flush_cache.hpp 11.9 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <hip/hip_runtime.h>
#include <set>
8
#include <vector>
ltqin's avatar
ltqin committed
9
10
11
12
13
14
15
16

#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/utility/flush_icache.hpp"
namespace ck {
namespace utility {

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
template <typename Argument, typename DsDataType>
struct RotatingMemWrapperMultiD
{
    static constexpr index_t NumDs = DsDataType::Size();

    using ADataType     = decltype(Argument::p_a_grid);
    using BDataType     = decltype(Argument::p_b_grid);
    using DsGridPointer = decltype(Argument::p_ds_grid);

    RotatingMemWrapperMultiD() = delete;
    RotatingMemWrapperMultiD(Argument& arg_,
                             std::size_t rotating_count_,
                             std::size_t size_a_,
                             std::size_t size_b_,
                             std::array<std::size_t, NumDs> size_ds_)
        : arg(arg_),
          rotating_count(rotating_count_),
          size_a(size_a_),
          size_b(size_b_),
          size_ds(size_ds_)
    {
        p_a_grids.push_back(arg.p_a_grid);
        p_b_grids.push_back(arg.p_b_grid);
        p_ds_grids.push_back(arg.p_ds_grid);
        for(size_t i = 1; i < rotating_count; i++)
        {
            {
                void* pADeviceBuf;
                hip_check_error(hipMalloc(static_cast<void**>(&pADeviceBuf), size_a_));
                hip_check_error(hipMemcpy(static_cast<void*>(pADeviceBuf),
                                          const_cast<void*>(p_a_grids[0]),
                                          size_a_,
                                          hipMemcpyDeviceToDevice));
                p_a_grids.push_back(pADeviceBuf);
            }

            {
                void* pBDeviceBuf;
                hip_check_error(hipMalloc(static_cast<void**>(&pBDeviceBuf), size_b_));
                hip_check_error(hipMemcpy(static_cast<void*>(pBDeviceBuf),
                                          const_cast<void*>(p_b_grids[0]),
                                          size_b_,
                                          hipMemcpyDeviceToDevice));
                p_b_grids.push_back(pBDeviceBuf);
            }

            {

                DsGridPointer ds_buffer;
                static_for<0, NumDs, 1>{}([&](auto j) {
                    void* pDDeviceBuf;
                    hip_check_error(hipMalloc(static_cast<void**>(&pDDeviceBuf), size_ds_[j]));
                    hip_check_error(hipMemcpy(static_cast<void*>(pDDeviceBuf),
                                              static_cast<const void*>(p_ds_grids[0][j]),
                                              size_ds_[j],
                                              hipMemcpyDeviceToDevice));

                    using DDataType = remove_cvref_t<tuple_element_t<j.value, DsDataType>>;

                    ds_buffer(j) = static_cast<const DDataType*>(pDDeviceBuf);
                });

                p_ds_grids.push_back(ds_buffer);
            }
        }
    }

    void Next()
    {
        if(rotating_count > 1)
        {
            std::size_t idx = iter++ % rotating_count;
            arg.p_a_grid    = reinterpret_cast<ADataType>(p_a_grids[idx]);
            arg.p_b_grid    = reinterpret_cast<BDataType>(p_b_grids[idx]);
            arg.p_ds_grid   = p_ds_grids[idx];
        }
    }
    void Print()
    {
        std::cout << "RotatingMemWrapperMultiD: { size_a: " << size_a << ", size_b: " << size_b
                  << ", rotating_count: " << rotating_count << "}" << std::endl;
    }
    ~RotatingMemWrapperMultiD()
    {
        if(rotating_count > 1)
        {
            // restore ptr
            arg.p_a_grid  = reinterpret_cast<ADataType>(p_a_grids[0]);
            arg.p_b_grid  = reinterpret_cast<BDataType>(p_b_grids[0]);
            arg.p_ds_grid = p_ds_grids[0];

            // free device mem
            for(size_t i = 1; i < rotating_count; i++)
            {
                hip_check_error(hipFree(const_cast<void*>(p_a_grids[i])));
                hip_check_error(hipFree(const_cast<void*>(p_b_grids[i])));

                static_for<0, NumDs, 1>{}([&](auto j) {
                    using DDataType = remove_cvref_t<tuple_element_t<j.value, DsDataType>>;
                    hip_check_error(
                        hipFree(static_cast<void*>(const_cast<DDataType*>(p_ds_grids[i][j]))));
                });
            }
        }
    }

    private:
    Argument& arg;
    std::size_t iter                       = 0;
    std::size_t rotating_count             = 1;
    std::size_t size_a                     = 0;
    std::size_t size_b                     = 0;
    std::array<std::size_t, NumDs> size_ds = {0};
    std::vector<const void*> p_a_grids;
    std::vector<const void*> p_b_grids;
    std::vector<DsGridPointer> p_ds_grids;
};

ltqin's avatar
ltqin committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
template <typename Argument>
struct RotatingMemWrapper
{
    using ADataType = decltype(Argument::p_a_grid);
    using BDataType = decltype(Argument::p_b_grid);

    RotatingMemWrapper() = delete;
    RotatingMemWrapper(Argument& arg_,
                       std::size_t rotating_count_,
                       std::size_t size_a_,
                       std::size_t size_b_)
        : arg(arg_), rotating_count(rotating_count_), size_a(size_a_), size_b(size_b_)
    {
        p_a_grids.push_back(arg.p_a_grid);
        p_b_grids.push_back(arg.p_b_grid);
        for(size_t i = 1; i < rotating_count; i++)
        {
            {
                void* pADeviceBuf;
                hip_check_error(hipMalloc(static_cast<void**>(&pADeviceBuf), size_a_));
                hip_check_error(hipMemcpy(static_cast<void*>(pADeviceBuf),
                                          const_cast<void*>(p_a_grids[0]),
                                          size_a_,
                                          hipMemcpyDeviceToDevice));
                p_a_grids.push_back(pADeviceBuf);
            }

            {
                void* pBDeviceBuf;
                hip_check_error(hipMalloc(static_cast<void**>(&pBDeviceBuf), size_b_));
                hip_check_error(hipMemcpy(static_cast<void*>(pBDeviceBuf),
                                          const_cast<void*>(p_b_grids[0]),
                                          size_b_,
                                          hipMemcpyDeviceToDevice));
                p_b_grids.push_back(pBDeviceBuf);
            }
        }
    }

    void Next()
    {
        if(rotating_count > 1)
        {
            std::size_t idx = iter++ % rotating_count;
            arg.p_a_grid    = reinterpret_cast<ADataType>(p_a_grids[idx]);
            arg.p_b_grid    = reinterpret_cast<BDataType>(p_b_grids[idx]);
        }
    }
    void Print()
    {
        std::cout << "RotatingMemWrapper: { size_a: " << size_a << ", size_b: " << size_b
                  << ", rotating_count: " << rotating_count << "}" << std::endl;
    }
    ~RotatingMemWrapper()
    {
        if(rotating_count > 1)
        {
            // restore ptr
            arg.p_a_grid = reinterpret_cast<ADataType>(p_a_grids[0]);
            arg.p_b_grid = reinterpret_cast<BDataType>(p_b_grids[0]);

            // free device mem
            for(size_t i = 1; i < rotating_count; i++)
            {
                hip_check_error(hipFree(const_cast<void*>(p_a_grids[i])));
                hip_check_error(hipFree(const_cast<void*>(p_b_grids[i])));
            }
        }
    }

    private:
    Argument& arg;
    std::size_t iter           = 0;
    std::size_t rotating_count = 1;
    std::size_t size_a         = 0;
    std::size_t size_b         = 0;
    std::vector<const void*> p_a_grids;
    std::vector<const void*> p_b_grids;
};

inline void flush_icache()
{
    hipDeviceProp_t deviceProps;
    hip_check_error(hipGetDeviceProperties(&deviceProps, 0));
    int32_t gpu_block3 = deviceProps.multiProcessorCount * 60;

