gemm.hpp 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
// SPDX-License-Identifier: MIT
// Copyright (c) 2024, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include "ck/wrapper/utils/tensor_utils.hpp"
#include "ck/wrapper/traits/blockwise_gemm_xdl_traits.hpp"

#include "ck/host_utility/device_prop.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"

12
13
// Disable from doxygen docs generation
/// @cond INTERNAL
14
15
namespace ck {
namespace wrapper {
16
/// @endcond
17

18
19
// Disable from doxygen docs generation
/// @cond INTERNAL
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
namespace {
namespace detail {
/**
 * \brief Create block descriptor (K0, MPerBlock or NPerBlock, K1).
 *
 *
 * \tparam K1 The number of K-dim elements that are packed together as a separate logical dimension.
 * \tparam TileLayout Tensor data tile layout (M,K) or (N,K).
 *
 * \return Block descriptor (K0, MPerBlock or NPerBlock, K1)
 */
template <index_t K1, typename TileLayout>
__device__ constexpr auto GetBlockDescriptor()
{
    using TileLayoutShape      = typename TileLayout::LayoutShape;
    using TileLayoutDescriptor = typename TileLayout::LayoutUnrolledDescriptorType;

    constexpr auto K0PerBlock = Number<size<1>(TileLayoutShape{})>{} / Number<K1>{};
    // MPerBlock or NPerBlock
    constexpr auto Dim0 = Number<size<0>(TileLayoutShape{})>{};

    constexpr auto a_block_desc_k0_m_k1 = transform_tensor_descriptor(
        TileLayoutDescriptor{},
        make_tuple(make_unmerge_transform(make_tuple(K0PerBlock, Number<K1>{})),
                   make_pass_through_transform(Dim0)),
        make_tuple(Sequence<1>{}, Sequence<0>{}),
        make_tuple(Sequence<0, 2>{}, Sequence<1>{}));

    return a_block_desc_k0_m_k1;
}

} // namespace detail
} // namespace
53
/// @endcond
54
55
56

/**
 * \brief Perform blockwise gemm xdl on tensors stored in lds. Result will be
57
58
59
 * stored in Vgpr register. A data layout must be (MPerBlock, KPerBlock) or
 * (K0PerBlock, MPerBlock, K1) and B data layout must be (NPerBlock, KPerBlock)
 * or (K0PerBlock, NPerBlock, K1).
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
 *
 * \note C output Vgpr register layout (8D):
 * - MXdlPerWave - The number of MFMA instructions run by single wave in M
 *                 dimension per tile.
 * - NXdlPerWave - The number of MFMA instructions run by single wave in N
 *                 dimension per tile.
 * - MWave - Equals to 1 since this is for single wave.
 * - NWave - Equals to 1 since this is for single wave.
 * - NumGroupsPerBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - NumInputsBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - GroupSize - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - NumThreadsPerBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 *
 * \tparam DataType Input data types.
 * \tparam BlockSize Tensor to pad.
 * \tparam GemmTraits Traits of gemm xdl operation.
 * \param a_local_tile_tensor A tensor in LDS memory for blockwise gemm
81
 * (MPerBlock, KPerBlock) or (K0PerBlock, MPerBlock, K1) layout.
82
 * \param b_local_tile_tensor B tensor in LDS memory for blockwise gemm
83
 * (NPerBlock, KPerBlock) or (K0PerBlock, NPerBlock, K1) layout.
84
85
86
87
88
89
90
91
92
93
94
95
 * \param c_reg_tensor C tensor VGPR memory for blockwise gemm.
 */
template <typename DataType,
          index_t BlockSize,
          typename GemmTraits,
          typename ATensorType,
          typename BTensorType,
          typename CTensorType>
__device__ void blockwise_gemm_xdl(const ATensorType& a_local_tile_tensor,
                                   const BTensorType& b_local_tile_tensor,
                                   CTensorType& c_reg_tensor)
{
96
97
    constexpr auto I3 = Number<3>{};

98
99
100
101
102
103
104
105
106
107
108
109
110
    static_assert(ATensorType::TensorBufferAddressSpace == MemoryTypeEnum::Lds);
    static_assert(BTensorType::TensorBufferAddressSpace == MemoryTypeEnum::Lds);
    static_assert(CTensorType::TensorBufferAddressSpace == MemoryTypeEnum::Vgpr);
    static_assert(is_same_v<DataType, typename ATensorType::TensorElementType>);
    static_assert(is_same_v<DataType, typename BTensorType::TensorElementType>);

    constexpr bool is_integer =
        is_same_v<DataType, int8_t> || is_same_v<DataType, int16_t> || is_same_v<DataType, int32_t>;
    using GemmAccDataType = std::conditional_t<is_integer, int32_t, float>;

    using ATileLayout = remove_cvref_t<decltype(layout(a_local_tile_tensor))>;
    using BTileLayout = remove_cvref_t<decltype(layout(b_local_tile_tensor))>;

