common.hpp 4.23 KB
Newer Older
arai713's avatar
arai713 committed
1
#pragma once
2
3
4
5
6
7

#include "ck/host/headers.hpp"
#include "ck/host/stringutils.hpp"
#include <rtc/compile_kernel.hpp>
#include <rtc/hip.hpp>
#include <test.hpp>
arai713's avatar
arai713 committed
8
9
#include <algorithm>
#include <cmath>
10
#include <fstream>
arai713's avatar
arai713 committed
11
12
13
#include <iterator>
#include <numeric>
#include <random>
14
#include <unordered_set>
arai713's avatar
arai713 committed
15

16
// NOLINTNEXTLINE
17
const char* const ck_content_wrapper = R"__ck__(
18
${content}
Mirza Halilcevic's avatar
Mirza Halilcevic committed
19
)__ck__";
20
21

template <class P>
22
inline std::string content_wrapper(P p)
23
{
24
    return ck::host::InterpolateString(ck_content_wrapper,
25
26
27
                                       {{"content", std::string{p.data(), p.size()}}});
}

Mirza Halilcevic's avatar
Mirza Halilcevic committed
28
inline std::vector<rtc::src_file> create_headers_for_test()
29
30
31
{
    auto ck_headers = ck::host::GetHeaders();
    std::vector<rtc::src_file> result;
32
33
    std::transform(ck_headers.begin(), ck_headers.end(), std::back_inserter(result), [](auto& p) {
        return rtc::src_file{p.first, content_wrapper(p.second)};
34
35
36
37
38
39
    });
    return result;
}

inline const std::vector<rtc::src_file>& get_headers_for_test()
{
Mirza Halilcevic's avatar
Mirza Halilcevic committed
40
41
    static const std::vector<rtc::src_file> headers = create_headers_for_test();
    return headers;
42
43
}

arai713's avatar
arai713 committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
template <typename V>
std::size_t GetSize(V mLens, V mStrides)
{
    std::size_t space = 1;
    for(std::size_t i = 0; i < mLens.Size(); ++i)
    {
        if(mLens[i] == 0)
            continue;

        space += (mLens[i] - 1) * mStrides[i];
    }
    return space;
}

58
59
template <class T>
rtc::buffer<T> generate_buffer(std::size_t n, std::size_t seed = 0)
arai713's avatar
arai713 committed
60
{
61
    rtc::buffer<T> result(n);
arai713's avatar
arai713 committed
62
63
64
65
66
67
    std::mt19937 gen(seed);
    std::uniform_real_distribution<double> dis(-1.0);
    std::generate(result.begin(), result.end(), [&] { return dis(gen); });
    return result;
}

68
69
70
71
72
73
74
75
template <class T, typename V>
std::enable_if_t<!std::is_integral_v<V>, rtc::buffer<T>>
generate_buffer(V mLens, V mStrides, std::size_t seed = 0)
{
    std::size_t space = GetSize(mLens, mStrides);
    return generate_buffer<T>(space, seed);
}

arai713's avatar
arai713 committed
76
77
78
79
80
81
82
83
template <class T, class U>
bool allclose(const T& a, const U& b, double atol = 0.01, double rtol = 0.01)
{
    return std::equal(a.begin(), a.end(), b.begin(), b.end(), [&](double x, double y) {
        return fabs(x - y) < atol + rtol * fabs(y);
    });
}

84
inline std::string classify(double x)
arai713's avatar
arai713 committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
{
    switch(std::fpclassify(x))
    {
    case FP_INFINITE: return "inf";
    case FP_NAN: return "nan";
    case FP_NORMAL: return "normal";
    case FP_SUBNORMAL: return "subnormal";
    case FP_ZERO: return "zero";
    default: return "unknown";
    }
}

template <class Buffer>
void print_classification(const Buffer& x)
{
    std::unordered_set<std::string> result;
    for(const auto& i : x)
        result.insert(classify(i));
    for(const auto& c : result)
        std::cout << c << ", ";
    std::cout << std::endl;
}

template <class Buffer>
void print_statistics(const Buffer& x)
{
    std::cout << "Min value: " << *std::min_element(x.begin(), x.end()) << ", ";
    std::cout << "Max value: " << *std::max_element(x.begin(), x.end()) << ", ";
    double num_elements = x.size();
    auto mean =
        std::accumulate(x.begin(), x.end(), double{0.0}, std::plus<double>{}) / num_elements;
    auto stddev = std::sqrt(
        std::accumulate(x.begin(),
                        x.end(),
                        double{0.0},
                        [&](double r, double v) { return r + std::pow((v - mean), 2.0); }) /
        num_elements);
    std::cout << "Mean: " << mean << ", ";
    std::cout << "StdDev: " << stddev << "\n";
}

template <class Buffer>
void print_preview(const Buffer& x)
{
    if(x.size() <= 10)
    {
        std::for_each(x.begin(), x.end(), [&](double i) { std::cout << i << ", "; });
    }
    else
    {
        std::for_each(x.begin(), x.begin() + 5, [&](double i) { std::cout << i << ", "; });
        std::cout << "..., ";
        std::for_each(x.end() - 5, x.end(), [&](double i) { std::cout << i << ", "; });
    }
    std::cout << std::endl;
}

template <class T>
struct check_all
{
    rtc::buffer<T> data{};
    bool operator()(const rtc::buffer<T>& x)
    {
        if(data.empty())
        {
            data = x;
            return true;
        }
        return allclose(data, x);
    }
};

template <class Solution>
auto report(const Solution& solution, bool pass)
{
    return test::make_predicate(solution.ToTemplateString(), [=] { return pass; });
}