permute.cpp 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.

#include "permute.hpp"
#include "ck_tile/host.hpp"

#include <array>
#include <cstring>
#include <functional>
#include <numeric>
#include <ostream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

#ifdef PERMUTE_USE_ALTERNATIVE_IMPL
#include "alternative_impl/matrix_core_swizzle.hpp"
#endif

namespace detail {
template <int bytes>
struct to_integer_type;

template <>
struct to_integer_type<4>
{
    using type = int32_t;
};
template <>
struct to_integer_type<2>
{
    using type = int16_t;
};
template <>
struct to_integer_type<1>
{
    using type = int8_t;
};
} // namespace detail

template <int bytes>
using to_integer_type = typename detail::to_integer_type<bytes>::type;

// host API (shoule come from codegen)
float permute(permute_traits t, permute_args a, const ck_tile::stream_config& s)
{
    if(t.data_type.compare("fp8") == 0)
    {
        using DataType        = ck_tile::fp8_t;
        using PipelineProblem = ck_tile::GenericPermuteProblem<DataType>;
        using Kernel          = ck_tile::GenericPermute<PipelineProblem>;

        auto kargs = Kernel::MakeKargs(a);

        const dim3 grids      = Kernel::GridSize(a);
        constexpr dim3 blocks = Kernel::BlockSize();

        float ave_time = ck_tile::launch_kernel(
            s, ck_tile::make_kernel<blocks.x, 1>(Kernel{}, grids, blocks, 0, kargs));

        return ave_time;
    }
    else if(t.data_type.compare("fp16") == 0)
    {
        using DataType        = ck_tile::half_t;
        using PipelineProblem = ck_tile::GenericPermuteProblem<DataType>;
        using Kernel          = ck_tile::GenericPermute<PipelineProblem>;

        auto kargs = Kernel::MakeKargs(a);

        const dim3 grids      = Kernel::GridSize(a);
        constexpr dim3 blocks = Kernel::BlockSize();

        float ave_time = ck_tile::launch_kernel(
            s, ck_tile::make_kernel<blocks.x, 1>(Kernel{}, grids, blocks, 0, kargs));

        return ave_time;
    }
    else if(t.data_type.compare("fp32") == 0)
    {
        using DataType        = float;
        using PipelineProblem = ck_tile::GenericPermuteProblem<DataType>;
        using Kernel          = ck_tile::GenericPermute<PipelineProblem>;

        auto kargs = Kernel::MakeKargs(a);

        const dim3 grids      = Kernel::GridSize(a);
        constexpr dim3 blocks = Kernel::BlockSize();

        float ave_time = ck_tile::launch_kernel(
            s, ck_tile::make_kernel<blocks.x, 1>(Kernel{}, grids, blocks, 0, kargs));

        return ave_time;
    }

    return 0;
}

template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
{
    using size_type = typename std::vector<T>::size_type;

    os << "[";
    for(size_type idx = 0; idx < v.size(); ++idx)
    {
        if(0 < idx)
        {
            os << ", ";
        }
        os << v[idx];
    }
    return os << "]";
}

auto create_args(int argc, char* argv[])
{
    ck_tile::ArgParser arg_parser;
    arg_parser.insert("v", "1", "weather do CPU validation or not")
        .insert("prec", "fp16", "data type. fp8/fp16/fp32 (representing 8/16/32 bit data)")
        .insert("shape", "2,3,4", "the shape of the input tensor")
        .insert("perm", "2,1,0", "permute perm")
        .insert("kname", "0", "t to 1 will print kernel name")
        .insert("seed",
                "11939",
                "random seed used for initializing input tensors. 0 for "
                "non-deterministic seed")
        .insert("warmup", "5", "number of iterations before benchmark the kernel")
        .insert("repeat", "20", "number of iterations to benchmark the kernel");

    bool result = arg_parser.parse(argc, argv);
    return std::make_tuple(result, arg_parser);
}

// different threshold for different dtype
template <typename DataType>
auto get_elimit(std::string /*init_method*/)
{
    double rtol = 1e-3;
    double atol = 1e-3;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::bf16_t>(std::string /*init_method*/)
{
    double rtol = 1e-2;
    double atol = 1e-2;
    return ck_tile::make_tuple(rtol, atol);
}

template <>
auto get_elimit<ck_tile::fp8_t>(std::string init_method)
{
    if(init_method == "ui" || init_method == "ni")
    {
        unsigned max_rounding_point_distance = 0;
        double atol                          = 2e-3;
        return ck_tile::make_tuple(max_rounding_point_distance, atol);
    }
    else
    {
        unsigned max_rounding_point_distance = 1;
        double atol                          = 0.0625;
        return ck_tile::make_tuple(max_rounding_point_distance, atol);
    }
}