111
112
113
114
    static_assert(typename ATileLayout::LayoutShape{}.Size() ==
                  typename BTileLayout::LayoutShape{}.Size());
    constexpr bool is_3d_desc = typename ATileLayout::LayoutShape{}.Size() == I3;

115
    using ABlockDesc_K0_M_K1_Type =
116
117
118
        conditional_t<is_3d_desc,
                      typename ATileLayout::LayoutUnrolledDescriptorType,
                      decltype(detail::GetBlockDescriptor<GemmTraits::K1, ATileLayout>())>;
119
    using BBlockDesc_K0_N_K1_Type =
120
121
122
        conditional_t<is_3d_desc,
                      typename BTileLayout::LayoutUnrolledDescriptorType,
                      decltype(detail::GetBlockDescriptor<GemmTraits::K1, BTileLayout>())>;
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
                                                        DataType,
                                                        DataType,
                                                        GemmAccDataType,
                                                        ABlockDesc_K0_M_K1_Type,
                                                        BBlockDesc_K0_N_K1_Type,
                                                        GemmTraits::MPerXDL,
                                                        GemmTraits::NPerXDL,
                                                        GemmTraits::MXdlPerWave,
                                                        GemmTraits::NXdlPerWave,
                                                        GemmTraits::K1>
        blockwise_gemm_xdl_op{};

    blockwise_gemm_xdl_op.Run(
        a_local_tile_tensor.GetBuffer(), b_local_tile_tensor.GetBuffer(), c_reg_tensor.GetBuffer());
}

/**
 * \brief Create local partition per thread for C tensor.
 *
 * \note C output global memory layout (8D):
 * - MXdlPerWave - The number of MFMA instructions run by single wave in M
 *                 dimension.
 * - NXdlPerWave - The number of MFMA instructions run by single wave in N
 *                 dimension.
 * - MWave - The number of waves in single tile M dimension per tile.
 * - NWave - The number of waves in single tile N dimension per tile.
 * - NumGroupsPerBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - NumInputsBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - GroupSize - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - NumThreadsPerBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 *
 * \tparam DataType Input data types.
 * \tparam ATileLayout A tensor layout.
 * \tparam BTileLayout B tensor layout.
 * \tparam BlockSize Number of threads in block.
 * \tparam GemmTraits Traits of gemm xdl operation.
 * \param c_local_tile_tensor C tensor in LDS memory for blockwise gemm
 * (MPerBlock, NPerBlock) layout.
 *
 * \return Partition c tensor for blockwise gemm.
 */
template <typename DataType,
          typename ATileLayout,
          typename BTileLayout,
          index_t BlockSize,
          typename GemmTraits,
          typename CTensorType>
__host__ __device__ constexpr auto
make_blockwise_gemm_xdl_c_local_partition(CTensorType& c_local_tile_tensor)
{
    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};
    constexpr auto I4 = Number<4>{};
    constexpr auto I5 = Number<5>{};
    constexpr auto I6 = Number<6>{};
    constexpr auto I7 = Number<7>{};

188
189
190
    static_assert(typename ATileLayout::LayoutShape{}.Size() ==
                  typename BTileLayout::LayoutShape{}.Size());

191
192
193
194
    constexpr bool is_integer =
        is_same_v<DataType, int8_t> || is_same_v<DataType, int16_t> || is_same_v<DataType, int32_t>;
    using GemmAccDataType = std::conditional_t<is_integer, int32_t, float>;

