topk_softmax.cpp 7.85 KB
Newer Older
carlushuang's avatar
carlushuang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.

#include <vector>
#include <iostream>
#include <numeric>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <time.h>
#include <unordered_set>

#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce.hpp"
#include "topk_softmax_api.hpp"

17
18
19
#ifndef TEST_TOPK_SOFTMAX_VERBOSE
#define TEST_TOPK_SOFTMAX_VERBOSE 1
#endif
carlushuang's avatar
carlushuang committed
20
21
22
23
24
25
26
27
28

template <typename T>
void dump_host_tensor_2d(const ck_tile::HostTensor<T>& x)
{
    auto len = x.get_lengths();
    assert(len.size() == 2);
    std::cout << "[";
    for(size_t i = 0; i < len[0]; i++)
    {
29
        std::cout << i << ": [";
carlushuang's avatar
carlushuang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        for(size_t j = 0; j < len[1]; j++)
        {
            if constexpr(std::is_same_v<T, ck_tile::fp16_t>)
            {
                auto v = ck_tile::type_convert<float>(x(std::vector<std::size_t>{i, j}));

                std::cout << v;
                if(j != len[1] - 1)
                    std::cout << ",";
            }
            else
            {
                std::cout << x(std::vector<std::size_t>{i, j}) << " ";
            }
        }
        std::cout << "]";
        if(i != len[0] - 1)
            std::cout << ",";
        else
            std::cout << "]";
        std::cout << std::endl;
    }
    std::cout << "--------------------" << std::endl;
}

// CPU reference
template <typename InputType, typename WeightType, typename IndexType = ck_tile::index_t>
auto reference_topk_softmax(const ck_tile::HostTensor<InputType>& x,
                            ck_tile::index_t k,
                            ck_tile::index_t dim = -1,
                            bool largest         = true,
                            bool sorted          = true)
{
    using namespace ck_tile;

    // dump_host_tensor_2d(x);

    auto y = reference_softmax<InputType, WeightType, WeightType>(x, dim);

    // dump_host_tensor_2d(y);
    auto [y_values, y_indices] = reference_topk(y, k, dim, largest, sorted);

    // dump_host_tensor_2d(y_values);
    // dump_host_tensor_2d(y_indices);

    return ck_tile::make_tuple(y_values, y_indices);
}

// different threshold for different dtype
template <typename DataType>
auto get_elimit(std::string /*init_method*/)
{
    double rtol = 1e-3;
    double atol = 1e-3;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
{
    double rtol = 1e-2;
    double atol = 1e-2;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::fp8_t>(std::string init_method)
{
    if(init_method == "ui" || init_method == "ni")
    {
        unsigned max_rounding_point_distance = 0;
        double atol                          = 2e-3;
        return ck_tile::make_tuple(max_rounding_point_distance, atol);
    }
    else
    {
        unsigned max_rounding_point_distance = 1;
        double atol                          = 0.0625;
        return ck_tile::make_tuple(max_rounding_point_distance, atol);
    }
}

auto create_args(int argc, char* argv[])
{
    ck_tile::ArgParser arg_parser;
    arg_parser.insert("v", "1", "weather do CPU validation or not")
        .insert(
            "input_prec", "fp16", "input data type. fp8/fp16/fp32 (representing 8/16/32 bit data)")
        .insert("weight_prec", "fp32", "weight data type")
        .insert("t", "32", "number of input tokens")
        .insert("e", "8", "number of experts")
        .insert("k", "2", "topk")
122
        .insert("seed", "-1", "seed to be used, -1 means random every time")
carlushuang's avatar
carlushuang committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        .insert("kname", "0", "t to 1 will print kernel name");

    bool result = arg_parser.parse(argc, argv);
    return std::make_tuple(result, arg_parser);
}

template <typename InputType, typename WeightType, typename IndexType = ck_tile::index_t>
bool test_topk_softmax(ck_tile::ArgParser args)
{
    int validate            = args.get_int("v");
    std::string input_prec  = args.get_str("input_prec");
    std::string weight_prec = args.get_str("weight_prec");
    int tokens              = args.get_int("t");
    int experts             = args.get_int("e");
    int topk                = args.get_int("k");
138
139
140
141
142
    int seed                = args.get_int("seed");
    if(seed < 0)
    {
        seed = std::time(nullptr);
    }
carlushuang's avatar
carlushuang committed
143
144
145
    // int kname = args.get_int("kname");
    // int warmup = args.get_int("warmup");
    // int repeat = args.get_int("repeat");
146
147
148
149
150
151
152
153

    if(topk > experts)
    {
#if TEST_TOPK_SOFTMAX_VERBOSE
        printf("topk:%d should smaller than (or equal to) experts:%d\n", topk, experts);
#endif
        return false;
    }
carlushuang's avatar
carlushuang committed
154
155
156
157
158
159