// "1,2,3,4" -> vector{1,2,3,4}
std::vector<ck_tile::index_t> decode_vec(std::string q_val)
{
#define _S2I_(str_) static_cast<ck_tile::index_t>(std::atoi((str_).c_str()))
    std::string::size_type pos = 0;
    std::vector<ck_tile::index_t> v;
    while(true)
    {
        auto found = q_val.find(',', pos);
        ck_tile::index_t n =
            _S2I_(q_val.substr(pos, found == std::string::npos ? found : found - pos));
        v.push_back(n);
        if(found == std::string::npos)
        {
            break;
        }
        pos = found + 1;
    }
    return v;
#undef _S2I_
}

template <typename DataType>
bool run(const ck_tile::ArgParser& arg_parser)
{
    std::string data_type = arg_parser.get_str("prec");
    int do_validation     = arg_parser.get_int("v");

    auto shape        = decode_vec(arg_parser.get_str("shape"));
    auto perm         = decode_vec(arg_parser.get_str("perm"));
    int stream_warmup = arg_parser.get_int("warmup");
    int stream_repeat = arg_parser.get_int("repeat");
    bool kname        = arg_parser.get_bool("kname");
    int seed          = arg_parser.get_int("seed");

    assert(shape.size() == perm.size());
    ck_tile::index_t rank = perm.size();
    if(rank > ck_tile::GenericPermuteHostArgs::kMaxRanks)
    {
        printf("rank %d permute is not support yet\n", rank);
        return false;
    }

    ck_tile::HostTensor<DataType> x(shape);
    ck_tile::FillUniformDistributionIntegerValue<DataType>{-15, 15, seed}(x);

    std::vector<ck_tile::index_t> y_shape = [&]() {
        std::vector<ck_tile::index_t> tmp(rank, 0);
        // std::cout << "@@@@" << tmp << std::endl;
        for(int i = 0; i < static_cast<int>(rank); i++)
        {
            // std::cout << "  i:" << i << ", perm:" << perm[i] << ", rak:" <<
            // static_cast<int>(rank)
            // << std::endl;
            tmp[i] = shape[perm[i]];
        }
        // std::cout << "@@@" << tmp << std::endl;
        return tmp;
    }();

    ck_tile::HostTensor<DataType> y(y_shape);

    ck_tile::DeviceMem x_buf(x.get_element_space_size_in_bytes());
    ck_tile::DeviceMem y_buf(y.get_element_space_size_in_bytes());

    x_buf.ToDevice(x.data());

    std::cout << "[" << data_type << "] shape:" << shape << "->" << y_shape << ", permute:" << perm
              << std::flush;

    ck_tile::stream_config stream_config{nullptr,
                                         true,
                                         /* log_level = */ (kname ? 1 : 0),
                                         stream_warmup,
                                         stream_repeat};
    float ave_time   = 0.f;
    auto run_permute = [&]() {
        permute_traits t;
        t.data_type = data_type;

        permute_args a;
        a.p_src = x_buf.GetDeviceBuffer();
        a.p_dst = y_buf.GetDeviceBuffer();
        a.rank  = rank;
        std::copy(shape.begin(), shape.end(), a.shape);
        std::copy(perm.begin(), perm.end(), a.perm);

        return permute(t, a, stream_config);
    };
#ifdef PERMUTE_USE_ALTERNATIVE_IMPL
    // batch* n0*n1*n2*k0*k1*k2 -> batch* n0*k0*n1*k1*n2*k2
    if((arg_parser.get_str("perm") == std::string("0,1,4,2,5,3,6") ||
        arg_parser.get_str("perm") == std::string("0,1,2,4,5,3,6") ||
        arg_parser.get_str("perm") == std::string("0,1,3,4,2,5")))
    {
        if(arg_parser.get_str("perm") == std::string("0,1,3,4,2,5"))
        {
267
            // b_nr_kr_kw_nw_kv = 2,   // 0,1,3,4,2,5
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
            matrix_core_swizzle_traits t;
            t.data_type = data_type;
            t.permute   = arg_parser.get_str("perm");

            matrix_core_swizzle_args a;
            a.p_src = x_buf.GetDeviceBuffer();
            a.p_dst = y_buf.GetDeviceBuffer();
            a.batch = shape[0];

