test_wrapper_gemm_xdl.cpp 17.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.

#include <numeric>
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <gtest/gtest.h>

#include "ck/library/utility/host_tensor.hpp"

#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"

#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/wrapper/layout.hpp"
#include "ck/wrapper/tensor.hpp"
#include "ck/wrapper/operations/copy.hpp"
#include "ck/wrapper/operations/gemm.hpp"
#include "ck/wrapper/utils/kernel_utils.hpp"

template <typename DataType>
void CheckResult(const std::vector<DataType>& a_data,
                 const std::vector<DataType>& b_data,
                 std::vector<DataType>& c_m_n_device_result,
                 const ck::index_t M,
                 const ck::index_t N,
                 const ck::index_t K)
{
    using PassThrough           = ck::tensor_operation::element_wise::PassThrough;
    using ReferenceGemmInstance = ck::tensor_operation::host::
        ReferenceGemm<DataType, DataType, DataType, float, PassThrough, PassThrough, PassThrough>;

    Tensor<DataType> a_m_k(HostTensorDescriptor({M, K}));
    Tensor<DataType> b_k_n(HostTensorDescriptor({K, N}, {1, K}));
    Tensor<DataType> c_m_n_host_result(HostTensorDescriptor({M, N}));

    a_m_k.mData = a_data;
    b_k_n.mData = b_data;

    auto ref_op       = ReferenceGemmInstance{};
    auto ref_invoker  = ref_op.MakeInvoker();
    auto ref_argument = ref_op.MakeArgument(
        a_m_k, b_k_n, c_m_n_host_result, PassThrough{}, PassThrough{}, PassThrough{});

    ref_invoker.Run(ref_argument);
    EXPECT_TRUE(ck::utils::check_err(c_m_n_device_result, c_m_n_host_result.mData));
}

template <bool DoPad, typename Layout, typename PaddingDims>
__device__ auto ApplyPadding(const Layout& layout, const PaddingDims& padding_dims)
{
    if constexpr(DoPad)
    {
        return ck::wrapper::pad(layout, padding_dims);
    }
    else
    {
        return layout;
    }
}

template <typename DataType,
          typename GemmTraits,
          ck::index_t scalar_per_vector,
          typename BlockShape,
          typename ThreadLayout,
          bool DoPadding>
__global__ void __CK_WRAPPER_LAUNCH_BOUNDS__ DeviceGemm(const void* p_a,
                                                        const void* p_b,
                                                        void* p_c,
                                                        const ck::index_t M,
                                                        const ck::index_t N,
                                                        const ck::index_t K,
                                                        const BlockShape tile_shape,
                                                        const ThreadLayout thread_layout)
{
    constexpr auto MPerBlock  = ck::wrapper::size<0>(tile_shape);
    constexpr auto NPerBlock  = ck::wrapper::size<1>(tile_shape);
    constexpr auto KPerBlock  = ck::wrapper::size<2>(tile_shape);
    constexpr auto K1         = GemmTraits::K1;
    constexpr auto K0PerBlock = KPerBlock / K1;
    const auto K0             = ck::math::integer_divide_ceil(K, K1);

    const auto tile_shape_k0_m_n_k1 = ck::make_tuple(K0PerBlock, MPerBlock, NPerBlock, K1);

    const auto a_global_layout =
        ck::wrapper::make_layout(ck::make_tuple(M, K), ck::make_tuple(K, 1));
    const auto b_global_layout =
        ck::wrapper::make_layout(ck::make_tuple(N, K), ck::make_tuple(K, 1));
    const auto c_global_layout =
        ck::wrapper::make_layout(ck::make_tuple(M, N), ck::make_tuple(N, 1));

    auto a_padded_global_layout =
        ApplyPadding<DoPadding>(a_global_layout, ck::make_tuple(MPerBlock, KPerBlock));
    auto b_padded_global_layout =
        ApplyPadding<DoPadding>(b_global_layout, ck::make_tuple(NPerBlock, KPerBlock));
    auto c_padded_global_layout =
        ApplyPadding<DoPadding>(c_global_layout, ck::make_tuple(MPerBlock, NPerBlock));

