOp::AVG;
constexpr bool PropagateNan         = true;
constexpr bool OutputIndex          = false;

int main(int argc, char* argv[])
{
    bool pass = true;

    if(argc > 1)
    {
        SimpleAppArgs arg;

        if(arg.processArgs(argc, argv) < 0)
            return (-1);

        if(arg.data_type == 0)
        {
            pass = reduce_threadwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
                arg.do_verification,
                arg.init_method,
                arg.time_kernel,
                arg.inLengths,
                arg.reduceDims,
                arg.scales[0],
                arg.scales[1]);
        }
        else if(arg.data_type == 1)
        {
            pass = reduce_threadwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
                arg.do_verification,
                arg.init_method,
                arg.time_kernel,
                arg.inLengths,
                arg.reduceDims,
                arg.scales[0],
                arg.scales[1]);
        }
#if 0
        else if(arg.data_type == 3)
        {
            pass = reduce_threadwise_test<int8_t, float, ReduceOpId, PropagateNan, OutputIndex>(
                arg.do_verification,
                arg.init_method,
                arg.time_kernel,
                arg.inLengths,
                arg.reduceDims,
                arg.scales[0],
                arg.scales[1]);
        }
        else if(arg.data_type == 5)
        {
            pass = reduce_threadwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
                arg.do_verification,
                arg.init_method,
                arg.time_kernel,
                arg.inLengths,
                arg.reduceDims,
                arg.scales[0],
                arg.scales[1]);
        }
        else if(arg.data_type == 6)
        {
            pass = reduce_threadwise_test<double, double, ReduceOpId, PropagateNan, OutputIndex>(
                arg.do_verification,
                arg.init_method,
                arg.time_kernel,
                arg.inLengths,
                arg.reduceDims,
                arg.scales[0],
                arg.scales[1]);
        }
#endif
    }
    else
    {
        // for testing half_t
        pass =
            pass && reduce_threadwise_test<ck::half_t, float, ReduceOpId, PropagateNan, OutputIndex>(
                        true, 2, true, {16, 64, 32, 960}, {0}, 1.0f, 0.0f);

        // for testing float
        pass = pass && reduce_threadwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
                           true, 2, true, {16, 64, 32, 960}, {0}, 1.0f, 0.0f);

        // for testing double
        pass = pass && reduce_threadwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
                           true, 2, true, {16, 64, 32, 960}, {0}, 1.0f, 0.0f);

        // for testing bhalf_t
        pass = pass &&
               reduce_threadwise_test<ck::bhalf_t, float, ReduceOpId, PropagateNan, OutputIndex>(
                   true, 2, true, {16, 64, 32, 960}, {0}, 1.0f, 0.0f);

#if 0
        // for testing int8_t
        pass =
            pass && reduce_threadwise_test<int8_t, int32_t, ReduceOpId, PropagateNan, OutputIndex>(
                        true, 2, true, {16, 64, 32, 960}, {0}, 1.0f, 0.0f);

        // for testing 3D input
        pass = pass && reduce_threadwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
                           true, 2, true, {16, 64, 960}, {0}, 1.0f, 0.0f);

        // for testing 5D input
        pass = pass && reduce_threadwise_test<float, float, ReduceOpId, PropagateNan, OutputIndex>(
                           true, 2, true, {16, 64, 32, 2, 960}, {0}, 1.0f, 0.0f);
#endif
    }

    return (pass ? 0 : 1);
};