            auto nr = shape[1];
            auto nw = shape[2];
            auto kr = shape[3];
            auto kw = shape[4];
            auto kv = shape[5];
            a.n     = nr * nw;
            a.k     = kr * kw * kv;
            if(kv == 8 && kw == 4 && nw == 16 && nr % 4 == 0 && kr % 8 == 0)
            {
                t.inst = "16x16x16";
                std::cout << ", matrix_core_swizzle_waveflatten_" << t.inst << std::flush;

                ave_time = matrix_core_swizzle(t, a, stream_config);
            }
            else if(kv == 8 && kw == 2 && nw == 32 && nr % 4 == 0 && kr % 8 == 0)
            {
                t.inst = "32x32x8";
                std::cout << ", matrix_core_swizzle_waveflatten_" << t.inst << std::flush;

                ave_time = matrix_core_swizzle(t, a, stream_config);
            }
            else
            {
                ave_time = run_permute();
            }
        }
        else
        {
            matrix_core_swizzle_traits t;
            t.data_type = data_type;
            t.permute   = arg_parser.get_str("perm");

            matrix_core_swizzle_args a;
            a.p_src = x_buf.GetDeviceBuffer();
            a.p_dst = y_buf.GetDeviceBuffer();
            a.batch = shape[0];
            a.n     = shape[1] * shape[2] * shape[3];
            a.k     = shape[4] * shape[5] * shape[6];
            if(shape[6] == 8 && shape[3] == 32 && shape[5] == 2 && shape[2] == 4 &&
               shape[4] % 8 == 0 && shape[1] % 2 == 0)
            {
                // 32x32x8 inst
                // perm=0,1,4,2,5,3,6
                // y_shape=*,2x,8x,4,2,32,8 (3,6,16,4,2,32,8)
                // shape = *,2x,4,32,8x,2,8 (3,6,4,32,16,2,8)

                t.inst = "32x32x8";
                std::cout << ", matrix_core_swizzle_" << t.inst << std::flush;

                ave_time = matrix_core_swizzle(t, a, stream_config);
            }
            else if(shape[6] == 8 && shape[3] == 16 && shape[5] == 4 && shape[2] == 4 &&
                    shape[4] % 4 == 0 && shape[1] % 4 == 0)
            {
                // 16x16x16 inst
                // perm=0,1,4,2,5,3,6
                // y_shape=*,4x,4x,4,4,16,8
                // shape = *,4x,4,16,4x,4,8 (3,8,4,16,16,4,8)
                t.inst = "16x16x16";
                std::cout << ", matrix_core_swizzle_" << t.inst << std::flush;

                ave_time = matrix_core_swizzle(t, a, stream_config);
            }
            else
            {
                ave_time = run_permute();
            }
        }
    }
    else
#endif
    {
        ave_time = run_permute();
    }
    std::cout << ", time:" << ave_time << "ms" << std::flush;

    bool pass = true;
    if(do_validation)
    {
        reference_permute(x, y, perm);
#if 0
        if constexpr (std::is_same_v<float, DataType>){
            // using itype = to_integer_type<sizeof(DataType)>;
            fflush(stdout);
            for(int zz = 0; zz < static_cast<int>(x.get_element_size()); zz++   ) {
                printf("%3.0f ", x.mData[zz]);
            }
            printf("->\n");
            for(int zz = 0; zz < static_cast<int>(x.get_element_size()); zz++   ) {
                printf("%3.0f ", y.mData[zz]);
            }
            fflush(stdout);
        }
#endif
        ck_tile::HostTensor<DataType> y_dev(y.get_lengths());

        y_buf.FromDevice(y_dev.data());

        pass = std::equal(
            y_dev.begin(), y_dev.end(), y.begin(), [&](const DataType& d, const DataType& h) {
                using itype = to_integer_type<sizeof(DataType)>;
                itype i_d   = ck_tile::bit_cast<itype>(d);
                itype i_h   = ck_tile::bit_cast<itype>(h);
                return i_d == i_h;
            });
        std::cout << ", valid:" << (pass ? "y" : "n") << std::flush;
    }

    std::cout << std::endl;

    return pass;
}

int main(int argc, char* argv[])
{
    auto [result, arg_parser] = create_args(argc, argv);
    if(!result)
        return -1;

    const std::string data_type = arg_parser.get_str("prec");
    if(data_type == "fp8")
    {
        return run<ck_tile::fp8_t>(arg_parser) ? 0 : -2;
    }
    else if(data_type == "fp16")
    {
        return run<ck_tile::half_t>(arg_parser) ? 0 : -2;
    }
    else if(data_type == "fp32")
    {
        return run<float>(arg_parser) ? 0 : -2;
    }

    return -3;
}