195
    constexpr bool is_3d_desc = typename ATileLayout::LayoutShape{}.Size() == I3;
196
    using ABlockDesc_K0_M_K1_Type =
197
198
199
        conditional_t<is_3d_desc,
                      typename ATileLayout::LayoutUnrolledDescriptorType,
                      decltype(detail::GetBlockDescriptor<GemmTraits::K1, ATileLayout>())>;
200
    using BBlockDesc_K0_N_K1_Type =
201
202
203
        conditional_t<is_3d_desc,
                      typename BTileLayout::LayoutUnrolledDescriptorType,
                      decltype(detail::GetBlockDescriptor<GemmTraits::K1, BTileLayout>())>;
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

    using BlockwiseGemmXdlops =
        BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
                                                            DataType,
                                                            DataType,
                                                            GemmAccDataType,
                                                            ABlockDesc_K0_M_K1_Type,
                                                            BBlockDesc_K0_N_K1_Type,
                                                            GemmTraits::MPerXDL,
                                                            GemmTraits::NPerXDL,
                                                            GemmTraits::MXdlPerWave,
                                                            GemmTraits::NXdlPerWave,
                                                            GemmTraits::K1>;

    constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
        BlockwiseGemmXdlops::GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
    constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I0);
    constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I1);
    constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I2);
    constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I3);
    constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I4);
    constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I5);
    constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I6);
    constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2.GetLength(I7);

    // Calculate offset on grid
    const auto c_thread_mtx_on_block =
        BlockwiseGemmXdlops::CalculateCThreadOriginDataIndex(I0, I0, I0, I0);

    const index_t m_thread_data_on_grid =
        c_local_tile_tensor.GetMultiIdxOffsets()[I0] + c_thread_mtx_on_block[I0];

    const index_t n_thread_data_on_grid =
        c_local_tile_tensor.GetMultiIdxOffsets()[I1] + c_thread_mtx_on_block[I1];

    const auto m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor = make_single_stage_tensor_adaptor(
        make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
        make_tuple(Sequence<0, 1, 2, 3, 4>{}),
        make_tuple(Sequence<0>{}));

    const auto m_thread_data_on_grid_idx =
        m_thread_data_on_grid_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
            make_multi_index(m_thread_data_on_grid));

    const auto n_thread_data_on_grid_to_n0_n1_n2_adaptor =
        make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
                                         make_tuple(Sequence<0, 1, 2>{}),
                                         make_tuple(Sequence<0>{}));

    const auto n_thread_data_on_grid_idx =
        n_thread_data_on_grid_to_n0_n1_n2_adaptor.CalculateBottomIndex(
            make_multi_index(n_thread_data_on_grid));
    // Create partition shape based on descriptor dims.
    const auto partition_shape = make_tuple(M0, N0, I1, I1, M2, I1, M4, I1);

    const auto partition_desc = BlockwiseGemmXdlops::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(
        layout(c_local_tile_tensor).GetUnrolledDescriptor());
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    const auto lower_upper_dims =
        generate_tuple([&](auto i) { return Sequence<i.value>{}; }, Number<8>{});

    auto sliced_desc = transform_tensor_descriptor(
        partition_desc,
        make_tuple(
            make_slice_transform(partition_shape.At(Number<0>{}),
                                 m_thread_data_on_grid_idx[I0],
                                 partition_shape.At(Number<0>{}) + m_thread_data_on_grid_idx[I0]),
            make_slice_transform(partition_shape.At(Number<1>{}),
                                 n_thread_data_on_grid_idx[I0],
                                 partition_shape.At(Number<1>{}) + n_thread_data_on_grid_idx[I0]),
            make_slice_transform(partition_shape.At(Number<2>{}),
                                 m_thread_data_on_grid_idx[I1],
                                 partition_shape.At(Number<2>{}) + m_thread_data_on_grid_idx[I1]),
            make_slice_transform(partition_shape.At(Number<3>{}),
                                 n_thread_data_on_grid_idx[I1],
                                 partition_shape.At(Number<3>{}) + n_thread_data_on_grid_idx[I1]),
            make_slice_transform(partition_shape.At(Number<4>{}),
                                 m_thread_data_on_grid_idx[I2],
                                 partition_shape.At(Number<4>{}) + m_thread_data_on_grid_idx[I2]),
            make_slice_transform(partition_shape.At(Number<5>{}),
                                 m_thread_data_on_grid_idx[I3],
                                 partition_shape.At(Number<5>{}) + m_thread_data_on_grid_idx[I3]),
            make_slice_transform(partition_shape.At(Number<6>{}),
                                 m_thread_data_on_grid_idx[I4],
                                 partition_shape.At(Number<6>{}) + m_thread_data_on_grid_idx[I4]),
            make_slice_transform(partition_shape.At(Number<7>{}),
                                 n_thread_data_on_grid_idx[I2],
                                 partition_shape.At(Number<7>{}) + n_thread_data_on_grid_idx[I2])),
        lower_upper_dims,
        lower_upper_dims);

