run_gemm_example.inc 14 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
3
4
5

#pragma once

6
7
#include "ck/tensor_operation/gpu/device/device_gemm_streamk.hpp"

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
template <typename DataType>
inline __host__ __device__ constexpr double get_rtol()
{
    if constexpr(std::is_same_v<DataType, float>)
    {
        return 1e-3;
    }
    else if constexpr(std::is_same_v<DataType, double>)
    {
        return 1e-6;
    }
    else if constexpr(std::is_same_v<DataType, ck::half_t>)
    {
        return 1e-3;
    }
    else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
    {
        return 5e-2;
    }
    else if constexpr(std::is_same_v<DataType, int32_t>)
    {
        return 1e-1;
    }
    else if constexpr(std::is_same_v<DataType, int8_t>)
    {
        return 1e-1;
    }
    else if constexpr(std::is_same_v<DataType, ck::f8_t>)
    {
37
        return 2e-1;
38
39
40
    }
    else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
    {
41
        return 2e-1;
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    }
    else
    {
        return 1e-3;
    }
}

template <typename DataType>
inline __host__ __device__ constexpr double get_atol()
{
    if constexpr(std::is_same_v<DataType, float>)
    {
        return 1e-3;
    }
    else if constexpr(std::is_same_v<DataType, double>)
    {
        return 1e-6;
    }
    else if constexpr(std::is_same_v<DataType, ck::half_t>)
    {
        return 1e-3;
    }
    else if constexpr(std::is_same_v<DataType, ck::bhalf_t>)
    {
        return 5e-2;
    }
    else if constexpr(std::is_same_v<DataType, int32_t>)
    {
        return 1e-1;
    }
    else if constexpr(std::is_same_v<DataType, int8_t>)
    {
        return 1e-1;
    }
    else if constexpr(std::is_same_v<DataType, ck::f8_t>)
    {
78
        return 2e-1;
79
80
81
    }
    else if constexpr(std::is_same_v<DataType, ck::bf8_t>)
    {
82
        return 2e-1;
83
84
85
86
87
88
89
    }
    else
    {
        return 1e-3;
    }
}

90
91
template <typename ProblemType>
bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
92
93
94
95
96
97
98
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
    static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif

    using namespace ck::literals;

99
100
101
102
103
104
    auto M       = problem_size.M;
    auto N       = problem_size.N;
    auto K       = problem_size.K;
    auto StrideA = problem_size.StrideA;
    auto StrideB = problem_size.StrideB;
    auto StrideC = problem_size.StrideC;
105
106
107
108
109
110
111
112
113
114
115
116
117

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
            {
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
            }
            else
            {
                return HostTensorDescriptor({row, col}, {1_uz, stride});
            }
        };

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    auto f_get_default_stride =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(stride == 0)
            {
                // give a chance if stride is zero, return a default packed stride
                if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
                {
                    return col;
                }
                else
                {
                    return row;
                }
            }
            else
                return stride;
        };

    StrideA = f_get_default_stride(M, K, StrideA, ALayout{});
    StrideB = f_get_default_stride(K, N, StrideB, BLayout{});
    StrideC = f_get_default_stride(M, N, StrideC, CLayout{});

140
141
142
143
144
    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    switch(config.init_method)
    {
145
146
147
148
    case 0:
        ck::utils::FillConstant<ADataType>{static_cast<ADataType>(1.f)}(a_m_k);
        ck::utils::FillConstant<BDataType>{static_cast<BDataType>(1.f)}(b_k_n);
        break;
149
    case 1:
150
151
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n);
152
        break;
zjing14's avatar
zjing14 committed
153
154
155
156
157
158
159
160
161
    case 2:
        ck::utils::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k);
        ck::utils::FillUniformDistribution<BDataType>{-1.f, 1.f}(b_k_n);
        break;
    case 3:
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{1.f, 1.f}(a_m_k);
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n);
        break;
    case 4:
162
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
zjing14's avatar
zjing14 committed
163
164
165
166
167
168
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{1.f, 1.f}(b_k_n);
        break;
    case 5:
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-2.f, 2.f}(a_m_k);
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{-2.f, 2.f}(b_k_n);
        break;
169
    default:
170
171
        ck::utils::FillUniformDistribution<ADataType>{-0.1f, 0.1f}(a_m_k);
        ck::utils::FillUniformDistribution<BDataType>{-0.1f, 0.1f}(b_k_n);
172
173
174
    }

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
175
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
176
    Tensor<CDataType> c_m_n_device_ref_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
177
178
179
180
181
182

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

#ifdef BUILD_INT4_EXAMPLE
183
184
185
186
187
    DeviceMem a_m_k_device_buf(sizeof(KernelADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_device_buf(sizeof(KernelBDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(KernelCDataType) *
                               c_m_n_device_result.mDesc.GetElementSpaceSize());

188
189
190
191
192
193
    const Tensor<KernelADataType> a_m_k_converted(a_m_k);
    const Tensor<KernelBDataType> b_k_n_converted(b_k_n);

    a_m_k_device_buf.ToDevice(a_m_k_converted.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n_converted.mData.data());
#else
194
195
196
    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
197
198
    DeviceMem c_m_n_device_ref_buf(sizeof(CDataType) *
                                   c_m_n_device_ref_result.mDesc.GetElementSpaceSize());
199