    // Reshape from M,K to K0,M,K1
    const auto reshaped_dims_idxs =
        ck::make_tuple(ck::Number<1>{}, ck::make_tuple(ck::Number<0>{}, ck::Number<2>{}));
    auto a_padded_unmerged_global_layout =
        ck::wrapper::unmerge<1>(a_padded_global_layout, ck::make_tuple(K0, K1), reshaped_dims_idxs);
    auto b_padded_unmerged_global_layout =
        ck::wrapper::unmerge<1>(b_padded_global_layout, ck::make_tuple(K0, K1), reshaped_dims_idxs);

    auto a_global_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Global>(
        static_cast<const DataType*>(p_a), a_padded_unmerged_global_layout);
    auto b_global_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Global>(
        static_cast<const DataType*>(p_b), b_padded_unmerged_global_layout);
    auto c_global_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Global>(
        static_cast<DataType*>(p_c), c_padded_global_layout);

    // Add extra M and N
    constexpr auto a_tile_layout = ck::wrapper::make_layout(
        ck::make_tuple(K0PerBlock, MPerBlock, K1),
        ck::make_tuple((MPerBlock + ck::Number<1>{}) * K1, K1, ck::Number<1>{}));
    constexpr auto b_tile_layout = ck::wrapper::make_layout(
        ck::make_tuple(K0PerBlock, NPerBlock, K1),
        ck::make_tuple((NPerBlock + ck::Number<1>{}) * K1, K1, ck::Number<1>{}));

    __shared__ DataType lds_a[ck::wrapper::size(a_tile_layout) + NPerBlock];
    __shared__ DataType lds_b[ck::wrapper::size(b_tile_layout) + NPerBlock];

    auto a_lds_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Lds>(
        static_cast<DataType*>(lds_a), a_tile_layout);
    auto b_lds_tensor = ck::wrapper::make_tensor<ck::wrapper::MemoryTypeEnum::Lds>(
        static_cast<DataType*>(lds_b), b_tile_layout);

    const auto block_idxs            = ck::make_tuple(ck::wrapper::slice(),
                                           static_cast<ck::index_t>(blockIdx.x),
                                           static_cast<ck::index_t>(blockIdx.y),
                                           ck::wrapper::slice());
    using DimAccessOrder             = ck::Tuple<ck::Number<1>, ck::Number<0>, ck::Number<2>>;
    constexpr ck::index_t vector_dim = 2;

    auto c_global_local_tile =
        ck::wrapper::make_local_tile(c_global_tensor,
                                     tile_shape_k0_m_n_k1,
                                     block_idxs,
                                     make_tuple(ck::wrapper::slice(K0PerBlock),
                                                ck::Number<1>{},
                                                ck::Number<1>{},
                                                ck::wrapper::slice(K1)));
    auto c_global_local_partition =
        ck::wrapper::make_blockwise_gemm_xdl_c_local_partition<DataType,
                                                               decltype(a_tile_layout),
                                                               decltype(b_tile_layout),
                                                               ck::wrapper::size(thread_layout),
                                                               GemmTraits>(c_global_local_tile);
    auto c_vgpr_reg = ck::wrapper::make_blockwise_gemm_xdl_c_vgpr<DataType,
                                                                  decltype(a_tile_layout),
                                                                  decltype(b_tile_layout),
                                                                  ck::wrapper::size(thread_layout),
                                                                  GemmTraits>();
    ck::wrapper::clear(c_vgpr_reg);

    auto a_lds_tensor_local_partition =
        ck::wrapper::make_local_partition(a_lds_tensor, thread_layout, threadIdx.x);
    auto b_lds_tensor_local_partition =
        ck::wrapper::make_local_partition(b_lds_tensor, thread_layout, threadIdx.x);

    auto make_global_partition = [&](auto tensor, auto projection, ck::index_t i) {
        const auto k_slice =
            ck::make_tuple(ck::wrapper::slice(i * K0PerBlock, (i + 1) * K0PerBlock),
                           ck::wrapper::slice(),
                           ck::wrapper::slice());
        auto local_tile = ck::wrapper::make_local_tile(
            tensor(k_slice), tile_shape_k0_m_n_k1, block_idxs, projection);
        return ck::wrapper::make_local_partition(local_tile, thread_layout, threadIdx.x);
    };

    auto a_global_local_partition = make_global_partition(
        a_global_tensor,
        make_tuple(ck::Number<1>{}, ck::Number<1>{}, ck::wrapper::slice(N), ck::Number<1>{}),
        0);
    auto b_global_local_partition = make_global_partition(
        b_global_tensor,
        make_tuple(ck::Number<1>{}, ck::wrapper::slice(M), ck::Number<1>{}, ck::Number<1>{}),
        0);