    // tokens already considered batch size
    ck_tile::HostTensor<InputType> x_host({tokens, experts});
    ck_tile::HostTensor<WeightType> value_host({tokens, topk});
    ck_tile::HostTensor<IndexType> index_host({tokens, topk});

160
161
162
163
164
165
166
167
168
169
170
171
172
    {
        // random require per-row unique
        auto rand_gen = ck_tile::FillUniformDistribution_Unique<InputType>{
            -5.f, 5.f, static_cast<uint32_t>(seed)};

        for(int i_t = 0; i_t < tokens; i_t++)
        {
            ck_tile::HostTensor<InputType> x_row({experts});
            rand_gen(x_row);
            std::copy(x_row.begin(), x_row.end(), x_host.begin() + i_t * experts);
            rand_gen.clear();
        }
    }
carlushuang's avatar
carlushuang committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    ck_tile::DeviceMem x_dev(x_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem value_dev(value_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem index_dev(index_host.get_element_space_size_in_bytes());

    x_dev.ToDevice(x_host.data());

    topk_softmax_trait trait = [&]() {
        topk_softmax_trait t_;
        t_.input_type  = input_prec;
        t_.weight_type = weight_prec;
        t_.experts     = experts;
        return t_;
    }();

    topk_softmax_kargs karg = [&]() {
        topk_softmax_kargs a_;
        a_.p_input     = x_dev.GetDeviceBuffer();
        a_.p_output    = value_dev.GetDeviceBuffer();
        a_.p_indices   = index_dev.GetDeviceBuffer();
        a_.num_rows    = tokens;
        a_.num_experts = experts;
        a_.topk        = topk;
        return a_;
    }();

199
200
201
202
203
204
205
206
207
208
209
210
#if TEST_TOPK_SOFTMAX_VERBOSE
    ck_tile::stream_config sc{nullptr, true};
    auto ms = topk_softmax(trait, karg, sc);
    printf("[%s|%s]tokens:%d, experts:%d, topk:%d, ms:%f, ",
           input_prec.c_str(),
           weight_prec.c_str(),
           tokens,
           experts,
           topk,
           ms);
    fflush(stdout);
#else
carlushuang's avatar
carlushuang committed
211
212
    ck_tile::stream_config sc{nullptr};
    topk_softmax(trait, karg, sc);
213
#endif
carlushuang's avatar
carlushuang committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

    value_dev.FromDevice(value_host.data());
    index_dev.FromDevice(index_host.data());

    bool rtn = true;
    if(validate)
    {
        ck_tile::HostTensor<WeightType> value_host_ref({tokens, topk});
        ck_tile::HostTensor<IndexType> index_host_ref({tokens, topk});

        auto [value_ref, index_ref] =
            reference_topk_softmax<InputType, WeightType, IndexType>(x_host, topk);

        auto [rtol, atol] = get_elimit<InputType>("");
        rtn &= ck_tile::check_err(
            value_host, value_ref, std::string("Value Error: Incorrect results!"), rtol, atol);
        rtn &= ck_tile::check_err(
            index_host, index_ref, std::string("Index Error: Incorrect results!"), rtol, atol);
    }
233
234
235
236
#if TEST_TOPK_SOFTMAX_VERBOSE
    printf("valid:%s\n", rtn ? "y" : "n");
    fflush(stdout);
#endif
carlushuang's avatar
carlushuang committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    return rtn;
}

int main(int argc, char** argv)
{
    auto [result, args] = create_args(argc, argv);
    if(!result)
        return -1;
    std::string input_prec  = args.get_str("input_prec");
    std::string weight_prec = args.get_str("weight_prec");

    bool r = true;
    if(input_prec.compare("fp16") == 0 && weight_prec.compare("fp32") == 0)
    {
        r &= test_topk_softmax<ck_tile::fp16_t, float, ck_tile::index_t>(args);
    }
    else if(input_prec.compare("bf16") == 0 && weight_prec.compare("fp32") == 0)
    {
        r &= test_topk_softmax<ck_tile::bf16_t, float, ck_tile::index_t>(args);
    }

    return r ? 0 : -1;
}