profile_transpose_impl.hpp 6.52 KB
Newer Older
arai713's avatar
arai713 committed
1
// SPDX-License-Identifier: MIT
2
// Copyright (c) 2018-2024, Advanced Micro Devices, Inc. All rights reserved.
arai713's avatar
arai713 committed
3
4
5
6
7
8
9
10
11
12
13

#pragma once

#include <iomanip>
#include <iostream>
#include <typeinfo>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
14
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_dynamic_vector_dims_impl.hpp"
arai713's avatar
arai713 committed
15
16
17
18
19
20
21
22
23
24
25
26
27

#include "ck/library/tensor_operation_instance/gpu/transpose_3d.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"

namespace ck {
namespace profiler {

template <typename HostTensorA, typename HostTensorB, typename Functor>
arai713's avatar
arai713 committed
28
void host_elementwise4D(HostTensorB& B_ndhwc, const HostTensorA& A_ncdhw, Functor functor)
arai713's avatar
arai713 committed
29
30
31
32
33
34
35
36
{
    for(std::size_t n = 0; n < A_ncdhw.mDesc.GetLengths()[0]; ++n)
        for(std::size_t c = 0; c < A_ncdhw.mDesc.GetLengths()[1]; ++c)
            for(std::size_t d = 0; d < A_ncdhw.mDesc.GetLengths()[2]; ++d)
                for(std::size_t h = 0; h < A_ncdhw.mDesc.GetLengths()[3]; ++h)
                    for(std::size_t w = 0; w < A_ncdhw.mDesc.GetLengths()[4]; ++w)
                    {
                        auto a_val = A_ncdhw(n, c, d, h, w);
arai713's avatar
arai713 committed
37
                        functor(B_ndhwc(n, d, h, w, c), a_val);
arai713's avatar
arai713 committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
                    }
}

template <typename ADataType, typename BDataType, index_t NumDim>
bool profile_transpose_impl(int do_verification,
                            int init_method,
                            bool do_log,
                            bool time_kernel,
                            std::vector<index_t> lengths)
{
    bool pass = true;

    index_t N = lengths[0];
    index_t C = lengths[1];
    index_t D = lengths[2];
    index_t H = lengths[3];
    index_t W = lengths[4];

    std::vector<ck::index_t> ncdhw = {N, C, D, H, W};
    std::vector<ck::index_t> ndhwc = {N, D, H, W, C};
    Tensor<ADataType> a(ncdhw);
    Tensor<BDataType> b(ndhwc);
    Tensor<BDataType> host_b(ndhwc);

    // a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});

    std::array<ck::index_t, 5> ab_lengths{N, C, H, W, D};
    std::array<ck::index_t, 5> a_strides = {C * D * H * W, H * W, W, 1, D * H * W}; // N, C, D, H, W
    std::array<ck::index_t, 5> b_strides = {C * H * W * D, H * W * D, W * D, D, 1}; // N, D, H, W, C

    std::cout << "A: " << a.mDesc << std::endl;
    std::cout << "B: " << b.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1: a.GenerateTensorValue(GeneratorTensor_2<ADataType>{-1, 2}); break;
    default: a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
    }

    using ElementOp = ck::tensor_operation::element_wise::PassThrough;

    DeviceMem a_device_buf(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b.mDesc.GetElementSpaceSize());

    a_device_buf.ToDevice(a.mData.data());

    std::array<const void*, 1> input = {a_device_buf.GetDeviceBuffer()};
    std::array<void*, 1> output      = {b_device_buf.GetDeviceBuffer()};
    using DeviceOp                   = ck::tensor_operation::device::
        DeviceElementwise<ck::Tuple<ADataType>, ck::Tuple<BDataType>, ElementOp, NumDim>;

    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    if(do_verification)
    {
        host_elementwise4D(host_b, a, ElementOp{});
    }

    std::string best_op_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    for(auto& op_ptr : op_ptrs)
    {
        auto argument_ptr = op_ptr->MakeArgumentPointer(
            ab_lengths, {a_strides}, {b_strides}, input, output, ElementOp{});

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {

            // re-init C to zero before profiling next kernel
            b_device_buf.SetZero();

arai713's avatar
arai713 committed
119
            // run for verification
arai713's avatar
arai713 committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});

            if(do_verification)
            {
                b_device_buf.FromDevice(b.mData.data());

                pass &= ck::utils::check_err(
                    b.mData, host_b.mData, "Error: Incorrect results b", 1e-3, 1e-3);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b.mData, ",") << std::endl;
                }
            }

            std::string op_name = op_ptr->GetTypeString();

arai713's avatar
arai713 committed
138
            // run for timing purposes
arai713's avatar
arai713 committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

            std::size_t flop =
                std::size_t(2) * ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4];

            std::size_t num_btype =
                sizeof(ADataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]) +
                sizeof(BDataType) * (ncdhw[0] * ncdhw[1] * ncdhw[2] * ncdhw[3] * ncdhw[4]);

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
        }
        else
        {
            std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
        }
    }

    std::cout << " N = " << N << " C = " << C << " D = " << D << " H = " << H << " W = " << W
              << " : " << best_ave_time << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec
              << " GB/s, " << best_op_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck