profile_contraction_bilinear.cpp 11 KB
Newer Older
1
// SPDX-License-Identifier: MIT
2
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <vector>

#include "profiler/profile_contraction_impl.hpp"
#include "profiler/profile_contraction_utils.hpp"
#include "profiler_operation_registry.hpp"

#define OP_NAME "contraction_bilinear"
#define OP_DESC "CONTRACTION+Bilinear"

static void print_helper_msg()
{
    std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
20
21
              << "arg2: data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
              << "arg3: compute data type (0: fp32; 1: f64; 2: f16; 3: bf16)\n"
22
23
              << "arg4: Number of dimension for M, N and K (one for all)\n"
              << "arg5: matrix layout (0: A[m0, m1, k0, k1] * B[k0, k1, n0, n1] + "
24
25
26
27
28
29
30
                 "D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
              << "                     1: A[m0, m1, k0, k1] * B[n0, n1, k0, k1] + "
                 "D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
              << "                     2: A[k0, k1, m0, m1] * B[k0, k1, n0, n1] + "
                 "D[m0, m1, n0, n1] = E[m0, m1, n0, n1];\n"
              << "                     3: A[k0, k1, m0, m1] * B[n0, n1, k0, k1] + "
                 "D[m0, m1, n0, n1] = E[m0, m1, n0, n1])\n"
31
32
              << "arg6: verification (0: no; 1: yes)\n"
              << "arg7: initialization (0: no init; 1: integer value; 2: decimal "
33
              << "value)\n"
34
35
36
37
38
39
              << "arg8: print tensor value (0: no; 1: yes)\n"
              << "arg9: time kernel (0: no, 1: yes)\n"
              << "arg10: alpha\n"
              << "arg11: beta\n"
              << "arg12 to 17/29: M0, M1, N0, N1, K0, K1\n"
              << "arg18/30 to 33/77: Strides for A, B, D and E (skip for default)\n"
40
41
42
43
44
              << std::endl;
}

int profile_contraction_bilinear(int argc, char* argv[])
{
45
    const bool default_strides = argc == 18 || 30;
46

47
    if(argc != 34 && argc != 78 && !default_strides)
48
49
50
51
52
53
    {
        print_helper_msg();
        exit(1);
    }

    const auto data_type          = static_cast<ContractionDataType>(std::stoi(argv[2]));
54
    const auto compute_data_type  = static_cast<ContractionComputeDataType>(std::stoi(argv[3]));
55
56
57
58
59
60
61
62
    const ck::index_t NumDimMNK   = std::stoi(argv[4]);
    const auto layout             = static_cast<ContractionMatrixLayout>(std::stoi(argv[5]));
    const bool do_verification    = std::stoi(argv[6]);
    const ck::index_t init_method = std::stoi(argv[7]);
    const bool do_log             = std::stoi(argv[8]);
    const bool time_kernel        = std::stoi(argv[9]);
    const float alpha             = std::stof(argv[10]);
    const float beta              = std::stof(argv[11]);
63
64
65
66

    std::vector<ck::index_t> M;
    std::vector<ck::index_t> N;
    std::vector<ck::index_t> K;
67
68
69
70
71
72
73
74
75
    const ck::index_t dims_arg_num = 12;
    collect_index_params(argv, M, dims_arg_num, NumDimMNK);
    collect_index_params(argv, N, dims_arg_num + NumDimMNK, NumDimMNK);
    collect_index_params(argv, K, dims_arg_num + NumDimMNK * 2, NumDimMNK);

    std::vector<ck::index_t> StridesA(NumDimMNK * 2);
    std::vector<ck::index_t> StridesB(NumDimMNK * 2);
    std::vector<ck::index_t> StridesE(NumDimMNK * 2);
    std::vector<ck::index_t> StridesD(NumDimMNK * 2);
76
77
    if(!default_strides)
    {
78
79
80
81
        collect_index_params(argv, StridesA, dims_arg_num + NumDimMNK * 3, NumDimMNK * 2);
        collect_index_params(argv, StridesB, dims_arg_num + NumDimMNK * 5, NumDimMNK * 2);
        collect_index_params(argv, StridesE, dims_arg_num + NumDimMNK * 7, NumDimMNK * 2);
        collect_index_params(argv, StridesD, dims_arg_num + NumDimMNK * 9, NumDimMNK * 2);
82
83
    }

