elementwise_permute.cpp 4.77 KB
Newer Older
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.

arai713's avatar
arai713 committed
4
5
6
7
8
9
10
#include <iostream>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_impl.hpp"

11
12
#include "ck/library/reference_tensor_operation/cpu/reference_elementwise.hpp"

arai713's avatar
arai713 committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"

using F16 = ck::half_t;
using F32 = float;

using ADataType = F16;
using BDataType = F16;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using DeviceElementwisePermuteInstance =
    ck::tensor_operation::device::DeviceElementwiseImpl<ck::Tuple<ADataType>, // InDataTypeTuple
                                                        ck::Tuple<BDataType>, // OutDataTypeTuple
                                                        PassThrough,          // ElementwiseOp
                                                        5,                    // NumDim
                                                        8,                    // MPerThread
                                                        ck::Sequence<1>,  // InScalarPerVectorSeq
                                                        ck::Sequence<1>>; // OutScalarPerVectorSeq

int main()
{
    bool do_verification = true;
    bool time_kernel     = true;

    std::vector<std::size_t> ncdhw = {16, 8, 8, 8, 8};
    std::vector<std::size_t> ndhwc = {16, 8, 8, 8, 8};
    std::array<ck::index_t, 5> ab_lengths;

    std::array<ck::index_t, 5> a_strides = {
        static_cast<int>(ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]),
        static_cast<int>(ncdhw[3] * ncdhw[4]),
        static_cast<int>(ncdhw[4]),
        1,
        static_cast<int>(ncdhw[2] * ncdhw[3] * ncdhw[4])};

    std::array<ck::index_t, 5> b_strides = {
        static_cast<int>(ndhwc[1] * ndhwc[2] * ndhwc[3] * ndhwc[4]),
        static_cast<int>(ndhwc[2] * ndhwc[3] * ndhwc[4]),
        static_cast<int>(ndhwc[3] * ndhwc[4]),
        static_cast<int>(ndhwc[4]),
        1};
    ck::ranges::copy(ncdhw, ab_lengths.begin());

59
60
61
62
63
64
65
66
67
68
69
70
71
72
    std::array<Tensor<ADataType>, 1> as = {Tensor<ADataType>(ab_lengths, a_strides)};
    Tensor<ADataType>& a                = as[0];
    Tensor<BDataType> b(ab_lengths, b_strides);

    a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});

    DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());

    a_device_buf.ToDevice(a.mData.data());

    std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
    std::array<void*, 1> output      = {b_device_buf.GetDeviceBuffer()};

arai713's avatar
arai713 committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    auto broadcastPermute = DeviceElementwisePermuteInstance{};
    auto argument         = broadcastPermute.MakeArgumentPointer(
        ab_lengths, {a_strides}, {b_strides}, input, output, PassThrough{});

    if(!broadcastPermute.IsSupportedArgument(argument.get()))
    {
        throw std::runtime_error(
            "The runtime parameters seems not supported by the device instance, exiting!");
    };

    std::cout << "A (ncdhw): " << a.mDesc << std::endl;
    std::cout << "B (ndhwc): " << b.mDesc << std::endl;

    auto broadcastPermute_invoker_ptr = broadcastPermute.MakeInvokerPointer();
    float ave_time =
        broadcastPermute_invoker_ptr->Run(argument.get(), StreamConfig{nullptr, time_kernel});
    std::size_t flop = std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4];

    std::size_t num_btype =
        sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
        sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    bool pass = true;

    if(do_verification)
    {
106
107
108
109
110
        Tensor<BDataType> host_b(ab_lengths, b_strides);
        using ReferenceElementwiseInstance =
            ck::tensor_operation::host::ReferenceElementwise<1, ADataType, BDataType, PassThrough>;
        auto ref_elementwise = ReferenceElementwiseInstance{};
        auto ref_invoker     = ref_elementwise.MakeInvoker();
arai713's avatar
arai713 committed
111

112
113
114
115
        auto ref_argument = ref_elementwise.MakeArgument(as, host_b, PassThrough{});
        ref_invoker.Run(ref_argument);

        b_device_buf.FromDevice(b.mData.data());
arai713's avatar
arai713 committed
116
117
118
119
120
121
        pass &=
            ck::utils::check_err(b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);
    }

    return pass ? 0 : 1;
}