295
    const auto partition_layout =
296
297
        Layout<remove_reference_t<decltype(partition_shape)>, decltype(sliced_desc)>(
            partition_shape, sliced_desc);
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    auto partition_tensor = make_tensor<CTensorType::TensorBufferAddressSpace>(
        c_local_tile_tensor.GetPointer(), partition_layout);
    return partition_tensor;
}

/**
 * \brief Create local partition per thread for C tensor.
 *
 * \note C output Vgpr register layout (8D):
 * - MXdlPerWave - The number of MFMA instructions run by single wave in M
 *                 dimension per tile.
 * - NXdlPerWave - The number of MFMA instructions run by single wave in N
 *                 dimension per tile.
 * - MWave - Equals to 1 since this is for single wave.
 * - NWave - Equals to 1 since this is for single wave.
 * - NumGroupsPerBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - NumInputsBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - GroupSize - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 * - NumThreadsPerBlock - Mfma instruction internal layout (depeneds on the
 *                       instruction size).
 *
 * \tparam DataType Input data types.
 * \tparam ATileLayout A tensor layout.
 * \tparam BTileLayout B tensor layout.
 * \tparam BlockSize Number of threads in block.
 * \tparam GemmTraits Traits of gemm xdl operation.
 *
 * \return Vgpr c tensor for blockwise gemm.
 */
template <typename DataType,
          typename ATileLayout,
          typename BTileLayout,
          index_t BlockSize,
          typename GemmTraits>
__host__ __device__ constexpr auto make_blockwise_gemm_xdl_c_vgpr()
{
    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};
    constexpr auto I4 = Number<4>{};
    constexpr auto I5 = Number<5>{};
    constexpr auto I6 = Number<6>{};
    constexpr auto I7 = Number<7>{};

346
347
348
    static_assert(typename ATileLayout::LayoutShape{}.Size() ==
                  typename BTileLayout::LayoutShape{}.Size());

349
350
351
352
    constexpr bool is_integer =
        is_same_v<DataType, int8_t> || is_same_v<DataType, int16_t> || is_same_v<DataType, int32_t>;
    using GemmAccDataType = std::conditional_t<is_integer, int32_t, float>;

353
    constexpr bool is_3d_desc = typename ATileLayout::LayoutShape{}.Size() == I3;
354
    using ABlockDesc_K0_M_K1_Type =
355
356
357
        conditional_t<is_3d_desc,
                      typename ATileLayout::LayoutUnrolledDescriptorType,
                      decltype(detail::GetBlockDescriptor<GemmTraits::K1, ATileLayout>())>;
358
    using BBlockDesc_K0_N_K1_Type =
359
360
361
        conditional_t<is_3d_desc,
                      typename BTileLayout::LayoutUnrolledDescriptorType,
                      decltype(detail::GetBlockDescriptor<GemmTraits::K1, BTileLayout>())>;
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

    using BlockwiseGemmXdlops =
        BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
                                                            DataType,
                                                            DataType,
                                                            GemmAccDataType,
                                                            ABlockDesc_K0_M_K1_Type,
                                                            BBlockDesc_K0_N_K1_Type,
                                                            GemmTraits::MPerXDL,
                                                            GemmTraits::NPerXDL,
                                                            GemmTraits::MXdlPerWave,
                                                            GemmTraits::NXdlPerWave,
                                                            GemmTraits::K1>;
    // Calcualte descriptor, shape and layout
    constexpr auto vgpr_desc = BlockwiseGemmXdlops::GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
    const auto vgpr_shape    = make_tuple(vgpr_desc.GetLengths()[I0],
                                       vgpr_desc.GetLengths()[I1],
                                       vgpr_desc.GetLengths()[I2],
                                       vgpr_desc.GetLengths()[I3],
                                       vgpr_desc.GetLengths()[I4],
                                       vgpr_desc.GetLengths()[I5],
                                       vgpr_desc.GetLengths()[I6],
                                       vgpr_desc.GetLengths()[I7]);
    const auto vgpr_layout = Layout<remove_reference_t<decltype(vgpr_shape)>, decltype(vgpr_desc)>(
        vgpr_shape, vgpr_desc);
    // Get vector type for Vgpr
388
389
    constexpr index_t ScalarPerVector = BlockwiseGemmXdlops::xdlops_gemm.GetRegSizePerXdlops();
    using VgprVectorType = typename vector_type<GemmAccDataType, ScalarPerVector>::type;
390
391
392
393
394
395
    return ck::wrapper::make_register_tensor<ck::wrapper::MemoryTypeEnum::Vgpr, VgprVectorType>(
        vgpr_layout);
}

} // namespace wrapper
} // namespace ck