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    using F16  = ck::half_t;
    using BF16 = ck::bhalf_t;
    using F32  = float;
    using F64  = double;

    auto profile =
        [&](auto a_layout, auto b_layout, auto cde_layout, auto type, auto compute_type) {
            using ALayout   = decltype(a_layout);
            using BLayout   = decltype(b_layout);
            using CDELayout = decltype(cde_layout);

            using DataType        = decltype(type);
            using ComputeDataType = decltype(compute_type);

            if(default_strides)
            {
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
                auto merge_dims = [](const std::vector<ck::index_t>& dims01,
                                     const std::vector<ck::index_t>& dims23) {
                    std::vector<ck::index_t> dims_szt(dims01.begin(), dims01.end());
                    dims_szt.insert(dims_szt.end(), dims23.begin(), dims23.end());
                    return dims_szt;
                };

                assign_default_strides(a_layout, StridesA, merge_dims(M, K));
                assign_default_strides(b_layout, StridesB, merge_dims(N, K));
                assign_default_strides(cde_layout, StridesE, merge_dims(M, N));
                assign_default_strides(cde_layout, StridesD, merge_dims(M, N));
            }
            if(NumDimMNK == 2)
            {
                bool pass = ck::profiler::profile_contraction_impl<2,
                                                                   ALayout,
                                                                   BLayout,
                                                                   CDELayout,
                                                                   DataType,
                                                                   ComputeDataType,
                                                                   ck::Tuple<DataType>,
                                                                   Bilinear>(do_verification,
                                                                             init_method,
                                                                             do_log,
                                                                             time_kernel,
                                                                             Bilinear{alpha, beta},
                                                                             M,
                                                                             N,
                                                                             K,
                                                                             StridesA,
                                                                             StridesB,
                                                                             StridesE,
                                                                             StridesD);

                return pass;
            }
            else if(NumDimMNK == 6)
            {
                bool pass = ck::profiler::profile_contraction_impl<6,
                                                                   ALayout,
                                                                   BLayout,
                                                                   CDELayout,
                                                                   DataType,
                                                                   ComputeDataType,
                                                                   ck::Tuple<DataType>,
                                                                   Bilinear>(do_verification,
                                                                             init_method,
                                                                             do_log,
                                                                             time_kernel,
                                                                             Bilinear{alpha, beta},
                                                                             M,
                                                                             N,
                                                                             K,
                                                                             StridesA,
                                                                             StridesB,
                                                                             StridesE,
                                                                             StridesD);

                return pass;
            }
            else
            {
                throw std::runtime_error("Not supported NumDimMNK");
                return false;
164
165
166
167
168
            }
        };

    auto run_profile_for_datatype = [&](auto type, auto compute_type) {
        if(layout == ContractionMatrixLayout::MK_KN_MN_MN)
169
        {
170
            return profile(Row{}, Row{}, Row{}, type, compute_type);
171
        }
172
173
174
175
176
177
178
179
180
181
182
183
184
        else if(layout == ContractionMatrixLayout::MK_NK_MN_MN)
        {
            return profile(Row{}, Col{}, Row{}, type, compute_type);
        }
        else if(layout == ContractionMatrixLayout::KM_KN_MN_MN)
        {
            return profile(Col{}, Row{}, Row{}, type, compute_type);
        }
        else if(layout == ContractionMatrixLayout::KM_NK_MN_MN)
        {
            return profile(Col{}, Col{}, Row{}, type, compute_type);
        }
        return false;
185
186
    };

187
    if(data_type == ContractionDataType::F32_F32_F32_F32)
188
    {
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        if(compute_data_type == ContractionComputeDataType::F32)
        {
            return run_profile_for_datatype(F32{}, F32{});
        }
        else if(compute_data_type == ContractionComputeDataType::F16)
        {
            return run_profile_for_datatype(F32{}, F16{});
        }
        else if(compute_data_type == ContractionComputeDataType::BF16)
        {
            return run_profile_for_datatype(F32{}, BF16{});
        }
        else
        {
            std::cout << "Incorrect combination of data type and compute data type." << std::endl;
            return 1;
        }
206
    }
207
    else if(data_type == ContractionDataType::F64_F64_F64_F64)
208
    {
209
210
211
212
213
214
215
216
217
218
219
220
221
        if(compute_data_type == ContractionComputeDataType::F64)
        {
            return run_profile_for_datatype(F64{}, F64{});
        }
        else if(compute_data_type == ContractionComputeDataType::F32)
        {
            return run_profile_for_datatype(F64{}, F32{});
        }
        else
        {
            std::cout << "Incorrect combination of data type and compute data type." << std::endl;
            return 1;
        }
222
    }
223
    else if(data_type == ContractionDataType::F16_F16_F16_F16)
224
    {
225
226
227
228
229
230
231
232
233
        if(compute_data_type == ContractionComputeDataType::F32)
        {
            return run_profile_for_datatype(F16{}, F32{});
        }
        else
        {
            std::cout << "Incorrect combination of data type and compute data type." << std::endl;
            return 1;
        }
234
    }
235
    else if(data_type == ContractionDataType::BF16_BF16_BF16_BF16)
236
    {
237
238
239
240
241
242
243
244
245
        if(compute_data_type == ContractionComputeDataType::F32)
        {
            return run_profile_for_datatype(BF16{}, F32{});
        }
        else
        {
            std::cout << "Incorrect combination of data type and compute data type." << std::endl;
            return 1;
        }
246
    }
247
    return 1;
248
249
250
}

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_contraction_bilinear);