    // (row-major vgpr layout)
    auto a_vgpr_tensor =
        ck::wrapper::make_register_tensor<ck::wrapper::MemoryTypeEnum::Vgpr, DataType>(
            ck::wrapper::make_layout(
                shape(a_global_local_partition),
                ck::make_tuple(ck::wrapper::size<1>(a_global_local_partition) *
                                   ck::wrapper::size<2>(a_global_local_partition),
                               ck::wrapper::size<2>(a_global_local_partition),
                               ck::Number<1>{})));
    auto b_vgpr_tensor =
        ck::wrapper::make_register_tensor<ck::wrapper::MemoryTypeEnum::Vgpr, DataType>(
            ck::wrapper::make_layout(
                shape(b_global_local_partition),
                ck::make_tuple(ck::wrapper::size<1>(a_global_local_partition) *
                                   ck::wrapper::size<2>(a_global_local_partition),
                               ck::wrapper::size<2>(a_global_local_partition),
                               ck::Number<1>{})));

    ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(a_global_local_partition,
                                                                     a_vgpr_tensor);
    ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(b_global_local_partition,
                                                                     b_vgpr_tensor);
    ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(a_vgpr_tensor,
                                                                     a_lds_tensor_local_partition);
    ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(b_vgpr_tensor,
                                                                     b_lds_tensor_local_partition);

    const ck::index_t num_loop =
        __builtin_amdgcn_readfirstlane(ck::math::integer_divide_ceil(K, KPerBlock));
    if(num_loop > 1)
    {
        ck::index_t i = 0;
        do
        {
            auto a_global_local_partition_i = make_global_partition(
                a_global_tensor,
                make_tuple(
                    ck::Number<1>{}, ck::Number<1>{}, ck::wrapper::slice(N), ck::Number<1>{}),
                i + 1);
            auto b_global_local_partition_i = make_global_partition(
                b_global_tensor,
                make_tuple(
                    ck::Number<1>{}, ck::wrapper::slice(M), ck::Number<1>{}, ck::Number<1>{}),
                i + 1);

            ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(
                a_global_local_partition_i, a_vgpr_tensor);

            ck::block_sync_lds();
            ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(
                b_global_local_partition_i, b_vgpr_tensor);

            ck::wrapper::blockwise_gemm_xdl<DataType, ck::wrapper::size(thread_layout), GemmTraits>(
                a_lds_tensor, b_lds_tensor, c_vgpr_reg);

            ck::block_sync_lds();
            ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(
                a_vgpr_tensor, a_lds_tensor_local_partition);
            ck::wrapper::copy<DimAccessOrder, vector_dim, scalar_per_vector>(
                b_vgpr_tensor, b_lds_tensor_local_partition);

            ++i;
        } while(i < (num_loop - 1));
    }
    ck::block_sync_lds();
    ck::wrapper::blockwise_gemm_xdl<DataType, ck::wrapper::size(thread_layout), GemmTraits>(
        a_lds_tensor, b_lds_tensor, c_vgpr_reg);

    ck::wrapper::copy(c_vgpr_reg, c_global_local_partition);
}

template <typename DataType,
          typename GemmTraits,
          ck::index_t scalar_per_vector,
          bool DoPadding,
          typename BlockShape,
          typename ThreadLayout>
void PerformGemm(const ck::index_t M,
                 const ck::index_t N,
                 const ck::index_t K,
                 const BlockShape& tile_shape,
                 const ThreadLayout& thread_layout)
{
    // Global memory buffers
    DeviceMem a_mem(M * K * sizeof(DataType));
    DeviceMem b_mem(K * N * sizeof(DataType));
    DeviceMem c_mem(M * N * sizeof(DataType));

    std::vector<DataType> a_data(M * K);
    std::vector<DataType> b_data(K * N);
    ck::utils::FillUniformDistributionIntegerValue<DataType>{-5.f, 5.f}(a_data);
    ck::utils::FillUniformDistributionIntegerValue<DataType>{-5.f, 5.f}(b_data);

    a_mem.ToDevice(a_data.data());
    b_mem.ToDevice(b_data.data());
    c_mem.SetZero();

