profile_grouped_conv_fwd.cpp 12.6 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
3
4
5
6
7
8

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

9
10
#include "profiler/profile_grouped_conv_fwd_impl.hpp"
#include "profiler_operation_registry.hpp"
11
12
13
14
15
16

namespace {

enum struct ConvLayout
{
    GNHWC_GKYXC_GNHWK, // 0
Chao Liu's avatar
Chao Liu committed
17
    NHWGC_GKYXC_NHWGK, // 1
18
19
20
21
22
23
24
25
};

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
26
    F8_F8_F8,       // 4
27
    BF8_BF8_F8,     // 5
28
    F8_BF8_F8,      // 6
29
    BF8_F8_F8,      // 7
30
31
};

32
33
34
35
36
37
enum struct IndexType
{
    INDEX_T,      // 0
    LONG_INDEX_T, // 1
};

38
39
40
#define OP_NAME "grouped_conv_fwd"
#define OP_DESC "Grouped Convolution Forward"

41
42
43
44
static void print_helper_msg()
{
    std::cout
        // clang-format off
45
        << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
46
47
48
        << "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
        << "                 1: Input fp16, Weight fp16, Output fp16\n"
        << "                 2: Input bf16, Weight bf16, Output bf16\n"
49
        << "                 3: Input int8, Weight int8, Output int8\n"
50
        << "                 4: Input fp8, Weight fp8, Output fp8\n"
51
        << "                 5: Input bf8, Weight bf8, Output fp8\n"
52
53
        << "                 6: Input fp8, Weight bf8, Output fp8\n"
        << "                 7: Input bf8, Weight fp8, Output fp8)\n"
54
55
        << "arg3: indexing data type (0: 32-bit, 1: 64-bit)\n"
        << "arg4: tensor layout (0: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, N, Ho, Wo, K]\n"
Chao Liu's avatar
Chao Liu committed
56
        << "                     1: Input[N, Hi, Wi, G, C], Weight[G, K, Y, X, C], Output[N, Ho, Wo, G, K])\n"
57
58
59
60
        << "arg5: verification (0: no, 1: yes)\n"
        << "arg6: initialization (0: no init, 1: integer value, 2: decimal value)\n"
        << "arg7: print tensor value (0: no; 1: yes)\n"
        << "arg8: time kernel (0: no, 1: yes)\n"
61
62
63
64
65
66
67
68
69
        << ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
    // clang-format on
}

} // namespace

int profile_grouped_conv_fwd(int argc, char* argv[])
{
    // 8 for control, 1 for num_dim_spatial
70
    if(argc < 10)
71
72
73
74
75
76
77
    {
        print_helper_msg();
        return 1;
    }

    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<ConvLayout>(std::stoi(argv[3]));
78
79
80
81
82
83
84
85
86
    const auto index_type      = static_cast<IndexType>(std::stoi(argv[4]));
    const bool do_verification = std::stoi(argv[5]);
    const int init_method      = std::stoi(argv[6]);
    const bool do_log          = std::stoi(argv[7]);
    const bool time_kernel     = std::stoi(argv[8]);
    const int num_dim_spatial  = std::stoi(argv[9]);

    // 9 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
    if(argc != 9 + 1 + 4 + 6 * num_dim_spatial)
87
88
89
90
91
    {
        print_helper_msg();
        return 1;
    }

92
    const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 10, argv);
93
94
95
96
97

    using F32  = float;
    using F16  = ck::half_t;
    using BF16 = ck::bhalf_t;
    using INT8 = int8_t;
98
    using F8   = ck::f8_t;
99
    using BF8  = ck::bf8_t;
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    //
    using GNWC   = ck::tensor_layout::convolution::GNWC;
    using GNHWC  = ck::tensor_layout::convolution::GNHWC;
    using GNDHWC = ck::tensor_layout::convolution::GNDHWC;

    using GKXC   = ck::tensor_layout::convolution::GKXC;
    using GKYXC  = ck::tensor_layout::convolution::GKYXC;
    using GKZYXC = ck::tensor_layout::convolution::GKZYXC;

    using GNWK   = ck::tensor_layout::convolution::GNWK;
    using GNHWK  = ck::tensor_layout::convolution::GNHWK;
    using GNDHWK = ck::tensor_layout::convolution::GNDHWK;