200
201
202
    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
#endif
203
    DeviceMem workspace;
204
205
206
207
208

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

209
210
211
212
213
214
215
216
217
218
    using BaseStreamK = ck::tensor_operation::device::DeviceGemmStreamK<ALayout,
                                                                        BLayout,
                                                                        CLayout,
                                                                        ADataType,
                                                                        BDataType,
                                                                        CDataType,
                                                                        AElementOp,
                                                                        BElementOp,
                                                                        CElementOp>;

219
    // do GEMM
220
221
222
223
224
225
226
227
    auto gemm      = DeviceGemmInstance{};
    auto invoker   = gemm.MakeInvoker();
    float ave_time = 0;

    if constexpr(std::is_same<ProblemType, ProblemSize>::value &&
                 !std::is_base_of<BaseStreamK, DeviceGemmInstance>::value)
    {
        auto argument = gemm.MakeArgument(
228
#ifdef BUILD_INT4_EXAMPLE
229
230
231
            static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
232
#else
233
234
235
            static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
236
#endif
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            M,
            N,
            K,
            StrideA,
            StrideB,
            StrideC,
            a_element_op,
            b_element_op,
            c_element_op);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return true;
        }

        ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
    }
    else if constexpr(std::is_same<ProblemType, ProblemSizeStreamK>::value &&
                      std::is_base_of<BaseStreamK, DeviceGemmInstance>::value)
258
    {
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        auto argument = gemm.MakeArgument(
#ifdef BUILD_INT4_EXAMPLE
            static_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#else
            static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#endif
            M,
            N,
            K,
            StrideA,
            StrideB,
            StrideC,
            a_element_op,
            b_element_op,
            c_element_op,
            problem_size.NumSKBlocks);

        if(!gemm.IsSupportedArgument(argument))
        {
            std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;

            return true;
        }

        std::size_t workspace_size = gemm.GetWorkSpaceSize(&argument);
        if(workspace_size != 0)
        {
            workspace.Realloc(workspace_size);
            gemm.SetWorkSpacePointer(&argument, workspace.GetDeviceBuffer());
        }

        ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});

#if 0
        // TODO!!!!!
        if(workspace_size != 0){
            float * ws_ptr = reinterpret_cast<float*>(malloc(workspace_size));
            size_t ws_dwords = workspace_size / sizeof(float);
            workspace.FromDevice(ws_ptr);

            for(size_t i = 0; i < ws_dwords; i++) {
                uint32_t rere = reinterpret_cast<uint32_t*>(ws_ptr)[i];
                printf("%4lu : %f(0x%08x)\n", i, ws_ptr[i], rere);
            }
            free(ws_ptr);
        }
#endif
310
    }
311
312
313
314
315
316
317
318
    else
    {
        // When the Problem Type and Problem Size does not fit.

        std::cerr << gemm.GetTypeString() << ": the instance does not support the problem config."
                  << std::endl;
        return true;
    }
319
320
321
322
323
324
325
326
327
328
329
330

    std::size_t flop = 2_uz * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

331
332
    bool pass = true;

333
334
    if(config.do_verification)
    {
335
        // CPU verification
336
337
338
339
340
341
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

342
        std::cout << "Running verification on CPU." << std::endl;
343
344
345
        ref_invoker.Run(ref_argument);

#ifdef BUILD_INT4_EXAMPLE
346
347
348
349
350
        Tensor<CDataType> c_m_n_device_result_converted(c_m_n_host_result.mDesc);

        c_m_n_device_buf.FromDevice(c_m_n_device_result_converted.mData.data());

        c_m_n_device_result = c_m_n_device_result_converted.CopyAsType<CDataType>();
351

352
        return ck::utils::check_err(c_m_n_device_result_converted, c_m_n_host_result);
353
#else
354
355
        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

356
357
358
359
360
        pass &= !ck::utils::check_err(c_m_n_device_result,
                                      c_m_n_host_result,
                                      "Error: Incorrect results!",
                                      get_rtol<CDataType>(),
                                      get_atol<CDataType>());
361
#endif
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

        // GPU verification
        auto ref_gemm_gpu    = ReferenceGemmInstanceGPU{};
        auto ref_invoker_gpu = ref_gemm_gpu.MakeInvoker();

        auto ref_argument_gpu = ref_gemm_gpu.MakeArgument(
            static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
            static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_m_n_device_ref_buf.GetDeviceBuffer()),
            M,
            N,
            K,
            a_element_op,
            b_element_op,
            c_element_op);

        std::cout << "Running verification on GPU." << std::endl;
        ref_invoker_gpu.Run(ref_argument_gpu, StreamConfig{});

        c_m_n_device_ref_buf.FromDevice(c_m_n_device_ref_result.mData.data());
        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

        pass &= !ck::utils::check_err(c_m_n_device_result,
                                      c_m_n_device_ref_result,
                                      "Error: Incorrect results!",
                                      get_rtol<CDataType>(),
                                      get_atol<CDataType>());
389
390
    }

391
    return !pass;
392
393
394
395
396
397
398
399
400
}

bool run_gemm_example(int argc, char* argv[])
{
    ProblemSize problem_size;
    ExecutionConfig config;

    return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}
401
402
403
404
405
406
407
408

bool run_gemm_streamk_example(int argc, char* argv[])
{
    ProblemSizeStreamK problem_size;
    ExecutionConfig config;

    return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}