    const ck::index_t grid_size_x =
        ck::math::integer_divide_ceil(M, ck::wrapper::size<0>(tile_shape));
    const ck::index_t grid_size_y =
        ck::math::integer_divide_ceil(N, ck::wrapper::size<1>(tile_shape));

    const auto kernel =
        DeviceGemm<DataType, GemmTraits, scalar_per_vector, BlockShape, ThreadLayout, DoPadding>;
    const float avg_time = launch_and_time_kernel(StreamConfig{nullptr, true},
                                                  kernel,
                                                  dim3(grid_size_x, grid_size_y, 1),
                                                  dim3(ck::wrapper::size(thread_layout)),
                                                  0,
                                                  a_mem.GetDeviceBuffer(),
                                                  b_mem.GetDeviceBuffer(),
                                                  c_mem.GetDeviceBuffer(),
                                                  M,
                                                  N,
                                                  K,
                                                  tile_shape,
                                                  thread_layout);
    std::size_t flop     = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(DataType) * M * K + sizeof(DataType) * K * N + sizeof(DataType) * M * N;

    float tflops     = static_cast<float>(flop) / 1.E9 / avg_time;
    float gb_per_sec = num_btype / 1.E6 / avg_time;

    std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
              << gb_per_sec << " GB/s, " << std::endl;

    std::vector<DataType> c_data(M * N);
    c_mem.FromDevice(c_data.data());
    CheckResult<DataType>(a_data, b_data, c_data, M, N, K);
}

TEST(TestGemm, Float)
{
    using DataType = float;
    // (dim1, dim2, dim0 thread layout)
    const auto thread_layout =
        ck::wrapper::make_layout(ck::make_tuple(ck::Number<4>{}, ck::Number<64>{}, ck::Number<1>{}),
                                 ck::make_tuple(ck::Number<1>{}, ck::Number<4>{}, ck::Number<1>{}));
    const auto tile_shape = ck::make_tuple(ck::Number<128>{}, ck::Number<128>{}, ck::Number<16>{});
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 4, false>(
        512, 512, 128, tile_shape, thread_layout);
    // Irregular case
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_4K1, 1, true>(
        129, 129, 67, tile_shape, thread_layout);
}

TEST(TestGemm, Int8)
{
    using DataType = int8_t;
    const auto thread_layout =
        ck::wrapper::make_layout(ck::make_tuple(ck::Number<4>{}, ck::Number<64>{}, ck::Number<1>{}),
                                 ck::make_tuple(ck::Number<1>{}, ck::Number<4>{}, ck::Number<1>{}));
    const auto tile_shape = ck::make_tuple(ck::Number<128>{}, ck::Number<128>{}, ck::Number<64>{});
    PerformGemm<DataType,
                ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_16K1,
                16,
                false>(512, 512, 128, tile_shape, thread_layout);
    // Irregular case
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_16K1, 1, true>(
        129, 129, 67, tile_shape, thread_layout);
}

TEST(TestGemm, Half)
{
    using DataType = ck::half_t;
    const auto thread_layout =
        ck::wrapper::make_layout(ck::make_tuple(ck::Number<4>{}, ck::Number<64>{}, ck::Number<1>{}),
                                 ck::make_tuple(ck::Number<1>{}, ck::Number<4>{}, ck::Number<1>{}));
    const auto tile_shape = ck::make_tuple(ck::Number<128>{}, ck::Number<128>{}, ck::Number<32>{});
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_8K1, 8, false>(
        512, 512, 128, tile_shape, thread_layout);
    // Irregular case
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_2x2XdlPerWave_8K1, 1, true>(
        129, 129, 67, tile_shape, thread_layout);
}

TEST(TestGemm, Float_2x4_4x2_XdlPerWave)
{
    using DataType = float;
    const auto thread_layout =
        ck::wrapper::make_layout(ck::make_tuple(ck::Number<4>{}, ck::Number<64>{}, ck::Number<1>{}),
                                 ck::make_tuple(ck::Number<1>{}, ck::Number<4>{}, ck::Number<1>{}));
    const auto tile_shape = ck::make_tuple(ck::Number<256>{}, ck::Number<128>{}, ck::Number<16>{});
    PerformGemm<DataType, ck::wrapper::BlockwisGemmXdlTraits_32x32Xdl_4x2XdlPerWave_4K1, 4, false>(
        512, 512, 128, tile_shape, thread_layout);
}