profile_gemm_b_scale.cpp 6.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// SPDX-License-Identifier: MIT
// Copyright (c) 2023-2024, Advanced Micro Devices, Inc. All rights reserved.

#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>

#include "profiler/profile_gemm_b_scale_impl.hpp"
#include "profiler_operation_registry.hpp"

enum struct GemmMatrixLayout
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};

enum struct GemmDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
    F8_F16_F16,     // 4
    F16_F8_F16,     // 5
    F16_F16_F16_F8, // 6
    F8_F8_BF16,     // 7
    F16_I4_F16,     // 8
};

enum struct BScaleBlockTile
{
    K_64,  // 0
    K_128, // 1
};

#define OP_NAME "gemm_b_scale"
#define OP_DESC "Int4-dequant GEMM"

int profile_gemm_b_scale(int argc, char* argv[])
{
    if(argc != 16 && argc != 19)
    {
        printf("arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n");
        printf("arg2: data type (0: fp32; 1: fp16; 2: bf16; 3: int8; 4: f8@f16; 5: f16@f8; 6: "
               "f16->f8; 7: f8->bf16, "
               "comp f8; 8: f16@i4)\n");
        printf("arg3: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, m] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, m] * B[n, k] = C[m, n])\n");
        printf("arg4: B scale block tile (0: 64, 1: 128):\n");
        printf("arg5: verification (0: no; 1: yes)\n");
        printf("arg6: initialization (0: no init; 1: integer value; 2: decimal value)\n");
        printf("arg7: print tensor value (0: no; 1: yes)\n");
        printf("arg8: time kernel (0=no, 1=yes)\n");
        printf("arg9 to 14: M, N, K, StrideA, StrideB, StrideC\n");
        printf("arg15: split k into  mulitiple batch\n");
        printf("optional:\n");
        printf("arg16: number of warm-up cycles (default 1)\n");
        printf("arg17: number of iterations (default 10)\n");
        printf("arg18: memory for rotating buffer (default 0, size in MB)\n");
        exit(1);
    }

    printf("Start profiling\n");
    const auto data_type       = static_cast<GemmDataType>(std::stoi(argv[2]));
    const auto layout          = static_cast<GemmMatrixLayout>(std::stoi(argv[3]));
    const auto B_scale_block   = static_cast<BScaleBlockTile>(std::stoi(argv[4]));
    const bool do_verification = std::stoi(argv[5]);
    const int init_method      = std::stoi(argv[6]);
    const bool do_log          = std::stoi(argv[7]);
    const bool time_kernel     = std::stoi(argv[8]);

    const int M = std::stoi(argv[9]);
    const int N = std::stoi(argv[10]);
    const int K = std::stoi(argv[11]);

    const int StrideA = std::stoi(argv[12]);
    const int StrideB = std::stoi(argv[13]);
    const int StrideC = std::stoi(argv[14]);
    const int KBatch  = std::stoi(argv[15]);
    printf("M:%d, N:%d, K:%d, StrideA:%d, StrideB:%d, StrideC:%d, KBatch:%d\n",
           M,
           N,
           K,
           StrideA,
           StrideB,
           StrideC,
           KBatch);

    int n_warmup      = 1;
    int n_iter        = 10;
    uint64_t rotating = 0;
    if(argc == 19)
    {
        n_warmup = std::stoi(argv[16]);
        n_iter   = std::stoi(argv[17]);
        rotating = std::stoull(argv[18]) * 1024 * 1024;

        printf("n_warmup:%d, n_iter:%d, rotating:%lu\n", n_warmup, n_iter, rotating);
    }

    using F32 = float;
    using F16 = ck::half_t;
    using I4  = ck::pk_i4_t;

    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    auto profile = [&](auto a_type,
                       auto b_type,
                       auto b_scale_type,
                       auto comp_type,
                       auto acc_type,
                       auto c_type,
                       auto scale_block_k,
                       auto a_layout,
                       auto b_layout,
                       auto c_layout) {
        using ADataType       = decltype(a_type);
        using BDataType       = decltype(b_type);
        using BScaleDataType  = decltype(b_scale_type);
        using ComputeDataType = decltype(comp_type);
        using AccDataType     = decltype(acc_type);
        using CDataType       = decltype(c_type);

        using ALayout = decltype(a_layout);
        using BLayout = decltype(b_layout);
        using CLayout = decltype(c_layout);

        const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
        const int DefaultStrideB = ck::is_same_v<BLayout, Row> ? N : K;
        const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? N : M;

        bool pass = ck::profiler::profile_gemm_b_scale_impl<ADataType,
                                                            BDataType,
                                                            BScaleDataType,
                                                            ComputeDataType,
                                                            AccDataType,
                                                            CDataType,
                                                            scale_block_k,
                                                            ALayout,
                                                            BLayout,
                                                            CLayout>(
            do_verification,
            init_method,
            do_log,
            time_kernel,
            M,
            N,
            K,
            (StrideA < 0) ? DefaultStrideA : StrideA,
            (StrideB < 0) ? DefaultStrideB : StrideB,
            (StrideC < 0) ? DefaultStrideC : StrideC,
            KBatch,
            n_warmup,
            n_iter,
            rotating);

        return pass ? 0 : 1;
    };

    if(data_type == GemmDataType::F16_I4_F16 && layout == GemmMatrixLayout::MK_NK_MN &&
       B_scale_block == BScaleBlockTile::K_128)
    {
        printf("F16_I4_F16 MK_NK_MN K_128\n");
        return profile(
            F16{}, I4{}, F16{}, F16{}, F32{}, F16{}, ck::Number<128>{}, Row{}, Col{}, Row{});
    }
    else
    {
        std::cout << "this data_type & layout is not implemented" << std::endl;

        return 1;
    }
}

REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_gemm_b_scale);