    ck::flush_icache<<<dim3(gpu_block3), dim3(64), 0, nullptr>>>();
    hip_check_error(hipGetLastError());
}
// if TimePrePress == false, return time does not include preprocess's time
225
226
227
228
229
template <bool TimePreprocess,
          typename GemmArgs,
          typename... Args,
          typename F,
          typename PreProcessFunc>
ltqin's avatar
ltqin committed
230
231
232
233
234
235
float launch_and_time_kernel_with_preprocess(const StreamConfig& stream_config,
                                             PreProcessFunc preprocess,
                                             F kernel,
                                             dim3 grid_dim,
                                             dim3 block_dim,
                                             std::size_t lds_byte,
236
237
                                             GemmArgs& gemm_args,
                                             Args... args)
ltqin's avatar
ltqin committed
238
239
240
241
242
{
#if CK_TIME_KERNEL
#define MEDIAN 1
    if(stream_config.time_kernel_)
    {
243
        if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
244
        {
245
            printf("%s: grid_dim {%u, %u, %u}, block_dim {%u, %u, %u} \n",
246
247
248
249
250
251
252
253
254
255
                   __func__,
                   grid_dim.x,
                   grid_dim.y,
                   grid_dim.z,
                   block_dim.x,
                   block_dim.y,
                   block_dim.z);

            printf("Warm up %d times\n", stream_config.cold_niters_);
        }
ltqin's avatar
ltqin committed
256
257
258
        // warm up
        for(int i = 0; i < stream_config.cold_niters_; ++i)
        {
259
            kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(gemm_args, args...);
ltqin's avatar
ltqin committed
260
261
262
263
264
265
266
267
            hip_check_error(hipGetLastError());
        }

        const int nrepeat = stream_config.nrepeat_;
        if(nrepeat == 0)
        {
            return 0.0;
        }
268
        if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
269
270
271
        {
            printf("Start running %d times...\n", nrepeat);
        }
ltqin's avatar
ltqin committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

#if MEDIAN
        std::set<float> times;
#else
        float total_time = 0;
#endif
        for(int i = 0; i < nrepeat; ++i)
        {
            if constexpr(!TimePreprocess)
            {
                preprocess();
            }

            hipEvent_t start, stop;

            hip_check_error(hipEventCreate(&start));
            hip_check_error(hipEventCreate(&stop));

            hip_check_error(hipDeviceSynchronize());
            hip_check_error(hipEventRecord(start, stream_config.stream_id_));
            // calculate preprocess time
            if constexpr(TimePreprocess)
            {
                preprocess();
            }
            // run real kernel
298
            kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(gemm_args, args...);
ltqin's avatar
ltqin committed
299
300
301
302
303
304
305
306
307
308
309
310
311
            hip_check_error(hipGetLastError());
            // end real kernel

            hip_check_error(hipEventRecord(stop, stream_config.stream_id_));
            hip_check_error(hipEventSynchronize(stop));
            float cur_time = 0;
            hip_check_error(hipEventElapsedTime(&cur_time, start, stop));
#if MEDIAN
            times.insert(cur_time);
#else
            total_time += cur_time;
#endif

312
            if(ck::EnvIsEnabled(CK_ENV(CK_LOGGING)))
313
314
            {
                std::cout << "i: " << i << " cur_time: " << cur_time << std::endl;
ltqin's avatar
ltqin committed
315

316
317
318
                printf("gemm_args.p_a_grid: %p, gemm_args.p_b_grid:%p\n",
                       static_cast<const void*>(gemm_args.p_a_grid),
                       static_cast<const void*>(gemm_args.p_b_grid));
319
            }
ltqin's avatar
ltqin committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        }

#if MEDIAN
        auto mid = times.begin();
        std::advance(mid, (nrepeat - 1) / 2);
        if(nrepeat % 2 == 1)
        {
            return *mid;
        }
        else
        {
            auto mid_next = mid;
            std::advance(mid_next, 1);
            return (*mid + *mid_next) / 2;
        }
#else
        return total_time / nrepeat;
#endif
    }
    else
    {
        preprocess();
342
        kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(gemm_args, args...);
ltqin's avatar
ltqin committed
343
344
345
346
347
        hip_check_error(hipGetLastError());

        return 0;
    }
#else
348
    kernel<<<grid_dim, block_dim, lds_byte, stream_config.stream_id_>>>(gemm_args, args...);
ltqin's avatar
ltqin committed
349
350
351
352
353
354
355
356
    hip_check_error(hipGetLastError());

    return 0;
#endif
}

} // namespace utility
} // namespace ck