tile_reduce.cpp 6.51 KB
Newer Older
carlushuang's avatar
carlushuang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.

#include <vector>
#include <iostream>
#include <numeric>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <time.h>
#include <unordered_set>

#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce.hpp"

#ifndef TEST_TILE_REDUCE_VERBOSE
#define TEST_TILE_REDUCE_VERBOSE 0
#endif

#define HIP_CALL(call)                                                              \
    do                                                                              \
    {                                                                               \
        hipError_t err = call;                                                      \
        if(err != hipSuccess)                                                       \
        {                                                                           \
            printf("[hiperror](%d) fail to call %s", static_cast<int>(err), #call); \
            exit(0);                                                                \
        }                                                                           \
    } while(0)

#define BLOCK_SIZE 256

template <int Rows, int Cols, typename DataType>
__global__ void reduce_row(DataType* p_src, DataType* p_dst)
{
    using namespace ck_tile;

    // some constexpr vars
    constexpr index_t vec = 16 / sizeof(DataType);
    static_assert(Cols % vec == 0);
    constexpr index_t col_lanes = Cols / vec;
    constexpr index_t warp_size = ck_tile::get_warp_size();
    static_assert(warp_size % col_lanes == 0);
    constexpr index_t row_lanes = warp_size / col_lanes;
    constexpr index_t num_warps = BLOCK_SIZE / warp_size;
    static_assert(Rows % (num_warps * row_lanes) == 0);
    constexpr index_t row_repeat = Rows / (num_warps * row_lanes);

    auto src_tile = [&]() {
        constexpr auto src_dist = make_static_tile_distribution(
            tile_distribution_encoding<
                sequence<1>,
                tuple<sequence<row_repeat, num_warps, row_lanes>, sequence<col_lanes, vec>>,
                tuple<sequence<1>, sequence<1, 2>>,
                tuple<sequence<1>, sequence<2, 0>>,
                sequence<1, 2>,
                sequence<0, 1>>{});

        auto src_view =
            make_naive_tensor_view<address_space_enum::global>(p_src,
                                                               make_tuple(Rows, Cols),
                                                               make_tuple(Cols, 1),
                                                               number<vec>{}, // alignement
                                                               number<1>{});
        return make_tile_window(
            src_view, make_tuple(number<Rows>{}, number<Cols>{}), {0, 0}, src_dist);
    }();

    constexpr auto dst_dist = make_static_tile_distribution(
        tile_distribution_encoding<
            sequence<col_lanes>, // -> replicate here, hence we can figure out the offset
            tuple<sequence<row_repeat, num_warps, row_lanes>, sequence<1> /* only 1 per row*/>,
            tuple<sequence<1>, sequence<1, 0>>,
            tuple<sequence<1>, sequence<2, 0>>,
            sequence<1, 2>,
            sequence<0, 0>>{});

    auto dst_tile = [&]() {
        auto dst_view =
            make_naive_tensor_view<address_space_enum::global>(p_dst,
                                                               make_tuple(Rows, 1),
                                                               make_tuple(1, 1),
                                                               number<1>{}, // alignement
                                                               number<1>{});
        return make_tile_window(
            dst_view, make_tuple(number<Rows>{}, number<1>{}), {0, 0}, dst_dist);
    }();

    auto data = load_tile(src_tile);

    const auto f_max = [](auto e0, auto e1) { return max(e0, e1); };

    // Note: the return type will fill the replicate dim
    //       usually is 2d. This is for the next block_tile_reduce_sync()
    //       in order to do further reduce.
    auto r =
        block_tile_reduce<DataType>(data, sequence<1>{}, f_max, -numeric<DataType>::infinity());

    // r.foo();

    // further reduce cross thread
    block_tile_reduce_sync(r, f_max, bool_constant<false>{});

    if(threadIdx.x % col_lanes == 0)
    {
        auto o                = make_static_distributed_tensor<DataType>(dst_dist);
        o.get_thread_buffer() = r.get_thread_buffer();
        store_tile(dst_tile, o);
    }
}

template <int Rows, int Cols, typename DataType>
int test_tile_reduce()
{
    std::srand(std::time(nullptr));
    DataType* src = reinterpret_cast<DataType*>(malloc(Rows * Cols * sizeof(DataType)));
    DataType* dst = reinterpret_cast<DataType*>(malloc(Rows * sizeof(DataType)));

    // const auto f_max = [](auto e0, auto e1) { return max(e0, e1); };

    for(auto i = 0; i < Rows * Cols; i++)
    {
        float v = static_cast<float>(std::rand() % 2000 - 1000) / 1000.f;
        src[i]  = ck_tile::type_convert<DataType>(v);
    }

    void* dev_src;
    void* dev_dst;
    HIP_CALL(hipMalloc(&dev_src, Rows * Cols * sizeof(DataType)));
    HIP_CALL(hipMalloc(&dev_dst, Rows * sizeof(DataType)));

    HIP_CALL(hipMemcpy(dev_src, src, Rows * Cols * sizeof(DataType), hipMemcpyHostToDevice));

    constexpr int bdim = BLOCK_SIZE;
    int gdim           = 1;
    reduce_row<Rows, Cols, DataType><<<gdim, bdim>>>(reinterpret_cast<DataType*>(dev_src),
                                                     reinterpret_cast<DataType*>(dev_dst));

    HIP_CALL(hipMemcpy(dst, dev_dst, Rows * sizeof(DataType), hipMemcpyDeviceToHost));

    int err_cnt = 0;

    for(int i_r = 0; i_r < Rows; i_r++)
    {
        auto row_max = -ck_tile::numeric<float>::infinity();
        for(int i_c = 0; i_c < Cols; i_c++)
        {
            int idx = i_r * Cols + i_c;
            float v = ck_tile::type_convert<float>(src[idx]);
            row_max = row_max > v ? row_max : v;
#if TEST_TILE_REDUCE_VERBOSE
            printf("%.3f ", v);
#endif
        }
        {
            uint32_t ref = ck_tile::bit_cast<uint32_t>(row_max);
            uint32_t out = ck_tile::bit_cast<uint32_t>(dst[i_r]);
            if(ref != out)
                err_cnt++;
        }
#if TEST_TILE_REDUCE_VERBOSE
        printf(" -> %.3f (%.3f)\n", dst[i_r], row_max);
#endif
    }
#if TEST_TILE_REDUCE_VERBOSE
    printf("\n");
#endif

    free(src);
    free(dst);
    return err_cnt == 0 ? 0 : -1;
}

int main()
{
    int r = test_tile_reduce<32, 64, float>();
    return r;
}