topk_softmax.cpp 6.73 KB
Newer Older
carlushuang's avatar
carlushuang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.

#include <vector>
#include <iostream>
#include <numeric>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <time.h>
#include <unordered_set>

#include "ck_tile/core.hpp"
#include "ck_tile/ops/reduce.hpp"
#include "topk_softmax_api.hpp"

// #ifndef TEST_TOPK_SOFTMAX_VERBOSE
// #define TEST_TOPK_SOFTMAX_VERBOSE 0
// #endif

// #define BLOCK_SIZE 256

template <typename T>
void dump_host_tensor_2d(const ck_tile::HostTensor<T>& x)
{
    auto len = x.get_lengths();
    assert(len.size() == 2);
    std::cout << "[";
    for(size_t i = 0; i < len[0]; i++)
    {
        std::cout << "[";
        for(size_t j = 0; j < len[1]; j++)
        {
            if constexpr(std::is_same_v<T, ck_tile::fp16_t>)
            {
                auto v = ck_tile::type_convert<float>(x(std::vector<std::size_t>{i, j}));

                std::cout << v;
                if(j != len[1] - 1)
                    std::cout << ",";
            }
            else
            {
                std::cout << x(std::vector<std::size_t>{i, j}) << " ";
            }
        }
        std::cout << "]";
        if(i != len[0] - 1)
            std::cout << ",";
        else
            std::cout << "]";
        std::cout << std::endl;
    }
    std::cout << "--------------------" << std::endl;
}

// CPU reference
template <typename InputType, typename WeightType, typename IndexType = ck_tile::index_t>
auto reference_topk_softmax(const ck_tile::HostTensor<InputType>& x,
                            ck_tile::index_t k,
                            ck_tile::index_t dim = -1,
                            bool largest         = true,
                            bool sorted          = true)
{
    using namespace ck_tile;

    // dump_host_tensor_2d(x);

    auto y = reference_softmax<InputType, WeightType, WeightType>(x, dim);

    // dump_host_tensor_2d(y);
    auto [y_values, y_indices] = reference_topk(y, k, dim, largest, sorted);

    // dump_host_tensor_2d(y_values);
    // dump_host_tensor_2d(y_indices);

    return ck_tile::make_tuple(y_values, y_indices);
}

// different threshold for different dtype
template <typename DataType>
auto get_elimit(std::string /*init_method*/)
{
    double rtol = 1e-3;
    double atol = 1e-3;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
{
    double rtol = 1e-2;
    double atol = 1e-2;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::fp8_t>(std::string init_method)
{
    if(init_method == "ui" || init_method == "ni")
    {
        unsigned max_rounding_point_distance = 0;
        double atol                          = 2e-3;
        return ck_tile::make_tuple(max_rounding_point_distance, atol);
    }
    else
    {
        unsigned max_rounding_point_distance = 1;
        double atol                          = 0.0625;
        return ck_tile::make_tuple(max_rounding_point_distance, atol);
    }
}

auto create_args(int argc, char* argv[])
{
    ck_tile::ArgParser arg_parser;
    arg_parser.insert("v", "1", "weather do CPU validation or not")
        .insert(
            "input_prec", "fp16", "input data type. fp8/fp16/fp32 (representing 8/16/32 bit data)")
        .insert("weight_prec", "fp32", "weight data type")
        .insert("t", "32", "number of input tokens")
        .insert("e", "8", "number of experts")
        .insert("k", "2", "topk")
        .insert("kname", "0", "t to 1 will print kernel name");

    bool result = arg_parser.parse(argc, argv);
    return std::make_tuple(result, arg_parser);
}

template <typename InputType, typename WeightType, typename IndexType = ck_tile::index_t>
bool test_topk_softmax(ck_tile::ArgParser args)
{
    int validate            = args.get_int("v");
    std::string input_prec  = args.get_str("input_prec");
    std::string weight_prec = args.get_str("weight_prec");
    int tokens              = args.get_int("t");
    int experts             = args.get_int("e");
    int topk                = args.get_int("k");
    // int kname = args.get_int("kname");
    // int warmup = args.get_int("warmup");
    // int repeat = args.get_int("repeat");
    std::srand(std::time(nullptr));

    // tokens already considered batch size
    ck_tile::HostTensor<InputType> x_host({tokens, experts});
    ck_tile::HostTensor<WeightType> value_host({tokens, topk});
    ck_tile::HostTensor<IndexType> index_host({tokens, topk});

    ck_tile::FillUniformDistribution<InputType>{-5.f, 5.f}(x_host);

    ck_tile::DeviceMem x_dev(x_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem value_dev(value_host.get_element_space_size_in_bytes());
    ck_tile::DeviceMem index_dev(index_host.get_element_space_size_in_bytes());

    x_dev.ToDevice(x_host.data());

    topk_softmax_trait trait = [&]() {
        topk_softmax_trait t_;
        t_.input_type  = input_prec;
        t_.weight_type = weight_prec;
        t_.experts     = experts;
        return t_;
    }();

    topk_softmax_kargs karg = [&]() {
        topk_softmax_kargs a_;
        a_.p_input     = x_dev.GetDeviceBuffer();
        a_.p_output    = value_dev.GetDeviceBuffer();
        a_.p_indices   = index_dev.GetDeviceBuffer();
        a_.num_rows    = tokens;
        a_.num_experts = experts;
        a_.topk        = topk;
        return a_;
    }();

    ck_tile::stream_config sc{nullptr};

    topk_softmax(trait, karg, sc);

    value_dev.FromDevice(value_host.data());
    index_dev.FromDevice(index_host.data());

    bool rtn = true;
    if(validate)
    {
        ck_tile::HostTensor<WeightType> value_host_ref({tokens, topk});
        ck_tile::HostTensor<IndexType> index_host_ref({tokens, topk});

        auto [value_ref, index_ref] =
            reference_topk_softmax<InputType, WeightType, IndexType>(x_host, topk);

        auto [rtol, atol] = get_elimit<InputType>("");
        rtn &= ck_tile::check_err(
            value_host, value_ref, std::string("Value Error: Incorrect results!"), rtol, atol);
        rtn &= ck_tile::check_err(
            index_host, index_ref, std::string("Index Error: Incorrect results!"), rtol, atol);
    }

    return rtn;
}

int main(int argc, char** argv)
{
    auto [result, args] = create_args(argc, argv);
    if(!result)
        return -1;
    std::string input_prec  = args.get_str("input_prec");
    std::string weight_prec = args.get_str("weight_prec");

    bool r = true;
    if(input_prec.compare("fp16") == 0 && weight_prec.compare("fp32") == 0)
    {
        r &= test_topk_softmax<ck_tile::fp16_t, float, ck_tile::index_t>(args);
    }
    else if(input_prec.compare("bf16") == 0 && weight_prec.compare("fp32") == 0)
    {
        r &= test_topk_softmax<ck_tile::bf16_t, float, ck_tile::index_t>(args);
    }

    return r ? 0 : -1;
}