    //
    using NWGC   = ck::tensor_layout::convolution::NWGC;
    using NHWGC  = ck::tensor_layout::convolution::NHWGC;
    using NDHWGC = ck::tensor_layout::convolution::NDHWGC;

    using NWGK   = ck::tensor_layout::convolution::NWGK;
    using NHWGK  = ck::tensor_layout::convolution::NHWGK;
    using NDHWGK = ck::tensor_layout::convolution::NDHWGK;

    constexpr auto I1 = ck::Number<1>{};
    constexpr auto I2 = ck::Number<2>{};
    constexpr auto I3 = ck::Number<3>{};

    auto profile = [&](auto num_dim_spatial_tmp,
                       auto in_layout,
                       auto wei_layout,
                       auto out_layout,
                       auto in_type,
                       auto wei_type,
133
134
135
                       auto out_type,
                       auto a_compute_type,
                       auto b_compute_type) {
136
137
138
139
140
141
142
143
144
145
        constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;

        using InLayout  = decltype(in_layout);
        using WeiLayout = decltype(wei_layout);
        using OutLayout = decltype(out_layout);

        using InDataType  = decltype(in_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

146
147
148
        using AComputeType = decltype(a_compute_type);
        using BComputeType = decltype(b_compute_type);

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        if(index_type == IndexType::INDEX_T)
        {
            bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
                                                                    InLayout,
                                                                    WeiLayout,
                                                                    OutLayout,
                                                                    InDataType,
                                                                    WeiDataType,
                                                                    OutDataType,
                                                                    AComputeType,
                                                                    BComputeType,
                                                                    ck::index_t>(
                do_verification, init_method, do_log, time_kernel, params);

            return pass ? 0 : 1;
        }
        else if(index_type == IndexType::LONG_INDEX_T)
        {
            bool pass = ck::profiler::profile_grouped_conv_fwd_impl<NDimSpatial,
                                                                    InLayout,
                                                                    WeiLayout,
                                                                    OutLayout,
                                                                    InDataType,
                                                                    WeiDataType,
                                                                    OutDataType,
                                                                    AComputeType,
                                                                    BComputeType,
                                                                    ck::long_index_t>(
                do_verification, init_method, do_log, time_kernel, params);

            return pass ? 0 : 1;
        }
        else
        {
            std::cout << "this indexing data type is not implemented" << std::endl;
            return 1;
        }
186
187
188
189
190
191
192
    };

    // GNHWC_GKYXC_GNHWK
    if(num_dim_spatial == 1 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
193
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
194
195
196
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
197
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
198
199
200
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
201
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
202
203
204
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
205
            return profile(I1, GNWC{}, GKXC{}, GNWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
206
207
208
209
210
211
        }
    }
    else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
212
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
213
214
215
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
216
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
217
218
219
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
220
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
221
222
223
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
224
            return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
225
226
227
228
229
230
        }
    }
    else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
231
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
232
233
234
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
235
            return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
236
237
238
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
239
240
            return profile(
                I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
241
242
243
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
244
245
            return profile(
                I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
246
247
        }
    }
Chao Liu's avatar
Chao Liu committed
248
249
    // NHWGC_GKYXC_NHWGK
    else if(num_dim_spatial == 1 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
250
251
252
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
253
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
254
255
256
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
257
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
258
259
260
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
261
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
262
263
264
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
265
            return profile(I1, NWGC{}, GKXC{}, NWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
266
267
        }
    }
Chao Liu's avatar
Chao Liu committed
268
    else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
269
270
271
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
272
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
273
274
275
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
276
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
277
278
279
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
280
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
281
282
283
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
284
            return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
285
286
        }
    }
Chao Liu's avatar
Chao Liu committed
287
    else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
288
289
290
    {
        if(data_type == ConvDataType::F32_F32_F32)
        {
291
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
292
293
294
        }
        else if(data_type == ConvDataType::F16_F16_F16)
        {
295
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
296
297
298
        }
        else if(data_type == ConvDataType::BF16_BF16_BF16)
        {
299
300
            return profile(
                I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, BF16{}, BF16{}, BF16{}, BF16{});
301
302
303
        }
        else if(data_type == ConvDataType::INT8_INT8_INT8)
        {
304
305
            return profile(
                I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, INT8{}, INT8{}, INT8{}, INT8{}, INT8{});
306
        }
307
308
        else if(data_type == ConvDataType::F8_F8_F8)
        {
309
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, F8{}, F8{}, F8{}, F8{});
310
        }
311
312
        else if(data_type == ConvDataType::BF8_BF8_F8)
        {
313
314
315
316
317
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF8{}, BF8{}, F8{}, BF8{}, BF8{});
        }
        else if(data_type == ConvDataType::F8_BF8_F8)
        {
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F8{}, BF8{}, F8{}, F8{}, BF8{});
318
        }
319
320
321
322
        else if(data_type == ConvDataType::BF8_F8_F8)
        {
            return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF8{}, F8{}, F8{}, BF8{}, F8{});
        }
323
324
325
326
327
328
    }

    std::cout << "this data_type & layout is not implemented" << std::endl;

    return 1;
}
329
330

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_conv_fwd);